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Introduction

During their life cycle, complex tribological systems such as gears and cam-followers are subjected to extremely severe operating constraints. Those invariably involve substantial shear rates, pressures and temperatures within the lubricant, in addition to dynamical conditions of load, speeds and conjunction geometry [START_REF] Dowson | Past, present and future studies in elastohydrodynamics[END_REF]. Early performance assessment of these mechanical contacts consisted in applying semi-analytical formulas from the stationary Elasto-Hydrodynamic Lubrication (EHL) theory to determine critical film thicknesses [START_REF] Dowson | Elasto-hydrodynamic lubrication: the fundamentals of roller and gear lubrication, 1st Edition[END_REF]. Following the work of Vichard [START_REF] Vichard | Transient effects in the lubrication of hertzian contacts[END_REF], several authors [START_REF] Bedewi | Elastohydrodynamic lubrication of line contacts subjected to time dependent loading with particular reference to roller bearings and cams and followers[END_REF][START_REF] Dowson | The lubrication of automotive cams and followers[END_REF][START_REF] Ai | A Numerical Analysis for the Transient EHL Process of a Cam-Tappet Pair in I. C. Engine[END_REF][START_REF] Dowson | A transient elastohydrodynamic lubrication analysis of a cam and follower[END_REF] then focused on transient effects and exemplified, e.g., the role of the squeeze-film term in preventing failure during reversal of entrainment. Although capable of precisely capturing the transient behavior, the aforementionned studies were based on two questionnable assumptions: i) a Newtonian rheology for the lubricant, which may produce rather satisfying solutions in terms of film thicknesses [START_REF] Crook | The Lubrication of Rollers II. Film Thickness with Relation to Viscosity and Speed[END_REF][START_REF] Dyson | The measurement of oil-film thickness in elastohydrodynamic contacts[END_REF], but was proved to greatly overestimate friction; ii) isothermal conditions, which are far from being valid in the presence of high sliding and/or entrainment velocities [START_REF] Bruyere | Computational fluid dynamics and full elasticity model for sliding line thermal elastohydrodynamic contacts[END_REF] typically found in these contacts.

Despite the emergence of shear-rate dependent viscosity [START_REF] Johnson | Shear Behaviour of Elastohydrodynamic Oil Films[END_REF][START_REF] Bair | A Rheological Model for Elastohydrodynamic Contacts Based on Primary Laboratory Data[END_REF] and thermal models [START_REF] Johnson | Thermal analysis of an Eyring fluid in elastohydrodynamic traction[END_REF][START_REF] Houpert | Rheological and Thermal Effects in Lubricated E.H.D. Contacts[END_REF] in the late 1970s and early 1980s, further progress remained severely hindered by computational power limitations for almost a decade. Since the 1990s, the development of more efficient methods, such as the multilevel multi-integration (MLMI) [START_REF] Brandt | Multilevel matrix multiplication and fast solution of integral equations[END_REF] and multigrid (MG) techniques [START_REF] Venner | Numerical Simulation of the Overrolling of a Surface Feature in an EHL Line Contact[END_REF], has allowed to significantly improve the relevance of the numerical models. In 1997, Larsson [START_REF] Larsson | Transient non-Newtonian elastohydrodynamic lubrication analysis of an involute spur gear[END_REF], e.g., presented a transient non-Newtonian EHL analysis of an involute spur gear. By comparing two lubricants with different rheological behaviors, the author highlited the importance of non-Newtonian effects in the prediction of friction. Later, Wang and Yang [START_REF] Wang | A Numerical Analysis for TEHL of Eccentric-Tappet Pair Subjected to Transient Load[END_REF] included thermal effects in a study of an eccentrictapet pair subjected to a transient load. Their work confirmed the outstanding influence of temperature not only on friction, but also on the critical film thickness. Indeed, the latter (occuring at zero entrainment speed i.e. when both contacting surfaces move in opposite directions with the same magnitude) was found to originate from both the thermal viscosity wedge [START_REF] Bruyere | Computational fluid dynamics and full elasticity model for sliding line thermal elastohydrodynamic contacts[END_REF][START_REF] Cameron | The Viscosity Wedge[END_REF] and the squeeze effects.

In recent years, the use of transient Thermal-Elasto-Hydrodynamic (TEHD) models is progressively becoming a standard for the simulation of gears and cam-follower systems. New advances focus on topics such as roughness, starvation, boundary lubrication, etc. Bobach et al. [START_REF] Bobach | Thermal elastohydrodynamic simulation of involute spur gears incorporating mixed friction[END_REF], e.g., incorporated mixed friction effects into a study on involute spur gears, revealing the importance of considering the topographies of the contacting surfaces. Surprisingly, a clear understanding of the onset and magnitude of the transient effects in TEHD configurations is still lacking. This paper aims at addressing this point by providing a comprehensive numerical and analytical analysis of the transient phenomena occuring within the conjunction, their respective influence (depending on the operating conditions and material parameters), and their associated characteristic times.

Model description

The numerical model described hereafter is based on the full system approach (FSA) used by Doki-Thonon [START_REF] Doki-Thonon | Thermal effects in elastohydrodynamic spinning circular contacts[END_REF] and originally developed by Habchi [1,[START_REF] Habchi | A full-system finite element approach to elastohydrodynamic lubrication problems: application to ultra-low-viscosity fluids[END_REF]. It is dedicated to the simulation of transient fully-flooded EHL problems, possibly involving thermal and non-Newtonian effects. Line contact geometries and smooth body surfaces are assumed (Figure 1). 

