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Abstract. We investigate in a 2D setting the scattering of time-harmonic electromagnetic waves by
a plasmonic device, represented as a non dissipative bounded and penetrable obstacle with a nega-
tive permittivity. Using the T-coercivity approach, we first prove that the problem is well-posed in
the classical framework H1

loc if the negative permittivity does not lie in some critical interval whose
definition depends on the shape of the device. When the latter has corners, for values inside the
critical interval, unusual strong singularities for the electromagnetic field can appear. In that case,
well-posedness is obtained by imposing a radiation condition at the corners to select the outgoing
black-hole plasmonic wave, that is the one which carries energy towards the corners. A simple and
systematic criterion is given to define what is the outgoing solution. Finally, we propose an original
numerical method based on the use of Perfectly Matched Layers at the corners. We emphasize that
it is necessary to design an ad hoc technique because the field is too singular to be captured with
standard finite element methods.

Key words. Scattering problem, sign-changing permittivity, corner singularities, black-hole waves,
Perfectly Matched Layers, finite element method.

1 Introduction

We are interested in the scattering of Transverse Magnetic (TM) time-harmonic electromagnetic
waves by a metallic obstacle embedded in some dielectric medium, governed by the following scalar
equation

div(ε−1∇u) + ω2µu = 0, (1)

where ω is the frequency, ε is the dielectric permittivity and µ is the magnetic permeability. Unlike
common materials, metals can exhibit a permittivity with a negative real part. More precisely,
following the Drude’s law (see e.g. [40]) the permittivity depends on the frequency:

ε(ω) = ε0εr(ω) = ε0

(
1−

ω2
p

ω2 + iωγ

)
. (2)

Here, ε0 > 0 is the vacuum permittivity, εr(ω) is called the relative permittivity, γ > 0 characterizes
the dissipative effects (we choose the convention of a harmonic regime in e−iωt), and ωp > 0 is the
plasma frequency. Since γ � ωp, dissipation becomes neglectable at frequencies ω such that ω � γ,
leading to the so-called dissipationless Drude’s model:

εr(ω) = 1−
ω2
p

ω2 . (3)
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Then for ω < ωp, ε(ω) = ε0εr(ω) takes negative real values. Due to the change of sign of the
dielectric constant at the interface metal-dielectric, resonances called surface plasmons can appear
[31, 39]. Over the past decades, surface plasmons revealed a great interest in guiding or confining
light in nano-photonic devices [2, 23, 43].

From a mathematical point of view, the study of Equation (1) with a function ε changing sign on
the physical domain, has given rise to many contributions. In particular, an abstract mathematical
approach named T-coercivity and based on variational methods has been proposed in [12, 8]. With
this technique, it has been proved that Problem (1) set in a bounded domain supplemented with
Dirichlet (or Neumann) boundary condition is of Fredholm type in the classical functional framework
whenever the contrast (ratio of the values of ε across the interface) lies outside some interval Ic, called
critical interval, which always contains the value −1. Moreover, this interval reduces to {−1} if and
if only the interface between the two materials is smooth (of class C 2). Analogous results have been
obtained by techniques of boundary integral equations long time before in [20] (see also [35, 28]).
Note that the critical value −1 is associated through Equation (3) to the so-called surface plasmon
frequency while the critical interval is associated to a critical range of frequencies. The numerical
approximation of the solution of this scalar problem for a contrast outside the critical interval, based
on classical finite element methods, has been investigated in [12, 33, 18]. Under some assumptions
on the meshes, the discretized problem is well-posed and its solution converges to the solution of the
continuous problem. Let us mention that the study of Maxwell’s equations has been carried out in
[9, 10, 14].

For geometries with wedges and sharp corners, the solution exhibits strong singularities at these
regions when the constrast is getting closer to the critical interval. This leads to a local energy
enhancement of the light [42, 5, 34]. Even more, for a contrast inside the critical interval, the
problem becomes ill-posed in the classical framework because the solution is no longer in H1. Up to
now, mathematical analysis has addressed in 2D the simplified electrostatic like equation

div
(
ε−1(ω)∇u

)
= 0, (4)

which can be seen as an approximation of (1) by zooming at a corner. It is interesting to note
that the critical interval also appears in the studies of (4) with techniques of conformal mappings
[1, 30, 22]. Concerning the mathematical framework, the influence of corners at the interface between
the two materials has been clarified in [11] for equation (4) set in a particular geometry (with one
corner of particular aperture). In that case, when the contrast lies inside the critical interval, Fred-
holm property is lost because of the existence of two strongly oscillating singularities at the corner,
responsible for the ill-posedness in the classical framework. These singularities can be interpreted
as waves propagating towards or outwards the corner. Then selecting the outgoing singularity by
means of a limiting absorption principle allows to recover Fredholmness of the problem.

The first goal of the present paper is to extend the theory to a more realistic scattering problem
in free space, for a contrast of permittivities outside or inside Ic. The second objective is to present
an original numerical method to approximate the solution when the contrast lies inside the critical
interval. The approach, based on a finite element method, consists in using well-suited Perfectly
Matched Layers (PMLs) at the corners to capture the strongly oscillating singularities.

This text is organized as follows. In section 2, we define the problem and introduce an equivalent
formulation set in a bounded domain using a classical Dirichlet-to-Neumann operator. Then for a
contrast outside the critical interval, we prove it has a unique solution using the T-coercivity approach.
In the rest of the paper, we consider the case of a contrast inside the critical interval. In section 3,
we provide a detailed description of the singularities at corners. In particular, we give a systematic
criterion to select the outgoing singularity which has to be taken into account through an adequate
radiation condition at the corner. This condition yields a well-posed problem for a contrast inside
the critical interval. Standard finite element methods fail to approximate the solution in the new
framework because it is too singular. In section 4, we introduce an original numerical method to
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solve this problem. The idea is to use a coordinates transformation which maps a small disk around
corners to semi-infinite strips. Then we implement Perfectly Matched Layers in the semi-infinite
strips. We illustrate the method showing numerical results in the case of a triangular silver inclusion
embedded in vacuum. Finally in section 5, we conclude the paper with further discussions.

2 Setting of the problem

2.1 The scattering problem with sign-changing permittivity

Propagation of time-harmonic electromagnetic waves in an inhomogeneous, isotropic, and lossless
medium is described by Maxwell’s equations iωεE + curl H = 0 and −iωµH + curl E = 0 for all
(x, z) = (x, y, z) ∈ R3. Here, E, H correspond respectively to the electric and magnetic fields while
ε, µ are the dielectric permittivity and magnetic permeability. Introduce Ωm a bounded open set of
R2 with Lipschitz boundary Σ := ∂Ωm and define Ωd := R2 \Ωm (see Figure 1). In this notation, the
subscripts m and d stand for “metal” and “dielectric” respectively. We assume that the real-valued
functions ε, µ verify ε := εrε0, µ := µrµ0 with

εr =
{
εd > 0 in Ωd × R
εm(ω) < 0 in Ωm × R and µr =

{
µd > 0 in Ωd × R
µm > 0 in Ωm × R ,

where εm(ω) follows the dissipationless Drude’s model (3), and εd, µd, µm are three positive constants.
Here ε0 > 0 (resp. µ0 > 0) refers to the vacuum permittivity (resp. permeability). If an incident field
uinc independent of the variable z illuminates the obstacle, for instance uinc(x) = eik·x with |k| =
k := ω

√
ε0µ0
√
εdµd, one can classically reduce the study of Maxwell’s equations to the resolution of

two uncoupled 2D scalar problems: one associated with (Hx, Hy, Ez) called the Transverse Electric
problem (TE), another associated with (Ex, Ey, Hz) called the Transverse Magnetic problem (TM).
In particular for the TM problem, Hz, denoted by u in the following, is a solution of the problem

Find u = uinc + usca such that:

div
(
ε−1
r ∇u

)
+ ω2c−2µru = 0 in R2

lim
ξ→+∞

∫
|x|=ξ

∣∣∣∂usca

∂r
− ikusca

∣∣∣2 dσ = 0,

(5)

where c := (√ε0µ0)−1 denotes the light speed. In (5), the incident field uinc is the data defined above,
the total field u is the unknown and usca := u− uinc is the field scattered by the metallic inclusion.
The second equation in (5) is the Sommerfeld radiation condition which ensures that usca is outgoing
at infinity (r is the radial coordinate). Here and in the following, we use the same notation for εr,
µr considered as functions defined on R2 or R3. We emphasize that the study of Problem (5) is not
standard because εr is sign-changing.

Ωd
Ωm

Σ

uinc

x
y

εd > 0
εm < 0

Ωd
Ωm

Σ

uinc

x
y

εd > 0
εm < 0

DR

Figure 1: Left: scattering problem in free space. Right: scattering problem in the artificially bounded
domain DR.
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For the rest of the paper, the index r for the parameters εr, µr is omitted and we define k0 := ω/c.
We fix the frequency ω and we write εm instead of εm(ω). Then Problem (5) can be rewritten as

Find u = uinc + usca such that:

div
(
ε−1∇u

)
+ k2

0 µu = 0 in R2

lim
ξ→+∞

∫
|x|=ξ

∣∣∣∂usca

∂r
− ikusca

∣∣∣2 dσ = 0.

