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I. INTRODUCTION

The growing deployment of intermittent renewable energy sources at different scales (from bulk to micro generation) advocates for the design of advanced Demand Response (DR) solutions to maintain the stability of the power grid and to optimize the usage of resources.

DR takes advantage of demand flexibility. The level of gain depends on the granularity of visibility and control on the demand. The Internet of Things (IoT) paradigm enables implementing DR at the finest granularity (individual appliances), and deploying IoT-based solutions becomes feasible, both from technological and economical points of view.

The introduction of capacity markets in several countries provides incentives for: the flexibility end users could provide through DR mechanisms; the deployment of flexible generators (for which the energy cost is higher than the average).

In this paper, we focus on DR solutions for keeping power consumption below a certain known capacity limit for a welldefined period of time. A possible application is for utility companies, which are interested in limiting the cost of the capacity certificates they have to acquire in the capacity market (for securing supply). Such cost reduction is facilitated by keeping power consumption below known thresholds. * § This author has carried out the work presented in this paper at LINCS (www.lincs.fr)

In [START_REF] Kaddah | Advanced demand response solutions based on fine-grained load control[END_REF] the authors propose and analyze several IoT-based DR mechanisms. They show that fine-grained visibility and control on a set of households at an aggregation point enables to maximize users perceived utility. However, this approach may cause scalability as well as privacy problems. On the other hand, they consider two levels control systems where a central controller allocates available capacity to households based on some static information (e.g. type of contract). Then, local controllers leverage IoT benefits for local optimization, without any feedback to the central controller. The drawback of such approach is that it significantly reduces the total utility perceived by the users.

In this paper, our main contribution is the proposition and evaluation of an intermediate approach, based on two level systems with partial feedback from the local controllers to the central entity. The feedback sent has little impact on privacy. Proposed solution enforce fairness by considering two levels of utility for each appliance (i.e., vital and comfort). We compare the performance of the proposed scheme with the two cases studied in [START_REF] Kaddah | Advanced demand response solutions based on fine-grained load control[END_REF] (fully centralized solution and two level system with no feedback). Results are analyzed for homogeneous (all households have the same characteristics) and heterogeneous scenarios. We show that for both cases, the proposed algorithm outperforms the scheme with no feedback. It runs in a limited number of iterations, which ensures good scalability and limited requirements in terms of communication resources.

The paper is organized as follows: Section II presents the related work. The system model and allocation schemes are introduced in Section III and IV respectively. In Section V, we study the performance of the proposed control scheme and compare it to two benchmark control approaches through a numerical analysis of the model. Conclusion and future work are presented in Section VI.

II. RELATED WORK

Most proposed DR approaches can be classified in 2 groups, namely, incentive based and direct control based. Incentive based approaches aim to induce a targeted behavior of users through dynamic prices. Authors in [START_REF] Li | Optimal demand response based on utility maximization in power networks[END_REF] propose a dynamic pricing scheme based on a distributed algorithm to compute optimal prices and demand schedules. In work, we are interested in direct load control of heterogeneous appliances in the context of capacity markets. Direct load control has the advantage of providing tight consumption guaranties. Such mechanisms have been mainly proposed for providing system services (for example, real time following of a flexibility demand curb) and not in the context of capacity markets. While detailed appliance models are proposed in pricing papers (see for example [START_REF] Li | Optimal demand response based on utility maximization in power networks[END_REF]), most previous work on direct control focus on specific types of appliances. For instance, the authors in [START_REF] Meyn | Ancillary service to the grid using intelligent deferrable loads[END_REF] propose an online control of deferrable ON-OFF loads. A wide range of proposals focus on Thermostatically Controlled Loads (TLCs) ( [START_REF] Mathieu | Energy arbitrage with thermostatically controlled loads[END_REF], [START_REF] Nayyar | Aggregate flexibility of a collection of loads π[END_REF], [START_REF] Sanandaji | Improved battery models of an aggregation of thermostatically controlled loads for frequency regulation[END_REF], [START_REF] Karmakar | Coordinated scheduling of thermostatically controlled realtime systems under peak power constraint[END_REF]).