∂ ∂x ρ η e ∂p(x, t) ∂x - ∂ ∂x (ρ * ) - ∂ ∂t (ρ e ) = 0 (1)
where p, ρ and η stand for the pressure, density and viscosity of the lubricant, respectively. Other quantities in equation (1), read:

ρ η e = η e η e ρ e -ρ e ρ * =ρ e η e (u 2 (t) -u 1 (t)) + ρ e u 1 (t)
where u 1 and u 2 are the velocities of the contacting bodies along the x direction. Variables with the subscript () e denote equivalent terms taking into account the variations of the physical lubricant properties across the film thickness, h. These terms, arising from the integration of the Navier-stokes equations, are expressed as:

ρ e = h 0 ρdz ρ e = h 0 ρ z 0 1 η dz dz ρ e = h 0 ρ z 0 z η dz dz 1 η e = h 0 1 η dz 1 η e = h 0 z η dz
The film thickness depends on, h 0 , the spacing of the rigid solids, R, the equivalent radius of curvature representing the original geometry and, v, the total elastic deflection [1], as:

h(x, t) = h 0 (t) + x 2 2R(t) -v(x, t) (2) 
As for boundary conditions, ambient pressure is prescribed at the inlet and outlet of the fluid domain. The corresponding abscissas, x in and x out , are respectively located at x = -5. Finally, asymmetry of the fluid domain is here justified by the fact that the entrainment was kept unidirectional in all the computed cases.

Density. The lubricant retained in this study is a fluid with properties typical of automotive engine oils (see Table 1). Its density is chosen to follow Dowson-Higginson's law [START_REF] Dowson | Elasto-hydrodynamic lubrication: the fundamentals of roller and gear lubrication, 1st Edition[END_REF]:

ρ(p, T ) = ρ r 5.9 × 10 8 + 1.34p 5.9 × 10 8 + p -β DH (T -T r ) (3) 
where β DH is the density-temperature coefficient and ρ r is the density measured at the reference temperature2 , T r .

Rheology. In mechanical contacts operating under (T)EHD conditions, an accurate description of the viscosity variations is paramount. Among the numerous constitutive relations found in the litterature, those with higher physical relevance and a wider range of validity were favored in this study. The pressure and temperature dependence of the lubricant Newtonian viscosity µ were thus chosen to obey the modified WLF model [START_REF] Yasutomi | An Application of a Free Volume Model to Lubricant Rheology I-Dependence of Viscosity on Temperature and Pressure[END_REF]:

µ(p, T ) = µ g × 10 -C 1 (T -T g (p))F(p) C 2 + (T -T g (p))F(p) (4) 
with

T g (p) = T g (p 0 ) + A 1 ln(1 + A 2 p) F(p) = 1 -B 1 ln(1 + B 2 p)
where µ g is the viscosity at the glass transition temperature T g , p 0 is the ambient pressure and A 1 , A 2 , B 1 , B 2 , C 1 and C 2 are constants characterizing the fluid.

The generalized non-Newtonian viscosity is then obtained from Bair's modified version of the Carreau-Yasuda formulation [START_REF] Bair | A Rough Shear-Thinning Correction for EHD Film Thickness[END_REF]:

η(p, T, τ) = µ(p, T ) 1 + τ G a 1 n -1 a (5) 
where τ = |η∂u/∂z| is the equivalent shear stress, G is the shear modulus and a and n are additional constants characterizing the fluid.

Solid mechanics

A remarkable asset of Habchi's work [1] lies in the resolution of the structural mechanics problem. Firstly, by solving the classical linear elasticity equations with the finite element method rather than relying on the half-space assumption, he opened the way towards the modelling of more realistic contact configurations (as e.g. in complex kinematic EHD cases). Secondly, by applying the equivalent body theory, he managed to subsequently reduce the computational power requirements. The total elastic deflection v (equation ( 2)) is deduced from the calculation of the displacement vector U on only one solid Ω 1 (the other being considered rigid) of size 60b ref × 60b ref [1], with equivalent properties (Young's modulus E and Poisson's ratio ν), such that:

-∇ • σ = 0 ( 6 
)
with σ = C s (U) where C and s are the stiffness and strain tensors, respectively. Regarding boundary conditions, null displacements are assumed on the bottom surface while side surfaces are left free. Finally, a downward vertical stress resulting from the lubricant pressure is prescribed at the fluid/solid interface.

Load balance equation

The last part of the EHD coupling consists in ensuring that the dynamical applied load, w(t), is fully carried by the lubricant film. This is performed by solving the load balance equation on the fluid domain (x ∈ [x in , x out ]):

x out x in p(x, t)dx = w(t) (7) 
2.1.4. Energy conservation Neglecting body forces and heat radiation, the general form of the energy equation under transient regime writes [START_REF] Incropera | Fundamentals of Heat and Mass Transfer[END_REF]:

ρc ∂T ∂t + (u • ∇) T -∇ • (k∇T ) = Q (8)
where k, c and T are the conductivity, specific heat capacity at constant pressure and temperature of the considered medium and Q contains heat sources.

Within the fluid, heat advection in the z-direction is neglected following the thin-film assumption used to model the lubricant flow. Futhermore, in view of the typical Peclet numbers Pe = ρu m bc/k (u m = (u 1 + u 2 )/2 and b respectively being the entrainment velocity and characteristic length scale), advection clearly dominates over diffusion in the x-direction. The fluid heat equation thus reduces to: 

ρc u(x, z, t) ∂T ∂x + ∂T ∂t - ∂ ∂z k ∂T ∂z = - T ρ ∂ρ ∂T u(x,
z 0 1 η dz + u 1 (t) (10) 
The first and second right-hand side terms in equation ( 9) account for the production of heat by compression and shearing, respectively.