(6)

2.2 Reduction to a bounded domain and description of the geometry

In order to study Problem (6), as it is usual in the analysis of scattering problems in free space, we
first introduce an equivalent formulation set in a bounded domain. Let DR := {x ∈ R2 | |x| < R}
denote the open disk of radius R. We take R large enough so that Ωm ⊂ DR. Classically (work e.g.
as in [15, Lemma 5.22]), one proves that u is a solution of (6) if and only if it satisfies the problem

div
(
ε−1∇u

)
+ k2

0 µu = 0 in DR

∂u

∂r
= Su+ ginc on ∂DR, where ginc := ∂uinc

∂r
− Suinc.

(7)

Here, (r, θ) stand for the polar coordinates centered at O, the center of DR, while S refers to the
so-called Dirichlet-to-Neumann map. The action of S can be described decomposing u in Fourier
series (see [15, Theorem 5.20]):

Su(R, θ) =
+∞∑

n=−∞
un
kH

(1)′
n (kR)

H
(1)
n (kR)

einθ√
2π

with un = 1√
2π

∫ 2π

0
u(R, θ)e−inθ dθ. (8)

In this expression, H(1)
n denotes the Hankel function of first kind and H(1)′

n its derivative.

Ωm

Σ

Σ

c1

Ωm

φ1

Ωm

Σ

c1

c2 c3

Ωm

Σ

c1

c2

c4

c3

c5

φ1

φ2 φ3

φ1

φ2
φ3

φ4φ5

Figure 2: Examples of geometries. From left to right: a smooth inclusion (N = 0), a droplet (N = 1),
a triangle (N = 3) and a more complicated inclusion (N = 5).

We have already mentioned that the geometrical features of the interface Σ = ∂Ωm play a key
role in the results of well-posedness for problems with sign-changing coefficients. In particular, one
has to distinguish when the contrast κε := εm/εd is outside or inside the critical interval Ic. In order
to define this interval, we start by describing the geometry precisely, introducing ad hoc notations.
We assume that Σ is of class C 2 at any x ∈ Σ, except at a finite (possibly empty) set of vertices cn,
n = 1, . . . , N . We assume that in a neighbourhood of each vertex cn, Ωm coincides with a sector of
aperture φn (see an illustration with Figure 2). Set

bΣ :=

 max
n=1,...,N

(2π − φn
φn

,
φn

2π − φn

)
if Σ has corners (N ≥ 1)

1 if Σ is smooth (N = 0).
(9)

Finally, we define the critical interval Ic by:

Ic := [−bΣ;−1/bΣ]. (10)
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Details about the derivation of (10) will be given in section 3. Note that the critical interval
Ic ⊂ (−∞; 0) always contains the value −1 (because bΣ ≥ 1) and that there holds Ic = {−1} if
and only if Σ is smooth (N = 0). If N ≥ 1, denoting φmin := minn=1,...,N (φn , 2π − φn ), we can
write bΣ = (2π − φmin)/φmin. This shows that the critical interval Ic is determined by the aperture
of the sharpest angle of the interface. Observe that if φmin → 0, then Ic → (−∞; 0).

Before studying well-posedness of Problem (7), let us finish this section by some comments. Pre-
vious studies for problems with sign-changing coefficients have shown that the adapted functional
framework is H1 when the contrast κε is outside Ic, while the solution becomes too singular to be-
long to H1 when κε ∈ Ic [8, 11]. This will remain true for our scattering problem, and it will have a
significant impact on the energy balance. Indeed, when the solution u of Problem (7) is in H1(DR),
a simple integration by parts yields:

ε−1
d

∫
∂DR

∂u

∂r
u dσ =

∫
DR

ε−1|∇u|2 dx− k2
0

∫
DR

µ |u|2 dx. (11)

Taking the imaginary part of (11), since ε and µ are real valued, we obtain the assertion:

“u ∈ H1(DR) solution of Problem (7)” =⇒ =m
(∫

∂DR

∂u

∂r
u dσ

)
= 0. (12)

This means that the energy flux through ∂DR, in fact through any curve enclosing the obstacle, is
equal to 0 (which seems natural because the medium is non dissipative). We will see in section 3 that
this property is not satisfied when κε ∈ Ic. In this situation, some energy is trapped by the corners.

2.3 Well-posedness in the classical framework for a contrast outside the critical
interval

In this section we explain how to show that Problem (7) is well-posed in the usual functional frame-
work H1(DR) when κε /∈ Ic. The variational formulation of Problem (7) writes:

Find u ∈ H1(DR) such that:

a(u, v) = l(v), ∀v ∈ H1(DR),
(13)

with a(u, v)=
∫
DR

ε−1∇u · ∇v dx− k2
0

∫
DR

µuv dx−
+∞∑

n=−∞

k

εd

H
(1)′
n (kR)

H
(1)
n (kR)

unvn, l(v)=
∫
∂DR

ginc

εd
v dσ.

If u ∈ H1
loc(R2) is a solution of the original Problem (6), then its restriction to DR satisfies (13).

Conversely if u verifies (13) then it can be extended as a solution of (6) in H1
loc(R2).

Lemma 2.1. Problem (6) has at most one solution in H1
loc(R2).

Proof. We proceed exactly as when ε has a constant sign. By linearity of the problem, we just have
to show that a solution u ∈ H1

loc(R2) of (6) with uinc = 0 vanishes. For ξ ≥ R, there holds∫
∂Dξ

∣∣∣∣∂u∂r − iku
∣∣∣∣2 dσ =

∫
∂Dξ

∣∣∣∣∂u∂r
∣∣∣∣2 dσ + k2

∫
∂Dξ

|u|2 dσ − 2k=m (
∫
∂Dξ

∂u

∂r
u dσ), (14)

where Dξ = {x ∈ R2 | |x| < ξ}. Then using (12) (which is also valid with R replaced by any ξ ≥ R)
and the Sommerfeld radiation condition, we obtain

lim
ξ→+∞

∫
∂Dξ

|u|2 dσ = 0.

Since u satisfies ∆u+k2
0µdεdu = 0 in R2\DR, Rellich’s lemma (see e.g. [15, Theorem 3.5]) guarantees

that u = 0 in R2 \DR. From Holmgren’s theorem [25, Theorem 8.6.5], working as in the end of the
proof of [15, Lemma 5.23], successively we deduce that u = 0 in Ωd and u = 0 in Ωm.

5



Lemma 2.1 ensures in particular that a metallic inclusion in the free space cannot trap a pure
resonant wave. Now let us prove the main result for Problem (6) outside the critical interval.
Proposition 2.1. Let ω > 0 be a given frequency. Assume that the contrast κε = εm/εd verifies
κε /∈ Ic = [−bΣ;−1/bΣ], where bΣ has been defined in (9). Then Problem (6) has a unique solution
u in H1

loc(R2). Moreover there exists C > 0 independent of the data ginc such that

‖u‖H1(DR) ≤ C‖ginc‖L2(∂DR).

Proof. Let us decompose the bilinear form a(·, ·) of the variational formulation (13) as follows:
∀v, w ∈ H1(DR), a(v, w) = b(v, w) + c(v, w),

with b(v, w) =
∫
DR

ε−1∇v · ∇w dx +
∫
DR

vw dx + ε−1
d

+∞∑
n=−∞

n

R
vnwn,

(15)

vn, wn being defined as in (8) (one deduces c(·, ·) from above). With the Riesz representation
theorem, we introduce the maps B : H1(DR) → H1(DR), C : H1(DR) → H1(DR) as well as the
function f ∈ H1(DR) such that
(Bv, w)H1(DR) = b(v, w), (Cv, w)H1(DR) = c(v, w), (f, w)H1(DR) = l(w), ∀v, w ∈ H1(DR). (16)

With these notations, u is a solution of (13) if and only if it verifies Bu + Cu = f . Using classical
results concerning the Dirichlet-to-Neumann map S, following e.g. [15, theorem 5.20], one can prove
that C is a compact operator. Therefore it is sufficient to show that B is Fredholm to conclude.
In the classical case of a positive ε, one obtains easily the result using the Lax-Milgram theorem.
Here, because of the change of sign of ε in DR, b(·, ·) is not coercive and this technique fails. Instead,
we use the T-coercivity approach. More precisely, when κε 6∈ Ic, we can prove the existence of a
bounded operator T : H1(DR)→ H1(DR) such that

|b(u, Tu)| ≥ C0‖u‖2H1(DR) − C
′
0‖u‖2L2(DR), ∀u ∈ H1(DR), (17)

where C0 > 0, C ′0 ∈ R are some constants independent of u. According to some classical results (see
[37]) of functional analysis, this is enough to conclude that B is a Fredholm operator. In this method,
all the work lies in the construction of T. Let us briefly explain how we proceed. For details, we refer
the reader to [8, 6]. For all u ∈ H1(DR), set

Tu = sign(ε)u+Rloc(u), (18)
where Rloc : H1(DR) → H1(DR \ Σ) is a continuous operator. The term sign(ε) is natural to
annihilate the change of sign of ε across the interface Σ. Unfortunately, in the general case, sign(ε)u
has a jump across Σ. The map Rloc allows to offset this jump. It is chosen so that [Rloc(u)]Σ = 2u|Σ,
for all u ∈ H1(DR), where [·]Σ denotes the jump from Ωm to Ωd. Using cut-off functions, which are
responsible for the appearance of the second term in the left-hand side of (17), we can define Rloc
such that Rloc(u)|∂DR = 0. Thus, Tu does not modify boundary term contributions in (15). We
emphasize that in the vicinity of Σ the operator Rloc has to be carefully defined (see again [8, 6] for
details). With (18) plugged into (15), Estimate (17) follows.