Recent work has proposed schemes that are capable of taking into account flexibility of any generic appliance ( [START_REF] Shi | Optimal residential demand response in distribution networks[END_REF], [START_REF] Vivekananthan | Demand response for residential appliances via customer reward scheme[END_REF]). Authors in [START_REF] Vivekananthan | Demand response for residential appliances via customer reward scheme[END_REF] propose a customer reward scheme that incentivizes users to accept direct control of loads. They propose a greedy algorithm (maximizes utility slot by slot) based on the utility that each appliance declare for each slot. It's shown in [START_REF] Kaddah | Advanced demand response solutions based on fine-grained load control[END_REF] that such an allocation has low performance since decisions are taken with no view on the global time period. It also has obvious privacy issues. As stated in the introduction, the present work builds on conclusion of the analysis in [START_REF] Kaddah | Advanced demand response solutions based on fine-grained load control[END_REF]. Most closely related work to our proposal is the scheme presented in [START_REF] Shi | Optimal residential demand response in distribution networks[END_REF] which is very similar to [START_REF] Li | Optimal demand response based on utility maximization in power networks[END_REF] if prices are interpreted as control signals. The authors in [START_REF] Shi | Optimal residential demand response in distribution networks[END_REF] propose to solve a similar problem but their approach requires convergence of the algorithm to produce an allocation that does not violate total capacity constraint. In our proposal, stopping the algorithm before convergence (in case of communication delays or loss for certain homes) will degrade performance but still propose a feasible solution. The authors in [START_REF] Shi | Optimal residential demand response in distribution networks[END_REF] do not discuss scalability and communication requirements in terms of number of iterations required. They also assume convex utility functions. Moreover, due to the type of information provided to the centralized controller, our solutions better guaranties privacy. Finally, they don't consider fairness. We introduce the concept of vital and comfort utility for each appliance. On the one hand, this enables to better model the real utility for end users and, on the other hand, we intrinsically introduce a certain level of fairness.

III. SYSTEM MODEL

We consider an aggregator in charge of allocating power to a set of H households under a total capacity constraint C(t). t represents time slots. We suppose that during a defined time period (measured in slots), in absence of control, predicted demand would exceed available capacity. We call this period a DR period. We denote by DE a and DE h the functional groups in charge of decision taking at the aggregator side and at the user h side (one per home), respectively. DE a is in charge of allocating power to each household (C ht ), under the total power constraint. For each house h, DE h has two main roles: the collection of information on variables monitored at user premises (state of appliances, local temperature, etc.); the enforcement of control decisions received from DE a (e.g. by controlling the appliances). More details will be given in Section IV when introducing the considered allocation schemes. 

System Parameters and Exogenous Variables

TABLE I: Table of notation

A utility function is defined for each controlled appliance to express the impact of its operation on user's satisfaction. We assume electrical appliances are classified among A classes. Appliances of the same class have similar usage purposes (e.g., heating) but may have different operation constraints. Appliance of class a at home h operates within a given power range [P a m (h), P a M (h)]. Following [START_REF] Kaddah | Advanced demand response solutions based on fine-grained load control[END_REF], a specific utility function is modeled for each class of appliances based on usage patterns and criticality, users' preferences and exogenous variables (e.g. external temperature). So, the utility of an appliance is expressed either directly as a function of its consumption or as a function of some monitored variables (see Section V for an example).

In the present work, we introduce two levels of utility per appliance, vital and comfort. The first one expresses high priority targets of high impact on users' wellbeing and the second one expresses less essential preferences. For notation, we write utilities as vital/comfort pairs:

U a ht = (U v a ht , U c a ht
) denotes utility of appliance a at time t for home h. When controlling a set of appliances, policies target to satisfy comfort only if vital needs cannot be further covered all appliances. Control decisions are based on the lexicographical order comparison of utility values: For two values U a ht and U ′a ht , we say

U a ht > U ′a ht iff U v a ht > U ′ v a ht or (U v a ht = U ′ v a ht and U c a ht > U ′ c a ht
). Utilities can be summed using element-wise addition.