Within the solid bodies, previous considerations regarding dominant heat transfer mode globally apply. Still, diffusion along the x-direction should not be neglected here as it is likely to play a role in configurations close to pure sliding (see section 3.5 and [START_REF] Bruyere | Computational fluid dynamics and full elasticity model for sliding line thermal elastohydrodynamic contacts[END_REF]). Finally, since no heat sources is present, the solid heat equations are expressed as:

ρ i c i u i (t) ∂T ∂x + ∂T ∂t - ∂ ∂x k i ∂T ∂x - ∂ ∂z k i ∂T ∂z = 0 i = 1, 2 (11) 
Consistency of the full thermal problem is ensured by imposing the continuity of the heat flux and temperature accross the fluid/solid interfaces δ Ω i along with proper boundary conditions. At the inlet and outlet of the fluid domain, conditional relations are prescribed such that lubricant entering the contact does so at the ambient temperature T 0 :

T | x in ,z,t = T 0 if u(z, t) > 0, T | x out ,z,t = T 0 if u(z, t) < 0
Similarly, equations [START_REF] Bruyere | Computational fluid dynamics and full elasticity model for sliding line thermal elastohydrodynamic contacts[END_REF] require conditions able to accomodate possible changes in the direction of movement of the solids:

T | x in ,z,t = T 0 if u i (t) > 0, T | x out ,z,t = T 0 if u i (t) < 0
Far from the contact area, i.e. at a depth of about 3 3b ref inside the solids [1,[START_REF] Bruyere | Computational fluid dynamics and full elasticity model for sliding line thermal elastohydrodynamic contacts[END_REF][START_REF] Wang | A Numerical Analysis for TEHL of Eccentric-Tappet Pair Subjected to Transient Load[END_REF][START_REF] Doki-Thonon | Thermal effects in elastohydrodynamic spinning circular contacts[END_REF] a zero conductive heat flux is applied.

Numerical procedure

For the sake of computational efficiency and versatility, all the above equations and their respective boundary conditions were first transformed in their dimensionless form using the following quantities:

x = x b ref , z =        z/h, in the lubricant z/b ref , in the solids R t = R(t) R ref , W t = w(t) w ref , U mt = u 2 (t) + u 1 (t) 2u m ref p = p p h ref , H = hR ref b 2 ref , ρ = ρ ρ 0 , µ = µ µ 0 , t = tu m ref b ref
where the superscript () ref denotes the instant chosen as reference, t ref . In practice, a special attention is paid on the choice of t ref to ensure a proper scaling of the model whatever the evolutions of the operating conditions. The equations were then implemented in a commercial finite element code [START_REF] Comsol | [END_REF]. The basic features of the present model were directly derived from Habchi's. Therefore, readers looking for additional details on, e.g., the mesh structuration, the type and order of shape functions and the handling of the cavitation region should refer to [1,[START_REF] Habchi | A full-system finite element approach to elastohydrodynamic lubrication problems: application to ultra-low-viscosity fluids[END_REF]. Emphasis is here placed on the main modifications of the architecture introduced to solve transient TEHD problems. A significant change concerns the computation of the integral terms in equation (1) and the generalized viscosity η within the fluid film. Those are no longer obtained through external algorithms, but rather as solution of three additional partial differential equations (PDEs). For the integral terms, the PDEs write:

∂ ∂z ( f ) - 1 η = 0 (12) ∂ ∂z (g) - z η = 0 ( 13 
)
3 In pure sliding conditions, this distance is doubled for the stationnary solid.

where f and g respectively give the value of z 0 (1/η)dz and z 0 (z/η)dz at any point M(x, z) of the fluid domain. As for the generalized viscosity, η(p, T, τ) 5, the circular dependency with the equivalent shear stress, τ = |η∂u/∂z|, is simply avoided through the resolution of:

η -j = 0 ( 14 
)
where j stands for any formulation retained to model the rheological behavior of the lubricant.

An advantage of this method is that all the TEHD equations are now combined into a single non-linear system ensuring the full coupling [START_REF] Bruyere | Computational fluid dynamics and full elasticity model for sliding line thermal elastohydrodynamic contacts[END_REF]. The system is then solved using a Newton-Raphson procedure.

The numerical scheme for the simulation of transient TEHD problems consists of two phases: the initialization and the resolution itself (Figure 2). A distinction is made here since common analytical solutions fail at providing a consistent initial guess for all the variables. Indeed, a very accurate prediction of the complex outcome of the competing physical phenomena acting at the initial state is required. Initialization is thus achieved through a stationary TEHD computation, under the following steps: at first, solid deformations corresponding to a Hertzian pressure profile are pre-calculated. Then, the cor- responding isothermal Newtonian isoviscous elastic problem is solved. This intermediate step has the advantage of eliminating infinite values of the longitudinal pressure gradient causing issues in the shear rate calculation. It also allows to avoid the consideration of piezoviscous effects, costly and unnecessary at this point. Finally, the fully coupled stationary TEHD problem is computed. From there, obtaining the transient evolution is pretty much straightforward (see Figure 2). After compilation of the set of equations, the resulting differential-algebraic system is discretized through the method of lines and solved using a variable step size variable order 4 backward differentiation formula (BDF) scheme. Time steps are automatically adjusted according to the relative and absolute tolerances specified (0.001 and 0.0001, respectively). Typical transient TEHD computations (consisting of 1366, 13632, 75602 and 25211 degrees of freedom for the fluid, elastic, non-Newtonian and thermal problems, respectively, and of 2000 saved time steps) performed in this study last about 5 hours and 30 minutes (10 minutes for the initialization) on a computer equipped with an Intel Core i7-2620M processor.

Origin of transient effects and associated characteristic times

A wide variety of tribological systems are commonly subjected to fluctuations of the operating conditions. Such fluctuations can be the result of vibrations or simply due to the nature of the application, as in gears and cam-followers. In any case, those can dramatically affect the tribological performances (film thickness and friction) if their rate of occurence exceeds the rate at which the physical phenomenon activated in the conjunction can accomodate. In this section, the involved characteristic times are reviewed and discussed with respect to a reference configuration corresponding to the initial/steady state t 0 of the transient simulations of section 4. Related operating conditions, lubricant and solid properties are detailed in Table 1).