Let us make some comments regarding this approach:
• The analysis developed here can be adapted to varying coefficients ε, µ. In this case, the condition
[8, Theorem 4.3] to guarantee Fredholmness for Problem (7) with the T-coercivity technique involves
the ratio of local upper and lower bounds of εd, εm in a neighbourhood (which can be chosen as small
as we want) of Σ. In order to prove uniqueness of the solution, an additional smoothness assumption
on ε (imposing e.g. ε to be piecewise smooth) has to be made to apply unique continuation results.
• In the (TE) problem, the electric field Ez satisfies the equation div

(
µ−1∇Ez

)
+ k2

0εEz = 0 in R2.
Thus, since µm > 0, we find that the (TE) problem is always well-posed: the change of sign of ε does
not matter in the (TE) problem.
• One can also consider sign-changing permeabilities, for example when one wishes to model the
propagation of electromagnetic fields in presence of Negative Index Metamaterials (NIM) [38, 41, 40].
Defining the contrast κµ := µm/µd, for the (TM) problem, well-posedness holds for κε /∈ Ic and for
all κµ < 0. Also for the (TE) problem, well-posedness is guaranteed for all κε < 0 when κµ /∈ Ic.
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3 Singular solutions at one corner
When the interface between the two materials presents corners, then for a contrast κε inside the
critical interval Ic, well-posedness of Problem (6) in the usual H1 framework is lost. This is due to
the appearance of strongly oscillating singularities at one or several corner(s). This has been already
investigated in [21, 11, 19] for a particular geometry involving one corner of aperture π/2. Here we
wish to study the general case of an arbitrary corner angle.

3.1 Characterization of singular exponents

For ease of exposition, we consider a metallic inclusion with only one corner, that we denote by c.
Without loss of generality we assume that c is located at the origin O. In accordance with the setting
of §2.2, Ωm coincides in the vicinity of the vertex c with a sector of aperture φ ∈ (0; 2π) \ {π} (see
Figure 7 left, page 14). In other words, there exists ρ > 0 such that for well-chosen cartesian and
polar coordinates (r, θ):

Dρ ∩ Ωd = {x = (r cos(θ), r sin(θ)) | 0 < r < ρ, φ/2 < |θ| < π},
Dρ ∩ Ωm = {x = (r cos(θ), r sin(θ)) | 0 < r < ρ, |θ| < φ/2},

where Dρ denotes the disk of radius ρ. In Dρ, the permittivity ε depends only on θ:

ε =
{
εd for φ/2 < |θ| < π,

εm for |θ| < φ/2.

In polar coordinates, equation of Problem (6) multiplied by r2 reads

ε−1(r∂r)2u+ ∂θ(ε−1∂θu) + k2
0r

2µu = 0, (19)

where we use abusively the same notation for u(x) and u(r, θ). Zooming at the corner (i.e. taking
ρ small enough) leads to neglect the term k2

0r
2µu in (19) and to study the “static” equation (4).

In other words, the singular behaviour of a solution of (19) is the same as the one of a solution
of (4). The main advantage of considering (4) is that separation of variables is now possible. In
the following, we call singularities the functions s(r, θ) = χ(r)Φ(θ) with separated variables in polar
coordinates which satisfy

div(ε−1∇s) = 0 in Dρ, (20)

that is ε−1(r∂r)2s + ∂θ(ε−1∂θs) = 0. A direct calculation shows that this holds if and only if there
exists λ ∈ C such that (r∂r)2χ = λ2 χ, for 0 < r < ρ and

−(∂θε−1∂θ)Φ = λ2 ε−1Φ for − π < θ < π,

Φ(−π) = Φ(π),
∂θΦ(−π) = ∂θΦ(π).

(21)

The problem verified by χ, for which we do not impose boundary conditions, can be easily solved.
For λ = 0, we find χ(r) = A ln r +B whereas for λ 6= 0, we obtain χ(r) = Arλ +B r−λ, A, B being
two constants. The Problem (21) satisfied by Φ is an eigenvalue problem. Denote by Λ the set of
values λ such that Problem (21) has a non zero solution Φ. This set will be referred to as the set of
singular exponents associated to c. In the usual case where ε > 0, (21) is a self-adjoint problem with
positive eigenvalues λ2 (Λ ⊂ R). Here, because the sign-changing parameter ε appears in both sides
of the equation, the study and the properties of (21) are not standard. In particular, Λ generally
contains complex eigenvalues. Concerning the analysis, to our knowledge there is no theory for this
eigenvalue problem. However since it is a 1D problem, we can carry out explicit computations. First
we can prove that, when κε 6= −1, Λ is discrete (proceed as in [17, Corollary 4.10]). Moreover, it is
straightforward to see that 0 ∈ Λ and that Λ is stable by symmetry/conjugation (−λ, ±λ ∈ Λ for
all λ ∈ Λ). Using elementary symmetry arguments, one can compute singular exponents associated
with even or odd eigenfunctions Φ. The corresponding singularities s(r, θ) are either symmetric or
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skew-symmetric with respect to the bisector of the corner ` := {x = (r cos θ, r sin θ) ∈ R2 | θ = 0} (see
Figure 7 left). We denote by Λsym (resp. Λskew) the subset of Λ of singular exponents corresponding
to symmetric (resp. skew-symmetric) singularities. Note that Λ = Λsym ∪Λskew. Simple calculations
reproduced in Annex 6.1 yield the following characterizations for the sets Λsym, Λskew.

Proposition 3.1. Set b := (2π − φ)/φ and f±(z) = κ±1
ε tanh(z) + tanh(bz) for z ∈ C. We have

Λsym := {λ ∈ C | f− (iλφ/2) = 0}, Λskew := {λ ∈ C | f+ (iλφ/2) = 0}.

All singularities do not contribute to the solution of a problem such as (6). For instance, for
κε /∈ Ic, the solution of (6) is locally in H1, so that only singularities which are in H1 near the corner
should be considered. For λ = 0, A ln r + B is locally in H1 if and only if A = 0. For λ such that
<e λ > 0, s(r, θ) = rλΦ(θ) is locally in H1 while s(r, θ) = r−λΦ(θ) is not. The singularities associated
with singular exponents λ satisfying λ 6= 0 and <e λ = 0 (located at the limit between the H1 zone
and the non H1 zone) play a special role for Problem (6). We will have to take them into account in
the functional framework even though they do not belong to H1 (see (22)). In the next paragraph,
we focus our attention on these particular singularities.

3.2 Oscillating singularities

r
O

Figure 3: Behaviour of the real part of the radial component of the singularity rλΦ(θ), for λ ∈ Ri\{0},
in a neighbourhood of O. To understand these oscillations, observe that <e riη = cos(η ln r) for
η ∈ R∗.

Assume that Λ ∩ iR contains some λ 6= 0. The singularities r±λΦ(θ) have a curious oscillating
behaviour at the origin (see Figures 3, 5) and do not belong to H1. Indeed, for λ = iη, η ∈ R∗, we
obtain

lim
δ→0+

∫ π

−π

∫ ρ

δ
|∂r(riηΦ(θ))|2 rdrdθ = lim

δ→0
η2
∫ π

−π
|Φ(θ)|2 dθ

∫ ρ

δ

dr

r
= +∞. (22)

Going back to Maxwell’s equations, this means that the electric field E is such that E 6∈ (L2
loc(R3))3,

so that the energy is infinite at the corner. Now, we prove that such singularities exist.

Lemma 3.1. Define Ic = [−bΣ;−1/bΣ] with bΣ = max
(

2π−φ
φ , φ

2π−φ

)
. The following array describes

the set Λ ∩ iR with respect to κε, φ:

κε 6∈ Ic κε ∈ (−bΣ;−1) κε ∈ (−1;−1/bΣ)

0 < φ < π Λ ∩ iR = {0}
Λ ∩ iR = {±iη}, for some η > 0

and
{ Λsym ∩ iR = {0}

Λskew ∩ iR = {±iη}

Λ ∩ iR = {±iη}, for some η > 0

and
{ Λsym ∩ iR = {±iη}

Λskew ∩ iR = {0}

π < φ < 2π Λ ∩ iR = {0}
Λ ∩ iR = {±iη}, for some η > 0

and
{ Λsym ∩ iR = {±iη}

Λskew ∩ iR = {0}

Λ ∩ iR = {±iη}, for some η > 0

and
{ Λsym ∩ iR = {0}

Λskew ∩ iR = {±iη}

Proof. According to Proposition 3.1, the singular exponents are given by the zeros of the functions
f±. As the functions f± are odd, it is sufficient to study their zeros on (0; +∞).
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? First assume that 0 < φ < π. Then, we have b = (2π − φ)/φ > 1 and bΣ = b. We can check that
f± do not vanish when κε 6∈ [−bΣ;−1/bΣ]:
- if κε < −bΣ, then on (0; +∞), f−(t) > (1 + κ−1

ε ) tanh(t) > 0 and f+(t) < tanh(bt)− b tanh(t) < 0;
- if κε > −1/bΣ then on (0; +∞), f−(t) < tanh(bt)− b tanh(t) < 0 and f+(t) > (1 + κε) tanh(t) > 0.
Now, we wish to prove that
κε ∈ (−bΣ;−1) =⇒ ∃! η > 0 such that f+ (ηφ/2) = 0 and f−(t) 6= 0, ∀t ∈ (0; +∞),
κε ∈ (−1;−1/bΣ) =⇒ ∃! η > 0 such that f− (ηφ/2) = 0 and f+(t) 6= 0, ∀t ∈ (0; +∞).
• Case κε ∈ (−bΣ;−1). With the same arguments as before we have f− > 0 on (0; +∞). On the
other hand, a careful analysis of the monotony shows that f+ vanishes exactly once on (0; +∞) if
and only if κε ∈ (−bΣ;−1). More precisely, one checks that (f+)′(0) = κε + bΣ > 0 (and f+(0) = 0),
while limt→+∞ f

+(t) = κε + 1 < 0. This proves that f+ has at least one zero in (0; +∞). Then one
proves that the derivative of f+ changes sign once and only once on (0; +∞) to conclude.
• Case κε ∈ (−1 : −1/bΣ). With analogous arguments we obtain f+ > 0 on (0; +∞) and we establish
that f− has exactly one zero on (0; +∞) if and only if κε ∈ (−1 : −1/bΣ).
? To consider the situation π < φ < 2π, it is sufficient to note that the singularities of the operators
div(ε−1∇·) and −div(ε−1∇·) are the same and to use the results of the case 0 < φ < π with κε
replaced by 1/κε. Indeed, with this multiplication by −1, the roles of Ωm and Ωd are exchanged.