We denote by π a v (h, t) (resp. π a c (h, t)) the maximal vital (resp. comfort) utility associated to appliance a at home h and time t. These values, which we call preference coefficients, represent how the importance of appliances is modulated depending on the preferences of users. assume that each house has a power limit L(h) sufficient to achieve a maximal utility.

The optimization problem considered in this paper consists in maximizing the total utility (using the lexicographic total order) of users under system constraints. We notice that fairness is introduced through the lexicographic ordering of vital and comfort utility values (no comfort power is allocated to any house if not all vital needs are covered). We do not directly focus on revenues but expect that reaching maximal users' utility leads to maximal gains for all involved players. Utility companies can provide better services for a given total allocated power, which should translate into higher revenues, or reduce the expenses in the capacity market for a given level of service, which should reduce total costs. End users can save money due to attractive prices they get for participating to the service and adjusting energy consumption to their predefined policies. Notation is summarized in Table I.

IV. ALLOCATION SCHEMES

We present here two reference schemes that will be used for benchmarking purposes, along with our proposed solution.

A. Global Maximum Utility

The centralized global optimization is formulated by equations [START_REF] Held | Validation of subgradient optimization[END_REF].

max X a ht ,x a ht tM t=1 H h=1 A a=1 U a ht (1a) s.t. H h=1 A a=1 X a ht ≤ C(t), ∀ t (1b) P a m (h)x a ht ≤ X a ht ≤ P a M (h)x a ht , ∀ t, ∀ h, ∀ a (1c) x a ht {0, 1}, ∀ t, ∀ h, ∀ a. ( 1d 
)
This problem was studied in [START_REF] Kaddah | Advanced demand response solutions based on fine-grained load control[END_REF], which shows the importance of fine grained information from homes on the performance of the control.

One can solve (1) if all the informations about appliances and their utility functions are transmitted by the repartitors DE h to the aggregator DE a , which can then compute an optimal global solution and notify the repartitors accordingly.

While being optimal with respect to the utilities (by design), this allocation, called GM , has two major drawbacks. First, it requires to compute the solution of a complex problem, which may raise scalability issues. Second, fine grained information harvesting may cause privacy related issues which can affect the acceptance of the control scheme by users. Thus, it may be preferable to store information locally at homes with a local intelligence. This leads to the following scheme.

B. Local Maximum Utility

This control scheme, denoted LM , considers only one way communication from DE a to DE h (no feedback is transmitted from DE h to DE a ), and decision is made at both levels.

First, DE a allocates power to homes proportionally to their subscribed power, so the power allocated to home h is

C ht = L(h) i L(i) C(t).
Then, at each home h, DE h decides the corresponding allocation per appliance by solving the restriction of (1) to using C ht instead of C(t).

By design, LM is scalable (only local problems are solved) and private information disclosure is kept to a minimum. The drawback is that the corresponding allocation may be far from optimal [START_REF] Kaddah | Advanced demand response solutions based on fine-grained load control[END_REF].

C. SubGradient decomposition

We aim at achieving a reasonable trade-off between the centralized solution GM , which provides maximum performance in terms of total utility value, and the local solution LM , which enforces scalability and privacy.

To do so, we propose a simple primal decomposition ,denoted SG, of the global GM problem into a master problem, described in (2), and subproblems, described in [START_REF] Kaddah | Advanced demand response solutions based on fine-grained load control[END_REF].