Operating fluctuation time

Fluctuations can take the form of changes in the applied load, w, velocities, u i , as well as in the contacting geometries, R. For the sake of clarity, only a sinusodal load variation superimposed to an initial/steady state value, i.e. w = w 0 [1 + A w sin(ωt)], is considered in the present study. The operating fluctuation time t w thus writes:

t w = 2π ω ( 15 
)
where ω is the load pulsation. Additionaly, note that the load amplitude A w was kept small enough to neglect the timedependency of the contact half-width, b, in the estimation of the other characteristic times. Although general formulations were retained in the following definitions, all numerical values (as e.g. those listed in Table 2) were computed using b 0 (corresponding to the initial load, w 0 ).

Hydrodynamic time

The hydrodynamic time, t h , is a measure of how fast the contact will react in terms of film thickness. Indeed, perturbations generated at the inlet are transported by the lubricant flow (at the entrainement velocity, u m ) and arrive at the contact center after a delay:

t h = m u m (16 
) 4 The time-stepping order is here resticted to 2 to prevent stability issues. 

(K -1 ) 7e-4 µ g (Pa.s -1 ) 1e12 A 1 (K) 19.648 A 2 (Pa -1 ) 4.758e-9 B 1 (-) 0.213 B 2 (Pa -1 ) 2.521e-8 C 1 (-) 15.798 C 2 (K) 21.557 T g (p 0 ) (K) 189 T r , T 0 (K) 298 p 0 (Pa) 1e5 G (Pa) 7e6 n (-) 0.35 a (-) 5 k (W.m -1 .K -1 ) 0.15 c (J.kg -1 .K -1
) 2300

Physical properties of the solids

E i (Pa) 2e11 ν i (-) 0.3 ρ i (kg.m -3 ) 7850 k i (W.m -1 .K -1 ) 47 c i (J.kg -1 .K -1 ) 450 Contact parameters R 0 (m) 0.01 w 0 (N.m -1 ) 2e5 u m 0 (m.s -1 ) 2.5 E r (Pa) 2.198e11 ν r (-) 0.3 b 0 (m) 1.522e-4 p h 0 (Pa) 8.364e8
where m is the distance traveled. Expressing the latter is challenging as it requires an accurate knowledge of the inlet location, which varies with the operating conditions [START_REF] Venner | Amplitude Reduction of Waviness in Transient EHL Line Contacts[END_REF]. In a series of paper on the amplitude reduction of surface waviness in contacts operating in the piezoelastic regime, Hooke and Venner [START_REF] Hooke | Surface roughness modification in EHL line contacts-the effect of roughness wavelength, orientation and operating conditions, in: Lubrication at the Frontier The Role of the Interface and Surface Layers in the Thin Film and Boundary Regime[END_REF][START_REF] Hooke | Surface roughness attenuation in line and point contacts[END_REF] extrapoled the following relationship:

m = bM -1/2 MV L 1/2 MV (17)
Providing the validity condition is satisfied, equation [START_REF] Venner | Numerical Simulation of the Overrolling of a Surface Feature in an EHL Line Contact[END_REF] gives values around unity (m = 1.35b 0 in the reference configuration). In this regard, a distance of one contact half-width, b, was retained to approximate the distance traveled by the film thickness perturbations leading to t h = b/u m .

Elastic time

The elastic time, t e , represents the rate at which the deformation of the solids adapts to a change in the lubricant pressure. A classical formulation for t e is given by:

t e = L λ E i ρ with λ ∼ 1 ( 18 
)
where L is a characteric length (typically the contact halfwidth, b) and λ E i /ρ is a fair approximation of the propagation velocity of waves in an elastic material [START_REF] Achenbach | Wave propagation in elastic solids[END_REF][START_REF] Vinh | On formulas for the Rayleigh wave speed[END_REF]. In practice, t e is small enough compared to the other characteristic times so that the transient solid mechanics problem can be considered as a succession of stationary states.

Rheological time

The rheological time, t γ, describes the transient response of non-Newtonian lubricants subsequently to shear rate variations within the fluid flow. A parallel can be made with the phenomenon of shear relaxation of polymers suspended in solvants. According to the kinetic theory of polymeric liquids [START_REF] Bird | Dynamics of Polymeric Liquids: Fluid mechanics[END_REF], the corresponding characteristic time, t γ, is expressed as:

t γ = µ(p, T ) G ( 19 
)
with the fluid low-shear viscosity, µ(p, T ), being evaluated within the pressurized region (here as an average value over the film thickness at the contact center). Because lubricants exhibit a wide range of non-Newtonian behavior, t γ found in TEHD contacts span over several order of magnitude. A weakly non-Newtonian fluid, i.e. with a negligible t γ, was deliberately picked in this study in accordance with the use of a stationnary formulation to model the shear-viscosity dependency (see equation ( 5)).

Thermal time

The choice of a relevant thermal characteristic time in TEHD contacts is a less documented and much more complex problem. Indeed, identifying the dominant heat transfer modes with regard to the operating conditions requires a deep understanding of the energy balance within the conjunction (see Figure 3). In this respect, Bruyere et al. [START_REF] Bruyere | Computational fluid dynamics and full elasticity model for sliding line thermal elastohydrodynamic contacts[END_REF] exemplified that the slide-to-roll ratio (SRR) has a crucial and highly non-trivial influence. A series of stationary TEHD computations were thus performed using the reference configuration (see Table 1) and different SRRs to illustrate the point. Deduced values for the central (h c ) and minimum (h m ) film thicknesses and for the friction coefficient (C f ) are plotted on Figures 4 and5, respectively, and compared to isothermal solutions. C f is here defined as the average of the friction forces (per unit length) calculated at both fluid/solid interfaces divided by the applied load: Figure 4: Variation of the central and minimum film thicknesses (h c and h m , respectively) as a function of the slide-to-roll ratio (SRR) for the reference configuration (see Table 1). 1).