Figure 4: Set of singular exponents Λ for φ = 5π/12 (in this case Ic = [−3.8;−0.26315]). The
singular exponents λ ∈ Λskew are represented with asterisks while the singular exponents λ ∈ Λsym
are represented with diamonds. Left: κε = −18.684. Middle: κε = −1.1871. Right: κε = −0.4641.

In Figure 4, we display the set of singular exponents Λ for contrasts outside and inside the critical
interval Ic for a given angle φ. The results are in accordance with Lemma 3.1 (observe also that Λ may
contain complex eigenvalues even if κε /∈ Ic). In the following, for a contrast κε ∈ (−bΣ;−1/bΣ)\{−1},
we shall often refer to s± where

s±(r, θ) = r±iηΦ(θ).
We recall that η is chosen positive. With the results of Proposition 3.1 and Lemma 3.1 one can check
that the eigenfunctions Φ are defined as follows.

If Λskew ∩ iR 6= {0}, Φ(θ) = sinh(ηθ)
sinh(ηφ/2) on [0;φ/2]; Φ(θ) = sinh(η(π − θ))

sinh(η(π − φ/2)) on [φ/2;π];

Φ(θ) = −Φ(−θ) on [−π; 0].
(23)

If Λsym ∩ iR 6= {0}, Φ(θ) = cosh(ηθ)
cosh(ηφ/2) on [0;φ/2]; Φ(θ) = cosh(η(π − θ))

cosh(η(π − φ/2)) on [φ/2;π];

Φ(θ) = Φ(−θ) on [−π; 0].
(24)

Going back to the time-domain and multiplying the oscillating singularities by the harmonic term
e−iωt leads us to consider functions which behave like

s±(r, θ)e−iωt = ei(±η ln r−ωt)Φ(θ) (25)
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Figure 5: Real part of the skew-symmetric (left) and symmetric (right) oscillating singularity near
the corner c.

near the corner c. Let us compute the phase velocity of these waves. A pointM of phase i(±η ln r−ωt)
will be located at r + dr at t+ dt with ±η ln(r + dr)− ω(t+ dt) = ±η ln r − ωt. Since ln(r + dr) =
ln r + dr/r + o(1/r) for dr small, one finds the phase velocity dr/dt = ±ωr/η for the waves (25).
Note that it tends to zero when approaching the origin. The wave s−(r, θ)e−iωt seems to propagate
to the corner but never reaches it. This is the reason why in the following, it will be referred to as
“black-hole wave”. By extension, we will use the same denomination for the other wave s+(r, θ)e−iωt
which seems to come from c. Finally, we point out that from time to time in this paper, the oscillating
singularities will be called “black-hole singularities”.

3.3 Selecting the outgoing solution I: energy trapped at the corner

For a contrast κε ∈ Ic \ {−1}, looking for a solution of the scattering problem in H1
loc (i.e. with a

local finite electromagnetic energy) would lead to exclude a behaviour at a corner like the one of the
oscillating singularities s±(r, θ). Nonetheless allowing such singular behaviour is necessary to obtain
existence (and uniqueness) of a solution u to Problem (6). Therefore, we are led to consider u which
decomposes, in a neighbourhood of c, as

u = a+ b+s
+ + b−s

− + ũ, (26)

where ũ is a smooth function and a, b± are complex constants. Roughly speaking ũ is smooth means
that it is a superposition of singularities with singular exponents λ such that <e λ > 0 (see §6.3). We
recall that 0 belongs to Λ for all κε < 0, that the associated singularities are 1 and ln r, and that only
the constant is locally in H1. In order to get uniqueness of the solution for (7), as shown in [11], a
relation on b± has to be enforced. A priori, it is not obvious to decide which condition to impose that
will give the “physical” solution because the singularities s± have very similar behaviours at c. In
particular, due to the change of sign of the permittivity ε, considerations based on phase velocity are
not sufficient. To identify the relevant condition, we study in this paragraph the energy carried by
s±. Let us consider a function u of the form (26) which satisfies the equation div(ε−1∇u)+k2

0µu = 0
in the vicinity of the corner c. Proceeding like at the end of §2.2, one can easily verify that the
quantity

J := =m
(∫

∂Dρ
ε−1∂ruu dσ

)
(27)

defined for ρ small enough, is independent of ρ. It represents the energy flux through ∂Dρ coming
from the corner. Plugging (26) in the left-hand side of (27) yields

J = η(|b+|2 − |b−|2)
∫ π

−π
ε−1Φ2 dθ. (28)

Indeed, on the one hand, using that Φ, given by (23) or (24), is real-valued, one can check that∫
∂Dρ

ε−1∂s
±

∂r
s± dσ = ±iη

∫ π

−π
ε−1Φ2 dθ. (29)
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On the other hand, one can prove that all the other cross-terms tend to 0 as ρ → 0 (proceed as in
§6.3). Then identity (28) follows by noting that s+ = s−. The sign of the integral appearing in (28),
which is not obvious because of the presence of the parameter ε, plays an important role to compute
energy balances. Explicit calculations detailed in the Annex (see Lemma A) show that∫ π

−π
ε−1Φ2 dθ > 0 if κε ∈ (−bΣ;−1) and

∫ π

−π
ε−1Φ2 dθ < 0 if κε ∈ (−1;−1/bΣ). (30)

We see that the sign of the integral depends only on the contrast of the physical parameters of the
two materials. If ε−1

d > |εm|−1, then the integral is positive, and vice versa.

Now, consider for instance the case κε ∈ (−bΣ;−1). Since by definition η is positive, we observe
with (28) that the singularity s+ adds a positive contribution to the energy flux J . It means that s+

carries some energy produced by the corner. We say that s+ is the “incoming” singularity (sin = s+)
because it brings energy into the system. On the contrary, s− adds a negative contribution to J : it
carries some energy absorbed by the corner. We say that s− is the “outgoing” singularity (sout = s−).
When κε ∈ (−1;−1/bΣ), according to (30), we take sout = s+ and sin = s−. The results are sum-
marized in Table 1 below. To conclude, in the following, we impose that the solution of Problem
(6) decomposes only on the outgoing singularity sout and not on sin because sin carries some energy
produced by the corner which is not physical.

Remark 3.1. The terminology “incoming/outgoing”, inspired by the scattering theory, is mainly
related to the point of view developed in section 4, where sout (resp. sin) corresponds to an outgoing
(resp. incoming) propagative mode in a waveguide.

κε ∈ (−bΣ;−1) κε ∈ (−1;−1/bΣ)
sout(r, θ) = s−(r, θ) = r−iηΦ(θ) sout(r, θ) = s+(r, θ) = r+iηΦ(θ)

0 < φ < π Φ given by (23) skew-symmetric Φ given by (24) symmetric
π < φ < 2π Φ given by (24) symmetric Φ given by (23) skew-symmetric

Table 1: Features of the outgoing singularity with respect to the configuration.

Remark 3.2. Note that when κε ∈ (−1;−1/bΣ), the wave soute−iωt (see (25)) has a positive phase
velocity and seems to come from the corner. However, sout propagates energy towards the corner.
We stress that we select the physical solution according to the group velocity and not according to the
phase velocity.

Let us briefly present another approach, which has been used in [11] (see also [32] in a slightly
different context), to define the “physical” singularity. We emphasize that it leads to select the same
solution.

3.4 Selecting the outgoing solution II: limiting absorption principle

We recall that the original Drude’s model (2) includes a small parameter γ which takes into account
classical dissipation Joule effects. We point out that we choose γ ≥ 0 so that, with the convention of
a harmonic term equal to e−iωt, energy is indeed lost by the structure (the alternative convention eiωt
leads to take γ ≤ 0 in order to model dissipation). We denote by εγm the permittivity obtained with
this model and we define εγ the function such that εγ = εd in Ωd, εγ = εγm in Ωm. The smallness of γ
compared to the considered range of frequencies has led us to neglect it in the analysis and this is the
reason of the difficulties we have encountered. Indeed, when γ > 0, κεγ := εγm/εd 6∈ R and one can
easily check that the functions f± defined in Proposition 3.1 with κε replaced by κεγ do not vanish
on (0; +∞). In other words, purely oscillating singularities do not occur with dissipation. More
mathematically, when ε is changed to εγ , the new sesquilinear form associated with Problem (13)
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becomes coercive in H1(DR). Therefore, the dissipative problem always admits a unique solution,
denoted uγ , in this space. The function uγ decomposes near the corner as

uγ = aγ + bγsγ + ũγ ,

where aγ , bγ are constants, ũγ is a smooth function and sγ(r, θ) = rλ
γΦγ(θ). Here, λγ is the singular

exponent of smallest positive real part of Λγ , the set of values of λ such that (21), with ε replaced
by εγ , has a non zero solution. The following result confirms the relevance of choosing the outgoing
singularity sout according to Table 1.