Master problem max H h=1 U h (2a) H h=1 C ht = C(t), ∀ t (2b) C ht ≥ 0, ∀ h ∀ t. (2c) 

Subproblems

For each home h, the following mixed integer linear problem (MILP) is solved:

U h = max tM t=1 A a=1 U a ht (3a) A a=1 X a ht ≤ C ht , ∀ t. (3b) 
We briefly describe the main steps of SG: SG needs to be bootstrapped with an initial power allocation. Then, for up to K M AX iterations, DE a transmits to each repartitor DE h the current allocation proposal {C ht } t . DE h then solves the corresponding subproblem (3) and sends back the total utility U h feasible, along with the subgradients associated to the current solution. Using the values reported by the repartitors, DE a then tries to propose a better solution. In the end, the best found solution is used.

We now give the additional details necessary to have a full view of the solution.

1) Initial allocation: The first allocation is based only on homes' static maximum power limit. Following [START_REF] Kaddah | Advanced demand response solutions based on fine-grained load control[END_REF], we use a round-robin strategy: we allocate to some houses up to their power limit until the available capacity C(t) is reached; we cycle with time the houses that are powered. The interest for SG of such an initial allocation (e.g. compared LM ) is that it gives an initial diversity that will help finding good subgradients.

2) Subproblem and subgradient computation: The subproblem (3) is solved by DE h as in LM , using the values C ht proposed by DE a . Reporting U h straightforward once the local solution is computed. For the subgradients, let g ht denotes a subgradient of the utility function at point C ht . The value g ht can be found in two ways: either analytically or by taking optimal value of the dual variables of (3b). In this paper, we use an analytical computation of g ht based on the utility functions.

3) Finding better solutions: To update current solution at the k-th iteration, DE a does the following:

• It first computes a value α k g ht , where α k is a parameter that depends on the iteration number. This value represents potential increase of C ht . • It then adjusts the new values of C ht so they stay positive and fit the capacity constraints. For the first phase, the step size α k for each iteration k is a crucial parameter. Thus, choosing appropriate step sizes is key to speeding up resolution. Intuitively, α k should be chosen to make the allocation update (dictated by α k g ht ) useful for high consumption appliances during the first iterations. Then, α k should decrement with k so that the update is able to modify allocations corresponding to low consumption appliances.

For the adjustment phase, it is important to deal with cases where allocation update α k g ht is larger than available capacity C(t) or maximum subscribed power L(h) of home h, so we first cap α k g ht at the minimum between power limit of the smallest home (L m := min h L(h)) and system capacity C(t). We therefore define β kht = min(α k g ht , Lm, C(t)).

Then for each t, we remove some positive common value λ t to the C ht to keep the sum of the allocations equal to the total capacity C(t). To avoid houses with low C ht to be badly impacted (in particular to avoid negative allocations), a subset I t of the houses will be "protected" so that their values cannot decrease. In details, we do the following, starting with I t = ∅:

• We compute λ t such that the values

C ′ ht = C ht + max{β kht -λ t , 0} if h ∈ I t , C ht + β kht -λ t otherwise, (4) 
sum to C(t). See [START_REF] Pioro | Routing, Flow and Capacity Design in Communication and Computer Networks[END_REF], [START_REF] Held | Validation of subgradient optimization[END_REF] for more details. • We protect (e.g. add to I t ) all houses that get a negative value C ′ ht . • We iterate the steps above until all C ′ ht are positive. DE a then proposes C ′ ht as a new solution to investigate. Remarks: While the solution described here applies to a 2-level hierarchy (DE a , DE h ), it can be generalized to M levels to take into account static maximum capacity of different aggregation points on a hierarchical distribution network: considering an aggregation point m at a certain level, the subgradient for m can be obtained by adding up subgradients from its children.

Also note that the proposed scheme can run asynchronously in the sense that it does not require all houses to communicate simultaneously. In fact, as soon as two homes respond, reallocation can be made based on the sum of the power for responding homes without having to wait for others to respond.

V. NUMERICAL ANALYSIS

We now propose to evaluate the performance of our proposed solution for a specific use case.