C f = 1 2w 2 i=1 δ Ω i τ zx dx (20) 
In agreement with previous results [START_REF] Bruyere | Computational fluid dynamics and full elasticity model for sliding line thermal elastohydrodynamic contacts[END_REF], present ones show that thermal effects arising with the increase in the slide-toroll ratio have large consequences on both the film thickness and friction coefficient. Above all, those no longer follow the monotonous variations predicted with the isothermal assumption but rather experience a local minimum in pure sliding conditions (S RR = 2). Three different regimes, namely low, pure and high sliding must therefore be distinguished. Note that a comprehensive study on friction in TEHD (point) contacts at very low SRRs is available in [START_REF] Habchi | On friction regimes in quantitative elastohydrodynamics[END_REF].

Low sliding (S RR < 2). At low sliding, thermal effects are moderate but still significant. As observed on Figure 6, lubricant temperature rises from 25 • C up to about 53 • C. At the contact inlet (around x = -b 0 = -152.2 µm), shear and compression heating slightly lower the lubricant viscosity and consequently affect the central and minimum film thicknesses. Evidence of this mechanism is, for instance, illustrated by the discrepancies between the thermal and isothermal solutions close to pure rolling conditions on Figure 4. A first characteristic time is thus associated with the advection of thermally induced film thickness perturbations, t T a = t h = b/u m . Yet, another heat transfer mechanism is believed to play a more crucial role. From both the temperature distributions (Figure 6) and friction results (Figure 5), it is clear that the largest amount of heat is generated within the pressurized region. Most of that heat diffuses along the film thickness (the Graetz number [START_REF]Polymer extrusion[END_REF], Gz = ρcu m h 2 c /(kb) = t T d /t T a = 0.021, being smaller than unity). It then diffuses accross the fluid/solid interfaces and into the depth of the solids, before being finally transported outside of the contact (the Peclet number, Pe i = ρ i c i u i b/k i = t T d i /t T a i , for solids Ω 1 and Ω 2 , respectively equal to Pe 1 = 22.89 and Pe 2 = 34.33, being larger than unity). Because different modes and directions of heat transfer are involved, finding a relevant characteristic time is far from straightforward. An obvious approach to the problem consists in comparing each one of them and identifying the limiting one. However, whereas t T d = ρch 2 c /k and t T a i = b/u i seem to adequately represent the diffusion of heat within the lubricant and its advection by the solids, very little is known on the intermediate stage and its characteristic time. By looking at Figure 7, it is obvious that the contact half-width, b, does not accurately represent the depth over which the solid temperature is modified. Furthermore, it does not take into account the influence of the thermal properties of the contacting bodies (changed from steel to glass between Figures 7a and7b). From both Figures, it appears 1) and (b) obtained using the thermal properties of glass for the solids

(ρ i = 2530 kg.m -3 , c i = 720 J.kg -1 .K -1 , k i = 1 W.m -1 .K -1 ).
that the characteristic length for the diffusion of heat accross the fluid/solid interfaces is the depth of the thermal boundary layer, δ T . In order to propose an expression for the latter, an analogy can be made with problems of forced convection in liquid metals [START_REF] Thirumaleshwar | Fundamentals of Heat and Mass Transfer[END_REF]. In such problems, the depth of the hydrodynamic boundary layer, δ H , is negligible compared to that of the thermal boundary layer δ T . If, in addition, the velocity profile of the liquid metal flow is uniform, the energy equation used to model the heat transfer reduces to equation [START_REF] Bruyere | Computational fluid dynamics and full elasticity model for sliding line thermal elastohydrodynamic contacts[END_REF]. By further exploiting the order of magnitude difference between the longitudinal and transverse temperature gradient (respectively ∂T/∂x and ∂T/∂z) throughout the pressurized region (Figures 8a and8b), it becomes possible to relate δ T to the solids diffusivity, k i /(ρ i c i ), velocity, u i , and the characteristic length, b, over which heat is transferred from the lubricant [START_REF] Jiji | Heat Convection[END_REF]:

δ T = k i b ρ i c i u i (21) 
Using equation ( 21), the characteristic time for the diffusion of heat accross the fluid/solid interfaces and into the thermal boundary layer of the solids simplifies to:

t T d eq i = ρ i c i δ 2 T k i = b u i (22) 
which, as stated earlier, also represents the time scale for the advection of heat by the solids, t T a i . While unexpected, this result is of primary importance. Indeed, since at low sliding, one of the contacting bodies (here Ω 1 ) moves slower than the lu- bricant entrainment velocity (here Ω 1 ), a comparison between the different thermal characteristic times will always yield (provided Pe i 1): t T d eq i = t T a i > t T a > t T d . In other words, it implies that the onset of transient thermal effects is likely to be independent of the solids (thermal) properties.

Pure sliding (S RR = 2). In and close to pure sliding conditions, the energy balance is completely altered (Figure 9 to compare to Figures 6 and7a). The largest amount of the produced heat now exits the conjunction through the upper solid moving at twice the lubricant speed. The remaining heat gets trapped by the lower (stationnary) solid, significantly raising its temperature (up to almost 110 • C) on a large area, by diffusion (Figure 9b). As a consequence, lubricant flowing in the lower solid vicinity is heated before reaching the contact inlet, reducing its viscosity and therefore the central and minimum film thicknesses (Figure 4). Friction is further decreased as the average lubricant temperature is very high in the whole pressurized region (Figure 9a). In this configuration, the dominant thermal characteristic time is associated with the diffusion of heat through the stationnary solid (here Ω 1 ), from the contact centre to the inlet area: t T d 1 = 1742 µs t T a = 60.89 µs.