Proposition 3.2. Assume that κε ∈ (−bΣ;−1/bΣ) \ {−1}. Then sout = limγ→0 s
γ, where sout is

defined according to Table 1.

Let us sketch the proof. Denote λγ± ∈ Λγ the singular exponent which tends to ±iη as γ goes
to zero. Introduce λ̂± the first order term appearing in the Taylor expansion λγ± = ±iη + γλ̂± +
. . . . Using the implicit functions theorem, one can prove that λ̂± are real valued, λ̂+ = −λ̂−
and λ̂+

∫ π
−π ε

−1|Φ|2 dθ < 0. Assume that κε ∈ (−bΣ;−1). Then, according to (30), we have∫ π
−π ε

−1|Φ|2 dθ > 0. Since by definition <e λγ > 0, we deduce that λγ coincides with λγ− and therefore,
tends to −iη as γ → 0. This implies limγ→0 s

γ = s−. But Table 1 ensures that s− = sout when
κε ∈ (−bΣ;−1). The case κε ∈ (−1;−1/bΣ) can be handled in a similar way.

In Figure 8 (middle), we represent the set Λγ for a small value of γ > 0. One observes that the
numerical results are in accordance with Proposition 3.2.

3.5 A well-posed formulation of the scattering problem for a contrast inside the
critical interval

At this point, we have provided the ingredients to obtain a well-posed formulation for the scattering
Problem (6) with a contrast lying in the critical interval. When κε ∈ Ic \ {−1}, we look for solutions
u which admit the expansion

u = bsout + ũ in R2, with b ∈ C, ũ ∈ H1
loc(R2), (31)

where the outgoing singularity sout is defined according to Table 1. Note that imposing the specific
behaviour (31) for the solution is like imposing a radiation condition at the corner. As nicely written
in [4] for another problem sharing analogous properties, this boils down to allow a “leak” at c. Now,
we prove the well-posedness of the problem in this setting. We start with a uniqueness result whose
proof relies again on energy considerations.

Lemma 3.2. Problem (6) has at most one solution admitting decomposition (31).

Proof. Consider some u admitting decomposition (31) and satisfying Problem (6) with uinc = 0.
Multiplying the volume equation of (6) by u, integrating by parts inDR\Dρ and taking the imaginary
part, we get the energy balance

=m
(∫

∂DR

ε−1
d ∂ruu dσ

)
= =m

(∫
∂Dρ

ε−1∂ruu dσ

)
. (32)

Denote Jext (resp. J) the left-hand side (resp. right-hand side) of (32). We have selected sout so that

J = −η |b|2
∣∣∣∣∫ π

−π
ε−1Φ2 dθ

∣∣∣∣ ≤ 0

(see the discussion after (30)). Therefore, from (32) we deduce that Jext ≤ 0. This is true also with R
replaced by ξ ≥ R. Then using identity (14) and working as in the proof of Lemma 2.1 with Rellich’s
lemma, we obtain u = 0 in R2.
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The proof of existence of a solution requires more involved arguments based on the Kondratiev
theory [27] and is beyond the scope of the present article. We refer the reader to [11, 7] where a
detailed explanation of the technique is presented in a simple geometry. Finally we can state the

Proposition 3.3. Let ω > 0 be a given frequency. Assume that the contrast κε = εm/εd verifies
κε ∈ (−bΣ;−1/bΣ)\{−1}, where bΣ has been defined in (9). Then Problem (6) has a unique solution
u admitting decomposition (31). Moreover there exists C > 0 independent of the data ginc such that

|b|+ ‖ũ‖H1(DR) ≤ C‖ginc‖L2(∂DR).

Remark 3.3. The results of Proposition 3.3 can be extended to consider Problem (6) with a volume
equation replaced by div(ε−1∇u) + k2

0µu = f , f being a given source term. Well-posedness is ensured
if f has a compact support and if f is such that r1−νf ∈ L2(R2) for some ν > 0. In particular
f ∈ L2(R2) with a compact support is allowed.

Let us make some comments to conclude this section:
• In the recent paper [29], the author suggests that the good way to formulate the scattering problem
for a contrast inside the critical interval is to choose u in the vicinity of the corner such that J defined
in (27) vanishes. This is attractive because in this case, the metallic scatterer neither absorbs nor
produces energy (like in (12)). To get such a solution, one must keep both incoming and outgoing
singularities, with the balancing condition |b+| = |b−|. In other words, u must decompose as

u = b(s+ + eits−) + ũ, (33)

where b ∈ C, t ∈ [0, 2π) and where ũ is a smooth function. In the present article, we did not use this
criterion for the following reasons. First, there is still an undetermined parameter to set, namely the
phase t. Second, the limiting absorption principle, which can be rigorously proven working as in [11,
Theorem 4.3], is satisfied in the setting (31) but not in the setting (33). Therefore, it is our opinion
that the decomposition (31) is more relevant from a physical point of view than (33).
• When the contrast and the interface are such that for the N vertices c1, . . . , cN , there exist oscil-
lating singularities s±n (rn, θn) := r±iηnn Φn(θn) at cn, (ηn > 0) the analysis is exactly the same. Here,
(rn, θn) denote the polar coordinates associated with cn. In this case, we can prove that Problem (6)
has a unique solution u which admits the expansion

u =
N∑
n=1

bn s
out
n + ũ in R2, with bn ∈ C and ũ ∈ H1

loc(R2). (34)

In that case, working as in (32), denoting ∂Dn
ρ := {x ∈ R2 | |rn| = ρ}, we obtain the energy balance

Jext =
N∑
n=1

Jn, with Jn := =m
(∫

∂Dnρ

ε−1∂rnuu dσ

)
= −ηn |bn|2

∣∣∣∣∫ π

−π
ε−1Φ2

n dθn

∣∣∣∣ . (35)

Using (35), one can quantify the energy trapped by each corner (see §4.4.2 for numerical illustrations).

4 Approximation of the solution for a contrast inside the critical
interval

We have obtained a well-posed formulation for Problem (6) with a contrast inside the critical interval.
It leads to look for solutions u which decompose as u = ∑

n bn s
out
n + ũ (see (34)). Now, a natural

question is: how to approximate u? Let us try to use a classical finite element method. We consider
a setting where the inclusion is a triangle made of silver embedded in vacuum. The angles of the
triangle (see Figure 6) are equal to φ1 = π/6 (top corner) and φ2 = φ3 = 5π/12 (bottom corners).
For such geometry, according to (9) and (10), we have bΣ = (2π−π/6)/(π/6) = 11 so that the critical
interval is given by

Ic = [−11;−1/11].
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For silver, the plasma frequency is ωp = 13.3 PHz [36]. From the dissipationless Drude’s model (3),
we deduce that

κε ∈ Ic ⇐⇒ ω ∈
[

ωp√
1 + bΣ

; ωp√
1 + 1/bΣ

]
= [3.839 PHz; 12.733 PHz].

For our experiment, we set ω = 9 PHz (corresponding to εm(ω) = −1.1838), εd = 1, µm = µd = 1.
Therefore, we have κε = εm/εd = −1.1838 ∈ [−11;−1]. For the other parameters, we take

uinc(x) = eik·x, k = k
(
cosαinc−→ex + sinαinc−→ey

)
, k = k0 = ω/c, and αinc = −π/12.

Figure 6: Solution obtained using a standard P2 finite element method for different meshes: from
left to right, 13273 nodes, 56031 nodes and 100501 nodes. The frequency is set to ω = 9 PHz
(κε = −1.1838). Note that the computed field is not stable at the interface when we refine the mesh.

In Figure 6, we represent the approximated total field obtained using a standard P2 finite element
method for three different meshes. The incident plane wave produces both a usual scattered field
outside the inclusion and a typical plasmonic wave at the interface between the two materials. When
we refine the mesh, the scattered field outside the inclusion is approximately stable. However, the
plasmonic wave seems very sensitive to the mesh (see in particular at the bottom and right edges
of the inclusion). The numerical solution does not converge when the mesh size tends to zero, the
classical finite element method fails to approximate the field which is not in H1 locally around the
corners. More precisely, this is due to the fact that it is impossible to capture the oscillations of
the singularities sout

n (see Figures 3, 5) with a mesh of given size. Spurious reflections are always
produced. Hence, we have to develop another method.

4.1 Analogy with a waveguide problem

x

y

(z, θ) = (ln r, θ)

ρ
(r, θ) = (ez, θ)

φ1/2c1

Dρ

φ1/2

ln(ρ)
−π

φ1/2

π

Sρ

−∞

−φ1/2

z

θ

Figure 7: Change of variables at the corner. The disk Dρ is transformed into a semi-infinite strip Sρ
(the waveguide) with periodic conditions in θ. As r → 0, z tends to −∞.