A. Parameters and settings

To study the performance of the control schemes for several values of capacity, we choose the following system parameters: 

Class [P 1 m (h), P 1 M (h)] [P 2 m (h), P 2 M (h)] F (h) G(h)
X 1 ht U v 1 ht 0 P 1 m (h) P 1 M (h) π 1 v (h, t) (a) Vital utility X 1 ht U c 1 ht 0 P 1 m (h) P 1 M (h) π 1 c (h, t) (b) Comfort utility
Fig. 1: Utility of light power

T ht U v 2 ht 0 T m (h) T P (h) T M (h) π 2 v (h, t)
(a) Vital utility

T ht U c 2 ht 0 T m (h) T P (h) T M (h) π 2 c (h, t) (b) Comfort utility
Fig. 2: Utility of T ht

• The size of the system is H = 100 houses.

• We select a slot duration of 5 minutes.

• The DR period is set to t M = 100 slots (≈ 8 hours).

• We consider two types of appliances (A = 2): lighting (a = 1) and heating (index a = 2). Utility functions for both appliances have a vital and a comfort component. • Vital light utility is fully obtained as soon as the minimal light power P 1 m (h) is reached, while comfort utility linearly grows from P 1 m (h) to P 1 M (h) (See Fig. 1). • For heating, vital utility linearly grows until the minimum tolerable temperature T m (h) := 15 • C is reached, while comfort utility linearly grows from T 1 m (h) to the preferred temperature T P (h) := 22 • C (See Fig. 2).

• We suppose a constant external temperature T e (t) = 10 • C ∀t and an initial temperature T 0 (h) = 22 • C ∀h. • We suppose constant preference coefficients during the whole period: π v (h, t) = π c (h, t) = 1 ∀h ∀t. • Temperature in homes evolves according to a simplified conductance/capacity model that leads to the following dynamics:

T ht = T h(t-1) + F (h)X 2 ht + G(h)(T e (t) -T h(t-1)
). • Two types of houses are considered (See Table II), with class 2 having better energetic performance than class 1 (less light power required to achieve full utility and better insulation). We suppose that the total available power is constant over the DR period, C(t) = C. We analyze the model for different values of C, ranging from low (only one type of appliances can be used) to full capacity (all appliances can be used).

While this model is rather simple (two types of appliances, constant values for C, π and T e ), we believe that the knowledge required to compute good solutions is sufficient to capture the trade-off between the efficiency of an allocation and the privacy of the users. For the decomposition problem, we fix the maximum number of iterations to K M AX = 100 iterations (Suppose it is a desired communication constraint). In the present, α k is chosen non-summable diminishing and specifically equal to 500000/( √ k + 1). As stated in section IV-C, the order of magnitude of α k is crucial to make capacity updates useful for homes and to speed up performance improvement. We choose to divide by the square root of k rather than k to slow the decay of α k . The computation of g ht is done by taking the highest slope of the utility functions with regard to X a ht at the solution of the local optimization problem (For heating, g ht is computed by multiplying the slope of the utility function by the power coefficient F (h) in the considered temperature dynamics).

The numerical analysis of the various presented mixed integer linear problems has been carried out using IBM ILOG CPLEX ( [START_REF]IBM Ilog CPLEX optimizer[END_REF]).

In the following, we discuss two cases: homogeneous and heterogeneous. For the homogeneous case, all houses belong to class 1 and for the heterogeneous one, we suppose 50 houses of class 1 and 50 houses of class 2.

B. Results on the homogeneous case

Figure 3 presents the main results on the homogeneous case. It displays the average utility per home over the DR period as the function of the available capacity C, for the three considered schemes (GM , LM and SG). For better readability, vital and comfort utilities are displayed separately.

Note that with the chosen parameters, the maximal feasible utility (vital and comfort) is 2. Another value of interest for vital utility is 1.75, which corresponds to situations where all houses are able to achieve vital light (P 1 m = 50 W) but none has the power necessary for heating (P 2 m = 1000 W) so there is no control of temperature. Because the requirement for vital light is very low, it can be seen as a worst case situation.