High sliding (S RR > 2). At high sliding, the heat flux distribution ressembles that observed at low sliding. However, because the solids move in opposite directions, strong differences in tribological performances exist (Figures 4 and5). Indeed, at both the 'inlet' and 'outlet', lubricant at ambient temperature is dragged into the contact by one solid and is also ejected out after being heated by the other one [START_REF] Bruyere | Computational fluid dynamics and full elasticity model for sliding line thermal elastohydrodynamic contacts[END_REF]. Within the pressurized region, a stationary recirculation area where very high temperatures are reached (up to about 145 • C on Figure 10) forms between the two 'colder' fluid layers. As a result from this differential heating, a viscosity gradient is created accross the film thickness which, in turn, modifies the pressure profile. This phenomenon, known as 'the viscosity wedge effect' [START_REF] Bruyere | Computational fluid dynamics and full elasticity model for sliding line thermal elastohydrodynamic contacts[END_REF], is responsible for the local film thickness increase in the central area of the contact (Figure 10). At high sliding, the dominant thermal characteristic time is associated with the advection of heat from the center of the contact back to the inlet: t T a 1 = 76.11 µs > t T a = 60.89 µs.

Onset of transient effects

Configuration

In order to determine the onset of transient effects, timedependent TEHD computations were performed, in the reference configuration, for different values of the slide-to-roll ratio ([0.4, 1.7, 2, 2.4, 3.6]) and varying load fluctuation frequencies, t -1 w , ranging from 1 Hz to 30000 Hz. For each combination of parameters, the transient response of the contact was monitored until reaching a periodic behavior (Figure 11). Usually, this requirement was fulfilled after at least 10 periods of load oscillation (more at high excitation frequencies, i.e. t w t h ). The transient evolution of the tribological performances, i.e. the central film thickness (h c ) and friction coefficient (C f ), were then extracted and compared to quasisteady results obtained by cancelling the time derivatives in equations (1), ( 9) and [START_REF] Bruyere | Computational fluid dynamics and full elasticity model for sliding line thermal elastohydrodynamic contacts[END_REF]. For this purpose, characteristic variables, consisting of two mean values (h c m , C f m ) and one amplitude (A h c ) were built from each simulation. Those were, in turn, used to create a new set of normalized variables, allowing to compute the deviations induced by the transient effects:

∆h c m = h c mt -h c mq h c mq , ∆A h c = A h ct -A h cq A h cq , ∆C f m = C f mt -C f mq C f mq ,
where the subscript () t and () q stand for transient and quasisteady results, respectively.

As a preliminary step, only the variation of the normalized mean value of the central film thickness ∆h c m as a function of the load fluctuation frequency t -1 w is considered. shows that curves, representing different slide-to-roll ratios, follow similar trends. However, the onset above which the influence of transient effects is observed strongly differs from one S RR to another (from t -1 w ∼ 16 Hz for S RR = 2 up to t -1 w ∼ 590 Hz for S RR = 0.4). Since only the dominant thermal characteristic time was varied in the simulations (the others being either constant (t h ,t e ) or negligibly small (t γ), it appears that the onset of transient effects is someway linked to the heat transfers within the conjunction.

Results and discussion

Based on the former observation, the variation of the normalized variables, ∆h c m , ∆A h c and ∆C f m , are plotted, on Figures 13, 14 and 15 respectively, as a function of, Ω T/w , the ratio of the dominant thermal time, t T , and of the load fluctuation time, t w . The former, specific to the different regimes of sliding identified in section 3.5, is recalled as t T d eq 1 for S RR < 2, t T d 1 for S RR = 2 and t T a 1 for S RR > 2.

As expected, deviations induced by transient effects now all share the same appearance threshold (Ω T/w ∼ 0.029). In order to understand the underlying mechanism, one has to look closely at the characteristic times involved in the different simulations (Table 2). Indeed, independently of the S RR considered, the dominant thermal characteristic time, t T is larger than the others. Therefore, as the frequency of the load fluctuation increases, thermal transfers are the first not able to accomodate. Then, as the threshold for the other phenomena (e.g. Ω h/w = t h /t w ∼ 0.029 for hydrodynamics) are reached, they also start contributing significantly to the transient effects. Such a result is particularly interesting. Not only it validates the thermal analysis developed in the paper, but it also identifies thermal transfers as the most probable (i.e. most frequently encountered) source of transient effects in TEHD contacts. w . In abscissa, the latter is normalized by the dominant thermal time t T identified for each sliding regime (t T deq 1 for S RR < 2, t T d 1 for S RR = 2 and t T a 1 for S RR > 2). Reference configuration with different SRRs. Exploiting the difference in characteristic times between the different physical phenomena allows to go further into the understanding, and investigate, e.g., their relative contribution to the overall transient effects. In this event, the pure sliding case (S RR = 2) provides particularly helpfull information. Indeed, as the dominant thermal characteristic time (t T d 1 = 1742 µs) is two order of magnitude greater than the hydrodynamic time (t h = 60.89 µs), their contribution to the transient effects will appear at very distinct load fluctuation frequencies. At Ω T/w = t T d 1 /t w ∼ 0.029, thermal transient effects become significant, lowering ∆h c m , ∆A h c and ∆C f m . Above Ω T/w ∼ 0.7 (or Ω h/w = t h /t w ∼ 0.029), hydrodynamic transient effects add up, progressively increasing the amplitude of the film thickness oscillations (Figure 14) as observed by Félix-Quiñonez and Morales-Espejel [START_REF] Félix-Quiñonez | Film thickness fluctuations in time-varying normal loading of rolling elastohydrodynamically lubricated contacts[END_REF] in isothermal computations. Then, above Ω T/w ∼ 5.7 (Ω h/w ∼ 0.2), the latter completely overwhelms the former, inducing sharp modifications of the mean value of the central film thickness ∆h c m and of the friction coefficient ∆C f m (Figures 13 and15). It is noteworthy that the delayed appearance of the hydrodynamic contribution can also be observed, though to a lower extent, for S RR = 1.7 and S RR = 2.4 where the dominant thermal characteristic time, respectively t T d eq 1 = 405.9 µs and t T a 1 = 304.4 µs, are at least 5 w . In abscissa, the latter is normalized by the dominant thermal time t T identified for each sliding regime (t T deq 1 for S RR < 2, t T d 1 for S RR = 2 and t T a 1 for S RR > 2). Reference configuration with different SRRs.