In order to capture the oscillations of sout
n , a natural idea consists in unfolding a neighbourhood of

each corner using a change of variables. To explain the idea, assume that there is only one corner c.
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Define z = ln r (as it is classical for the Mellin transform [27]), ŭ(z, θ) = u(ez, θ). In a neighbourhood
of c, the function ε depends only on θ so we make no difference between ε(r, θ) and ε(z, θ). With
this notation, as illustrated by Figure 7, Equation (19) in Dρ is changed into the equation(

ε−1∂2
z + ∂θε

−1∂θ
)
ŭ+ k2

0e
2zµŭ = 0

in the semi-infinite strip (the waveguide) Sρ := (−∞; ln ρ)×(−π;π). Note that z = ln r → −∞ when
r → 0. As a consequence, the corner is sent to −∞ in the waveguide. With this change of variables,
the function ŭ is 2π-periodic in θ: ŭ(·,−π) = ŭ(·, π) and ∂θŭ(·,−π) = ∂θŭ(·, π). On the other hand,
the term k2

0e
2zµ is exponentially decaying as z → −∞. As a consequence, the behaviour of ŭ at −∞

is determined by the functions s̆ which satisfy(
ε−1∂2

z + ∂θε
−1∂θ

)
s̆ = div(ε∇s̆) = 0 in Sρ

and which are 2π-periodic for the θ variable. Since r = ez, the singularities s(r, θ) = rλΦ(θ), solu-
tions of (20) in Dρ, are turned into s̆(z, θ) = eλzΦ(θ) in Sρ. These functions are commonly called
the modes of the waveguide Sρ. In §3.1, we said that for λ ∈ Λ such that <e λ > 0 the singularity
s = rλΦ belongs to H1(Dρ). In this case, the associated mode s̆ = eλzΦ is evanescent in the waveg-
uide Sρ. While, for λ = ±iη, η > 0, the oscillating singularities s± do not belong to H1(Dρ). The
corresponding modes s̆± := e±iηzΦ are propagative in Sρ. According to Lemma 3.1, we know that
propagative modes exist only for contrasts inside the critical interval. In the presence of propagative
modes, it is well-known that a radiation condition at infinity in the waveguide has to be enforced to
obtain a well-posed problem. But we have already done this work for the corner problem. Define s̆out

such that s̆out(z, θ) = sout(ez, θ). Then in the waveguide Sρ, we look for solutions ŭ which decompose
as ŭ = bs̆out + ŭev, b ∈ C, where ŭev is the sum of a constant term and evanescent modes at −∞.

For numerical purposes, we will use the analogy with the waveguide writing a formulation of the
scattering problem in a domain split in two parts, namely the perforated domain DR/Dρ and the
semi-infinite strip Sρ. The main difficulty lies in the fact that the new geometry is unbounded and
that the solution we want to approximate does not decay at infinity in Sρ. However, many efficient
techniques have already been developed to consider waveguide problems in presence of propagative
modes. A class of methods consists in bounding artificially the waveguide to compute an approxi-
mation of the solution on a bounded domain. For this kind of approaches, it is well known that the
waveguide has to be bounded in a clever way to avoid spurious reflections on the artificial boundary.
One technique to achieve this end is to use a Perfectly Matched Layer (PML) [13, 3]. In the following,
we apply this method to our problem. First, we set up the PML. Then, we explain how to truncate
the PML to derive a formulation set in a bounded domain which can be discretized numerically.

4.2 An approximation of the scattering problem at the continuous level

Imposing a PML in the semi-infinite strip Sρ boils down to compute an analytic continuation of ŭ.
In practice it leads to make the complex stretching z 7→ z/α, α ∈ C \ {0}. With this stretching one
finds that ŭα(z, θ) := ŭ(z/α, θ) satisfies(

α2ε−1∂2
z + ∂θε

−1∂θ
)
ŭα + e2z/αk2

0µŭα = 0 in Sρ.

Let us explain how to choose the parameter α ∈ C \ {0}. Without loss of generality, we can impose
|α| = 1 so that α = eiϑ for some ϑ ∈ (−π;π]. In order for the function z 7→ e2z/α to be exponentially
decaying at −∞, we impose <e α > 0 which amounts to take ϑ ∈ (−π/2;π/2). On the other hand,
observe that the modes of the problem

(
α2ε̆−1∂2

z +∂θε̆
−1∂θ

)
w̆ = 0 with periodic boundary conditions

for the θ variable are the functions (z, θ) 7→ eλz/αΦ(θ), where (λ,Φ) corresponds to an eigenpair
of Problem (21). And if ŭ decomposes on the modes eλzΦ(θ), ŭα, the analytic continuation of ŭ,
decomposes on the modes eλz/αΦ(θ). Therefore, in order ŭα to be exponentially decaying at −∞,
we have to choose α such that there holds <e (λ/α) > 0 for all λ ∈ Λout \ {0}. Here, Λout refers to
the set of singular exponents appearing in the modal decomposition of ŭ:

Λout := {0, λout} ∪ Λ̃out with Λ̃out = {λ ∈ Λ | <e λ > 0},
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where λout denotes the singular exponent of sout defined according to Table 1. This means that we
choose ϑ such that π/2 + arg(λ) > ϑ > −π/2 + arg(λ) for all λ ∈ Λout \ {0}, where arg : C \ {0} →
(−π;π] denotes the complex argument. Let us clarify this.

? When κε ∈ (−bΣ;−1), according to Table 1, we have −iη ∈ Λout and iη /∈ Λout. In this case, one
takes α such that <e (−iη/α) > 0, that is =m (α) < 0. Then, we choose α = eiϑ with ϑ ∈ (ϑ−; 0),
where ϑ− := −π/2 + max

λ∈Λ̃out
arg(λ).

? When κε ∈ (−1;−1/bΣ), we have iη ∈ Λout and −iη /∈ Λout. Working as above, we find that
a good choice for α is α = eiϑ with ϑ ∈ (0;ϑ+), where ϑ+ := π/2 + min

λ∈Λ̃out
arg(λ).

Figure 8: Left: set of singular exponents Λ = Λsym ∪ Λskew (diamonds for Λsym and asteriks for
Λskew) for ω = 9 PHz (κε = −1.1838 ∈ Ic) and a corner aperture φ = π/6. The singular exponent
associated to sout is circled in black. In accordance with the result of Proposition 3.2, the outgoing
singularity sout in this setting is s− (and it is skew-symmetric). Middle: set Λγ for small γ (γ is the
dissipation). Right: set of singular exponents with the PML.

In Figure 8, we display the sets of singular exponents for the problem with small dissipation and for
the problem with a PML. The important point is that these two regularization processes move the
singular exponent λout in the half plane {λ ∈ C | <e λ > 0}. This suggests that our PML parameter
α has been correctly set. For the problem with a PML, all the modes except the constant one are
evanescent. Therefore, for numerical purposes, we can truncate the waveguide Sρ. Define the domain
SLρ = (ln ρ − L; ln ρ) × (−π;π) with L > 0. On the boundary {ln ρ − L} × (−π;π), we impose the
Neumann condition ∂zŭ = 0 to allow constant behaviour at −∞ (the PML has no influence on
the constant mode). We emphasize that the Dirichlet boundary condition would produce spurious
reflections. We also introduce the parameter L0 ∈ (0;L) such that the term k2

0µ̆e
2zŭ becomes

neglectable for all z ≤ ln ρ− L0 and we define the function α such that

α(z) :=
{

1 for z ∈ (ln ρ− L0; ln ρ),
α for z ∈ (ln ρ− L; ln ρ− L0). (36)

Working in the waveguide enables to dilate the radial coordinate near the corner and L0 defines the
beginning of the PML. The previous analysis leads us to consider the problem

Find (u, ŭ) ∈ H1(DR \Dρ)×H1
per(SLρ ) such that:

div
(
ε−1∇u

)
+ k2

0µu = 0 in DR \Dρ,

∂ru− Su = ginc on ∂DR,(
ε−1∂zα∂z + α−1∂θε

−1∂θ
)
ŭ+ α−1e2z/αk2

0µŭ = 0 in SLρ ,

∂zŭ(ln ρ− L, ·) = 0,

u(ρ, ·) = ŭ(ln ρ, ·), ρ∂ru(ρ, ·) = ∂zŭ(ln ρ, ·),

(37)

16



where H1
per(SLρ ) denotes the Sobolev space of functions of H1(SLρ ) which are 2π-periodic for the θ

variable. We recall that ginc = ∂ru
inc − Suinc. Note that the above problem is set in a split domain.

The last two equations of (37) ensure the matching between u and ŭ through ∂Dρ. The variational
formulation associated with (37) writes

Find (u, ŭ) ∈ X such that:

b1(u, v) + b2(ŭ, v̆) = l(v), ∀(v, v̆) ∈ X,
(38)

with X := {(v, v̆) ∈ H1(DR \Dρ)×H1
per(SLρ ) | v(ρ, ·) = v̆(ln ρ, ·)}, l(v) =

∫
∂DR

ginc

εd
v dσ

b1(u, v) =
∫
DR\Dρ

ε−1∇u · ∇v dx− k2
0

∫
DR\Dρ

µuv dx− ε−1
d

+∞∑
n=−∞

k
H

(1)′
n (kR)

H
(1)
n (kR)

unvn

b2(ŭ, v̆) =
∫
SLρ

α ε−1∂zŭ ∂z v̆ + α−1 ε−1∂θŭ ∂θv̆ dx− k2
0

∫
SLρ

α−1 e2z/α µ ŭ v̆ dx.

(39)

4.3 Numerical approximation

(z, ✓) ! (ez, ✓)

Figure 9: Left: mesh of SLρ . Right: obtained mesh with the change of variables (z, θ) 7→ (ez, θ).