Using a static allocation, LM struggles more than the other schemes for rising the vital utility above that threshold. It can only start to use heat for C = 10 5 (1000 W per house). Maximal vital utility is reached for C = 105 × 10 3 (1050 W per house) and maximal utility (vital and comfort) necessarily requires C = 2 × 10 5 (2000 W per house).

Obviously, GM , the optimal solution, is able to achieve better utilities. In particular, it achieves maximal vital utility even for very low capacities (down to 3 × 10 4 ), thanks to its ability of finding a working rolling allocation that allows all houses to use heat for a sufficient part of the period.

As expected, our proposal, SG, stands in-between these two opposite schemes. It is able to improve the vital utility of houses for values below C 10 5 , even if it fails to perform as good as GM . With respect to the comfort utility, it performs on par with LM even in situation where it devotes resources on heating (for vital utility) while LM does not.

It should be noted that the homogeneous case is a kind of worst case for SG. Actually, by design, if all homes have the same α k g ht for a certain t, SG to break ties between the sets I 0 and I 1 This is the reason why SG does not outperform LM for very low capacities. Also, the algorithm consumes many iterations to reach its best solution (up to 20 in our experiments). As we are about to see, SG performs better in a heterogeneous case.

C. Results on the heterogeneous case

The results for the heterogeneous case are shown in Figures 4 (class 1) and 5 (class 2).

We first discuss GM . vital utility, the results are pretty much similar for both classes to the homogeneous case, with maximal value obtained even for low capacities (down to 3 × 10 4 ). For the comfort utility, however, one notices that GM leads to better values for class 2 compared to class 1. This is due to the fact that class 2 houses have better energetic performance, so once vital utility is ensured for all, it is more gainful to allocate energy to class 2.

The same reason explains the poor performance of LM . Let us remind that the static allocation is proportional to the maximum power L(h) of homes. So for a given capacity, class 1 homes get more power than class 2 ones. As a result, while performance of class 1 is satisfactory, performance of class 2 is terrible. In particular, the capacity required for class 2 houses to achieve maximal vital utility is very high: C = 1.7 × 10 5 , which corresponds to 1700 W per house (regardless the class).

Lastly, we observe that compared to the homogeneous case, the performance of our solution SG is now closer to GM than to LM . In particular, SG manages to take advantage of the heterogeneity to reach high vital utility values more quickly than in Figure 3. Regarding comfort utility, it stays below GM values but manages to give descent values for both classes, which gives a clear advantage over LM (especially regarding the handling of class 2 houses). Moreover, SG converges faster on the heterogeneous case: the scheme takes between 3 to 8 iterations to find the best allocation over the k M AX iterations.

VI. CONCLUSION

We propose an IoT-based demand response approach, which we name SG, that relies on a 2 level control scheme. Intelligence (decision taking) is split between a centralized component and a set of local controllers (one per home). The proposed control approach enables reaching good performance in terms of utility perceived by users while keeping privacy and providing scalability. Moreover, priority is provided to critical needs and fairness among households is introduced.

We show that the approach outperforms schemes where the central controller takes decisions based on the available total capacity and on static (contract based) information bout the households. Results for the proposed use cases show that the proposed scheme requires a limited number of iterations to render effective solutions. Moreover, the proposed solution is robust in the sense that the system will keep working even in periods where the proposed algorithms have no converged and in cases where information is delayed or lost.

Future work will encompass a study on the power allocation algorithms for the SG scheme considering i) a broader range of classes of appliances and ii) more general cases for the available capacity curb. We will also study the effect of communication impairments on the global performance and on fairness. Finally, we will analyze the cost savings under realistic cost models, looking for solutions that will target minimizing the total expenses a provider will incur in the Capacity market while keeping a predefined level of service.
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