times greater than t h = 60.89 µs.

Finally, from a quantitative point of view, transient effects only slightly influence the average contact performance (deviations on h c m and C f m remain below 1.5%). However, they tend to strongly increase the amplitude of oscillations when the ratio of the hydrodynamic time to the applied load fluctuation time Ω h/w approaches 0.5 (Figure 14). Such a result has interesting practical implications in the sense that, if associated with those critical frequencies (here t -1 w ∼ 8.2 kHz), large amplitude perturbations of the operating conditions may have harmful consequences, especially at low sliding.

Influence of operating conditions and materials

So far, the dependence of the dominant physical time (i.e. that associated with the onset of transient effects) on the slideto-roll ratio has been established using a reference configuration. In order to investigate the range of validity of the obtained expressions, a parametric study on the contact conditions was necessary. Additional computations were thus performed to test separately the influence of the amplitude of the load fluctuation A w , the entrainment velocity u 0 and initial load w 0 and the thermal properties of the contacting bodies (ρ i , c i , k i ). Those, referred to as Case 1 to 3 in the following discussion, are detailed in Table 3.

Typical results obtained at low sliding S RR = 0.4 are reported on Figure 16. A rather good match is, again, obtained on the onset of transient effects (Ω T d eq 1 /w = t T d eq 1 /t w ∼ 0.029), implying that changes in the operating conditions or in the solid materials are either well taken into account, or without consequences. For instance, a variation of the entrainment velocity or the initial load (Case 2 on Figure 16) corresponds to the first category. Indeed, both parameters being involved in the definition of the dominant characteristic time, t T d eq 1 = b/u 1 , their modification leads to different t T d eq 1 but does not affect the value of Ω T d eq 1 /w above which transient effects become significant. On the contrary, a change in the amplitude of the load fluctuation (Case 1) or in the thermal of the solids (Case 3) fall into the second category. Both have an obvious influence on the amplitude of the transient effects but none of them modifies t T d eq 1 and Ω T d eq 1 /w . Interestingly, this confirms the unexpected result derived from the analysis in section 3.5 according to which the onset of transient effects is independent of the solid thermal properties at low sliding (as long as the Peclet number in the slower solid, Pe 1 = t T d eq 1 /t T d 1 remains well above unity).

Conclusion

The paper dealt with transient effects in TEHD line contacts subjected to fluctuations of the operating conditions. An original numerical model for the simulation of such problems was first presented. Then, the phenomena at the origin of transient effects and their associated characteristic time were described. Within this framework, a particular focus was placed on the analysis of the thermal contribution. The non-trivial role of the slide-to-roll ratio (SRR) on the energy balance was highlighted, leading to the distinction of three different regimes (low, pure and high sliding). For each regime, the dominant mode of heat transfer, i.e. the most likely to give rise to transient effects, and the associated characteristic time were identified: w at low sliding (S RR = 0.4). In abscissa, the latter is normalized by the corresponding dominant thermal time t T deq 1 . Reference configuration and additional cases detailed in Table 3.

• At low sliding, the dominant thermal time corresponds to the diffusion of heat through the fluid/solid interface and into the thermal boundary layer of the slowest moving solid. Following an order of magnitude analysis, an approximate expression independent of the solid thermal properties was proposed;

• In pure sliding conditions, the dominant thermal time corresponds to the diffusion of heat through the stationary solid, from the contact center to the inlet;

• At high sliding, the dominant thermal time corresponds to the advection of heat from the contact center back to the inlet.

Then, time-dependent simulations were performed, using a reference configuration, and compared to quasisteady solutions to investigate the onset of transient effects. A direct relationship with the dominant thermal time was established and validated through a parametric study on the contact operating conditions and on the solid material properties.

The current developed approach provides an effective and convenient tool to better understand the operation of complex transient mechanical contacts. Among these, gears and camfollower systems seem to be the priority. Nonetheless, any contact featuring an unidirectional flow of lubricant (as e.g. point contacts without spinning or skewing) could also be straightforwardly studied. In addition, with the progressive increase in the use of (highly) non-Newtonian lubricants, efforts should be spent to examine the influence of the charateristic rheological time (describing the transient shear thinning behavior), which was deliberately neglected in the paper.

Figure 1 :

 1 Figure 1: Schematic representation of a typical transient TEHL line contact between solids Ω 1 and Ω 2 . Ω is the fluid domain.

  2.1. Governing equations 2.1.1. Fluid dynamics Transient generalized Reynolds equation. Fluid flow within the conjunction is governed by the transient generalized Reynolds equation introduced by Yang and Wen 1 [24]:

  4b ref and x = 3.6b ref , b ref being the Hertzian contact half-width at the reference instant, t ref . Such values are similar to those classicaly found in the litterature for TEHD line contacts [1, 11, 19, 25].