Now we turn to the discretization of Problem (38). We use a P2 finite element method set on
the domain which is the union of the perforated disk DR \Dρ and the rectangle SLρ . We introduce
(Th, T̆h)h a shape regular family of triangulations of (DR,h \ Dρ,h, S

L
ρ ) where Dj,h is a polygonal

approximation of Dj , j = R, ρ. Here h refers to the mesh size. We assume that the meshes are
such that all the triangles of (Th, T̆h)h are located either in the dielectric or in the metal. Note that
considering a structured mesh for SLρ boils down to work with a mesh having a logarithmic structure
near the corner (see Figure 9). Due to the behaviour of the black-hole singularities, this is of course
very interesting. To get (almost) conforming approximations of X, we impose that the nodes of Th
located on ∂Dρ,h coincide with the ones of T̆h situated on {ln ρ} × [−π;π] (see Figure 10). Then we
define the family of finite element spaces

Xh := {(v, v̆) ∈ H1(DR, h \Dρ,h)×H1
per(SLρ ) such that v(ρ, ·) = v̆(ln ρ, ·),

and (v|τ , v̆|τ ′) ∈ P2(τ)× P2(τ ′) for all (τ, τ ′) ∈ Th × T̆h}.

Practically, we compute the solution of the problem

Find (uh, ŭh) ∈ Xh such that:

b1,h(uh, vh) + b2(ŭh, v̆h) = lh(vh) ∀(vh, v̆h) ∈ Xh.
(40)

In (40), the forms b1,h(·, ·), lh(·) are defined as b1(·, ·), l(·) (see (39)) with DR \ Dρ replaced by
DR,h \Dρ,h and the approximate transparent boundary condition ∂ru − (ik − (2R)−1)u = ∂ru

inc −
(ik − (2R)−1)uinc instead of the Dirichlet-to-Neumann map S.
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Figure 10: Example of (very coarse) mesh. The arrows show the matching nodes between the different
meshes.

Remark 4.1. In the case where the metallic inclusion has N corners, one discretizes the problem

Find (u, ŭ1, . . . , ŭN ) ∈ H1(DR \ ∪Ni=1Dρi)×H1
per(SL1

1 )× · · · ×H1
per(S

LN
N ) such that :

div
(
ε−1∇u

)
+ k2

0µu = 0 in DR \ ∪Ni=1Dρi

∂ru− Su = ginc on ∂DR(
ε−1∂zαi∂z + αi

−1∂θε
−1∂θ

)
ŭi + αi

−1e2zαi−1
k2

0µŭi = 0 in SLii , i = 1, . . . , N

∂zŭ(ln ρ− Li, ·) = 0, i = 1, . . . , N

u(ρi, ·) = ŭi(ln ρi, ·), ρi∂ru(ρi, ·) = ∂zŭi(ln ρi, ·), i = 1, . . . , N.

(41)

In (41), for i = 1, . . . , N , Dρi is a small disk around ci of radius ρi while SLii := (ln ρ− Li; ln ρi)×
(−π;π) with Li > 0 (see Figure 10). For each PML, we use a parameter αi as in (36).

4.4 Numerical experiments

4.4.1 Numerical results with the PML approach

We present some results obtained with the analogous of Formulation (40) for Problem (41). We
consider the same setting as in the beginning of §4. We choose PML coefficients such that α1 =
e−i2π/25 (top corner) and α2 = α3 = e−i2π/33 (bottom corners). We consider an incident field of
incidence αinc = −π/12. In Figure 11, we observe that the numerical solution seems to converge
when we refine the mesh, contrary to what happens without the PMLs (see Figure 6). In Figure 12,
we display the field inside the PMLs. We note that it is correctly attenuated and that at the end
of the PMLs, the solution seems constant. According to Table 1, for κε = −1.1838, the outgoing
singularity at each corner is skew-symmetric with respect to the corner’s bisectors. This is indeed
the case. For this particular incidence, at the bottom right corner the solution is locally symmetric
(with respect to the corner’s bisector) and there is no excitation of the outgoing singularity.

4.4.2 Energy conservation

In this section, we wish to give numerical illustrations of the energy balance Jext = ∑
n Jn obtained

in (35). Using (7), (32) and (35), we find

Jext = =m
(∫

∂DR

ε−1
d (S(u− uinc) + ∂ru

inc)u dσ
)

and Jn = −ηn |bn|2
∣∣∣∣∫ π

−π
ε−1Φ2

n dθn

∣∣∣∣ , (42)

where S is the Dirichlet-to-Neumann map on ∂DR. To assess the term Jn, the energy trapped at
the corner cn, we have to derive formulas to compute the coefficient bn. There are two different
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Figure 11: Numerical solution in DR for ω = 9 PHz (κε = −1.1838). We reconstitute the field inside
the three disks using the transform (z, θ) 7→ (ez, θ). As we refine the mesh (from left to right), the
solution does not change much.

Figure 12: Numerical solution in DR with PMLs for ω = 9 PHz (κε = −1.1838). The bold dashed
lines correspond to the interfaces where matching is made, the small dotted lines represent the
boundary of the PMLs. Note that for the chosen incidence αinc = −π/12 (330°), there is no trapped
energy at the right corner (see also Figure 13).

approaches to do that. Let us present the two methods when the interface has only one corner c.

? By definition, u admits the expansion u = bsout + ũ where b ∈ C and ũ ∈ H1
loc(R2). This

yields ∫
∂Dρ

ε−1u sout dσ = b

∫
∂Dρ

ε−1sout sout dσ +
∫
∂Dρ

ε−1ũ sout dσ.

Proceeding as in §6.3, one finds that |
∫
∂Dρ

ε−1ũ sout dσ| ≤ Cρβ for some β > 0. We deduce

b =
ρ−λ

out
∫ π

−π
ε−1u(ρ, ·)Φ dθ∫ π

−π
ε−1Φ2 dθ

+O(ρβ). (43)

In (43), λout denotes the singular exponent of sout defined in Table 1. Note that according to Lemma
A, we know that the denominator of the above equation does not vanish.
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? Let us present another approach to assess the coefficient b. We follow a classical idea to com-
pute stress intensity factors. First, introduce s the solution to the following problem:

Find s = ζsin + csout + s̃, with c ∈ C and s̃ ∈ H1(DR), such that:
div(ε−1∇s) + k2

0µ s = 0 in DR,

∂rs− Ss = 0 on ∂DR.

(44)

In (44), ζ is a given cut-off function such that ζ = 1 in a neighbourhood of c and such that
div(ε−1∇sin) = 0 on the support of ζ. Looking for a solution s of (44) is equivalent to look for
w = s− ζsin solution of

div(ε−1∇w) + k2
0µw = f in

1 := −(div(ε−1∇(ζsin)) + k2
0µ (ζsin)) in DR,

∂rw − Sw = f in
2 := −(∂r(ζsin)− S(ζsin)) on ∂DR.

(45)

Using Remark 3.3, one can easily prove that Problem (45) has a unique solution. Solving (45) consists
in solving (7) with a source that, instead of coming from the exterior domain, comes from the corner.
Now, if u = bsout + ũ with b ∈ C, ũ ∈ H1

loc(R2) is a solution of (6), by Green’s formula we get∫
∂DR

ε−1 (∂ru s− ∂rsu) dσ −
∫
∂Dρ

ε−1 (∂ru s− ∂rsu) dσ = 0. (46)

Proceeding again as in §6.3, one finds∫
∂Dρ

ε−1 (∂ru s− ∂rsu) dσ = 2b λout
∫ π

−π
ε−1Φ2 dθ +O(ρβ) for some β > 0. (47)

On the other hand, we have
∫
∂DR

ε−1 (∂ru s− ∂rsu) dσ =
∫
∂DR

ε−1
d gincs dσ (use (8) and the properties

of the Hankel functions to obtain this). Plug the latter identity and (47) in (46). Then take the limit
as ρ→ 0. We obtain

b =

∫
∂DR

ε−1
d gincs dσ

2λout
∫ π

−π
ε−1Φ2 dθ

.

The advantage of the second approach is twofold. First, it does not require to compute the solution
u. The function s can be approximated once for all, independently from the source term. Moreover,
numerically, the second method is more accurate than the first one.

Let us turn to numerical simulations. We compute the terms Jext, Jn (see (42)) for αinc ∈ [0; 2π).
We perform two series of experiments: one with ω = 9 PHz (κε = −1.1838), another one with ω = 11
PHz (κε = −0.4619). For the latter case, according to Table 1 and §4.2, we have to change the PML
coefficients. We take α1 = ei2π/25 (top corner) and α2 = α3 = ei2π/33 (bottom corners). All the
other parameters are set as previously (see the beginning of §4). In Figure 13, we work with ω = 9
PHz (κε = −1.1838). We observe that the energy balance (42) seems to be satisfied. There is a
small mismatch between Jext and

∑
n Jn. Probably, this is because we use the first method described

above to assess the coefficients bn appearing in the definition of Jn. Remark that due to the symme-
try of the geometry, the results are symmetric (the left and right corners play a similar role). One
notice that for αinc = ±π/2 (90° and 270°), there is no trapped energy at the top corner. This was
expected. Indeed, for this setting, according to Table 1, we know that the black-hole singularities
are skew-symmetric with respect to the bisector of cn. But for these two particular incidences, uinc

is symmetric with respect to the top corner’s bisector. As a consequence, there is no excitation of
the outgoing singularity. The same phenomenon occurs for the other corners when αinc corresponds
to the direction of the bisector of cn.
In Figure 14, we work with ω = 11 PHz (κε = −0.4619). When κε > −1, according to Table 1, the
black-hole waves are symmetric. This explains why this time, we observe that the energy trapped at
the corner cn (n = 1, 2, 3) is maximum when αinc coincides with the direction of the bisector of cn.
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Figure 13: Left: sum of the energy fluxes at the corners (diamond) and energy flux through ∂DR

(cross) with respect to αinc ∈ [0; 2π) in polar coordinates. Right: energy flux at the top corner
(cross), left corner (diamond), right corner (circle) in polar coordinates. The frequency is set to
ω = 9 PHz (κε = −1.1838).

  1

  2

  3

  4

  5

30

210

60

240

90

270

120

300

150

330

180 0

  1

  2

  3

  4

  5

30

210

60

240

90

270

120

300

150

330

180 0

Figure 14: Left: sum of the energy fluxes at the corners (diamond) and energy flux through ∂DR

(cross) with respect to αinc ∈ [0; 2π) in polar coordinates. Right: energy flux at the top corner
(cross), left corner (square), right corner (circle) in polar coordinates. The frequency is set to ω = 11
PHz (κε = −0.4619).

5 Discussion and prospects
Let us conclude this paper by making some comments regarding this new numerical method:
• We point out that the method with PMLs at the corners is also interesting when the metal is
slightly absorbing. In this case, the scattering problem is well-posed in the usual H1 framework
like when the contrast κε lies outside the critical interval. This is due to the fact that there is
no oscillating singularities. However, when the dissipation is small, the field can be very singular
(according to Proposition 3.2, we have limγ→0 s

γ = sout where γ corresponds to the dissipation).
As a consequence, it is necessary to use a very refined mesh to obtain a good approximation of the
solution. Adding some PMLs at the corners allows to attenuate the singularities without producing
spurious reflections. In Figure 15, we use the lossy Drude’s model (see (2)) at the frequency ω = 6
PHz for silver. It provides εγm(ω) = −3.9193 + 0.0926i. We set the other parameters as previously
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(with PML coefficients as in the case ω = 9 PHz). We observe that when the mesh is refined, the
numerical solution is more stable with PMLs than without. Note that instabilities with respect to
dissipation have been already pointed out in [24].

Figure 15: Left (resp. middle-left): solution for a standard (resp. refined) mesh without PMLs.
Middle-right (resp. right): solution for a standard (resp. refined) mesh with PMLs.

• In practice, the technique with PMLs turns out to be very efficient to obtain a good approximation
of the plasmonic waves propagating at the interface. Concerning the justification of the method,
several questions remain open. First, one needs to control the error made when truncating the
PMLs. This is not straightforward because of the change of sign of ε. However, using Kondratiev
spaces and working for example like in [26], one can reasonably hope to establish such result. The
problem of the justification of the convergence of the finite element methods seems more intricate.
Without PMLs, the existing proofs (with sign-changing ε) require assumptions on meshes (see [18, 6])
and the question of knowing whether or not these assumptions are necessary is not solved. Here,
due to the complex scaling z 7→ z/α of the PMLs, it is not even clear that the continuous problem
admits a unique solution.

6 Annex

6.1 Proof of Proposition 3.1

We reproduce a calculus which can be found in [21] or [16, Proposition 3.2.8]. Classically, one can
show that Φ is an eigenfunction associated with the eigenvalue λ ∈ Λsym (resp. λ ∈ Λskew) for (21)
if and only it verifies the transmission problem:

(λ2 + ∂2
θ )Φ = 0 on (0;φ/2)

(λ2 + ∂2
θ )Φ = 0 on (φ/2;π)

Φ(φ−/2) = Φ(φ+/2), ε−1
m ∂θΦ(φ−/2) = ε−1

d ∂θΦ(φ+/2)
∂θΦ(0) = ∂θΦ(π) = 0 (resp. Φ(0) = Φ(π) = 0)

Φ(θ) = Φ(−θ) (resp. Φ(θ) = −Φ(−θ)) on (−π; 0).

Looking for solutions under the form

Φ(θ) = A cos(λθ) on (0;φ/2) and Φ(θ) = B cos(λ(θ − π)) on (φ/2;π),
( resp. Φ(θ) = C sin(λθ) on (0;φ/2) and Φ(θ) = D sin(λ(θ − π)) on (φ/2;π) ),

where (A,B) 6= (0, 0), (C,D) 6= (0, 0) are some constants, we obtain that λ belongs to Λ \ {0} if and
only if it satisfies

κ−1
ε tan(λφ/2) = tan(λ(φ/2− π)) (resp. κε tan(λφ/2) = tan(λ(φ/2− π))).

6.2 Proof of Lemma A

The next lemma is a technical result needed in the selection of the outgoing solution (see §3.3).
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Lemma A. Assume that κε ∈ (−bΣ;−1/bΣ) \ {−1}. Let (±iη,Φ) be a solution of (21), with Φ equal
to (23) or (24) according to the situation. Then we have∫ π

−π
ε−1Φ2 dθ > 0 if κε ∈ (−bΣ;−1) and

∫ π

−π
ε−1Φ2 dθ < 0 if κε ∈ (−1;−1/bΣ).

Proof. Set ℵm :=
∫
|θ|<φ/2

Φ2dθ and ℵd :=
∫
φ/2<|θ|<π

Φ2dθ.

? Pick some κε ∈ (−bΣ;−1). We want to show that ε−1
m ℵm + ε−1

d ℵd > 0. Since ε−1
m ℵm + ε−1

d ℵd =
ε−1
m (ℵm + κεℵd) > ε−1

m (ℵm − ℵd), it is enough to prove that ℵm − ℵd < 0.

- First, assume that 0 < φ < π. Explicit calculus using the expression of Φ given by (23) yields

ℵm =
sinh(ηφ)− (ηφ)
η(cosh(ηφ)− 1) and ℵd =

sinh(η(2π − φ))− (η(2π − φ))
η(cosh(η(2π − φ))− 1) .

Define h(t) := (sinh t − t)/(cosh t − 1). We have η(ℵm − ℵd) = h(ηφ) − h(η(2π − φ)), so it is
sufficient to show that h is an increasing function on (0; +∞). One computes h′(t) = (2− 2 cosh t+
t sinh t)/(cosh t − 1)2. Define g(t) = 2 − 2 cosh t + t sinh t. One finds g′(t) = − sinh t + t cosh t and
g′′(t) = t sinh t. One deduces, successively, g′ > 0 and h′ > 0. Thus h is indeed an increasing function
on (0; +∞).
- When π < φ < 2π, using the expression (24), one finds

ℵm =
sinh(ηφ) + (ηφ)
η(cosh(ηφ) + 1) and ℵd =

sinh(η(2π − φ)) + (η(2π − φ))
η(cosh(η(2π − φ)) + 1) .

Introduce ĥ(t) := (sinh t + t)/(cosh t + 1). We have η(ℵm − ℵd) = ĥ(ηφ) − ĥ(η(2π − φ)), so it is
sufficient to prove that ĥ is a decreasing function on (0; +∞). One computes ĥ′(t) = (2 + 2 cosh t−
t sinh t)/(cosh t + 1)2. Define ĝ(t) = 2 + 2 cosh t − t sinh t. One finds ĝ′(t) = sinh t − t cosh t and
ĝ′′(t) = −t sinh t. One deduces, successively, ĝ′ < 0 and ĥ′ < 0. Thus ĥ is indeed a decreasing
function on (0; +∞).

? The same approach, mutatis mutandis, shows that
∫ π

−π
ε−1Φ2 dθ < 0 when κε ∈ (−1;−1/bΣ).

6.3 Details of the proof of Lemma 3.2

Let u = b sout + ũ, with b ∈ C, ũ ∈ H1
loc(R2), be a solution of (7). Lemma A and (29) yield

=m
( ∫

∂Dρ
ε−1∂ruu dσ

)
= −|b|2η

∣∣∣ ∫ π

−π
ε−1Φ2 dθ

∣∣∣+ =m( ∫
∂Dρ

ε−1(b ∂rsout ũ+ b ∂rũ sout + ∂rũ ũ) dσ
)
.

To obtain the result of Lemma 3.2, we need to show that the second term of the right-hand side of
the above equation tends to zero as ρ→ 0. To proceed, let us establish for example that

lim
ρ→0

∫
∂Dρ

ε−1 ∂rs
out ũ dσ = 0, (48)

the other terms being handled in the same way. Using Green’s formula, we would like to write∫
∂Dρ

ε−1 ∂rs
outũ dσ =

∫
Dρ
ε−1∇sout · ∇ũ dx. (49)

The difficulty here is that sout 6∈ H1(Dρ). But we can prove [27, 11] that ũ has more regularity
than H1 regularity. More precisely, the behaviour of ũ at the corner is driven by the less regular
singularity associated with singular exponents λ such that <e λ > 0. Set

β0 := min{<e λ|λ ∈ Λ and <e λ > 0}.
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We can show that r−β∇ũ ∈ L2(DR) for β < β0 (see [11]), which implies, for all 0 < β < β0,∣∣∣ ∫
Dρ
ε−1∇sout · ∇ũ dx

∣∣∣ ≤ C ( ∫
Dρ
r2β|∇sout|2 dx

)1/2( ∫
Dρ
r−2β|∇ũ|2 dx

)1/2
. (50)

Since there holds, ∫
Dρ
r2β|∇sout|2 dx ≤ ρβ

∫
Dρ
rβ|∇sout|2 dx −→

ρ→0
0,

combining (49)–(50) leads to (48).
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