Figure 2 :

 2 Figure 2: Schematic flowchart for the transient TEHD computations.

Figure 3 :

 3 Figure 3: Schematic representation of the energy balance in a typical TEHD line contact (here operating under low sliding). Heat transfers by diffusion and advection (respectively depicted by plain and dotted red arrows) are reported with their associated characteristic times.

Figure 5 :

 5 Figure 5: Variation of the friction coefficient as a function of the slide-to-roll ratio (SRR) for the reference configuration (see Table1).

Figure 6 :

 6 Figure 6: Temperature (color) and velocity (arrows) fields in the lubricant at low sliding case (S RR = 0.4).

Figure 7 :

 7 Figure 7: Temperature distribution (surface color and isolines) in the contacting bodies at low sliding (S RR = 0.4). Results from (a) the reference configuration (Table1) and (b) obtained using the thermal properties of glass for the solids (ρ i = 2530 kg.m -3 , c i = 720 J.kg -1 .K -1 , k i = 1 W.m -1 .K -1 ).

Figure 8 :

 8 Figure 8: Longitudinal (a) and transverse (b) temperature gradient in the contacting bodies at low sliding (S RR = 0.4).

Figure 9 :

 9 Figure 9: Temperature (color) and velocity (arrows) fields corresponding to a pure sliding case (S RR = 2).

Figure 10 :Figure 11 :

 1011 Figure 10: Temperature (color) and velocity (arrows) fields corresponding to a high sliding case (S RR = 3.6).

Figure 12 :

 12 Figure 12: Influence of the transient effects on the variation of the normalized average central film thickness ∆h cm as a function of the load fluctuation frequency t -1 w . Reference configuration with different SRRs.

Figure 13 :

 13 Figure 13: Influence of the transient effects on the variation of the normalized average central film thickness ∆hc m as a function of the load fluctuation frequency t -1w . In abscissa, the latter is normalized by the dominant thermal time t T identified for each sliding regime (t T deq 1 for S RR < 2, t T d 1 for S RR = 2 and t T a 1 for S RR > 2). Reference configuration with different SRRs.

Figure 14 :

 14 Figure 14: Influence of the transient effects on the variation of the normalized amplitude of the central film thickness oscillations ∆Ahc as a function of the load fluctuation frequency t -1w . In abscissa, the latter is normalized by the dominant thermal time t T identified for each sliding regime (t T deq 1 for S RR < 2, t T d 1 for S RR = 2 and t T a 1 for S RR > 2). Reference configuration with different SRRs.

Figure 16 :

 16 Figure 16: Influence of the transient effects on the variation of the normalized amplitude of the central film thickness oscillations ∆A hc as a function of the load fluctuation frequency t -1w at low sliding (S RR = 0.4). In abscissa, the latter is normalized by the corresponding dominant thermal time t T deq 1 . Reference configuration and additional cases detailed in Table3.

Table 1 :

 1 Reference configuration.

	Physical properties of the lubricant	
	ρ r	(kg.m -3 )	837.2
	β DH		

Table 2 :

 2 Main characteristic times involved in the transient simulations as a function of the slide-to-roll ratio (SRR). All values are given in microseconds (µs).

	SRR	0.4	1.7	2	2.4	3.6
	t h /t Ta			60.89		
	t e			0.0288		
	t γ	37.16	3.87	2.97	2.54	1.97
	t T d	8.84	4.80	2.95	3.49	4.86
	t T deq 1	76.11 405.9	x	x	x
	t T d 1	x	x 1742	x	x
	t T a 1	x	x	x 304.4 76.11

  Figure15: Influence of the transient effects on the variation of the normalized average friction coefficient ∆C f m as a function of the load fluctuation frequency t -1 w . In abscissa, the latter is normalized by the dominant thermal time t T identified for each sliding regime (t T deq 1 for S RR < 2, t T d 1 for S RR = 2 and t T a 1 for S RR > 2). Reference configuration with different SRRs.

			h/w =0,2
	h/w =0,2		
	T/w	t T /t w	[ ]

Table 3 :

 3 Operating conditions and material properties used in the parametric study. For each computation, only the variation with the reference configuration is highlighted.

			Reference Case 1	Case 2 Case 3
	A w	(-)	0.1	0.2
	u 0	(m.s -1 )	2.5		1
	w 0	(N.m -1 )	100000		175000
	ρ i	(kg.m -3 )	7850		2350
	c i	(J.kg -1 .K -1 )	450		720
	k i	(W.m -1 .K -1 )	47		1

Note that the retained form is actually that ofHabchi et al. [1] 

Not to be confused with, T 0 , the initial temperature and corresponding properties used in the dimensionless model (see section 2.2).

[1] W.Habchi, D. Eyheramendy, P. Vergne, G. E. Morales-Espejel, Stabilized fully-coupled finite elements for elastohydrodynamic lubrication problems, Advances in Engineering Software 46 (1) (2012) 4-18.

Nomenclature a

Constant of Carreau-Yasuda's law (-) A 1

Constant of the WLF model (K) A 2

Constant of the WLF model (Pa -1 ) A w Amplitude of the periodic load fluctuation (-) Ah Amplitude of the film thickness periodic oscillation (m) b

Hertzian contact half-width (m

Constant of the WLF model (Pa -1 ) c, c i Heat capacity of the fluid and solid

Graetz number in the fluid (-),

Thermal conductivity of the fluid and solid

Parameter of Moes-Venner (-),

Maximum Hertzian pressure (Pa), p h = 2w/πb Pe, Pe i Peclet number in the fluid and solid Ω i (-), Rheology of the fluid (s) t T a , t T a i Thermal advection in the fluid and solid Ω i along the x-axis (s) t T d eq i

Thermal diffusion accross the interface between the fluid and solid Ω i (s) t T d , t T d i Thermal diffusion in the fluid and solid Ω i along the z-axis (s)