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Abstract. In this paper we present a family of gradient-enhanced continuum damage models which
can be viewed as a regularization of the variational approach to fracture capable of predicting in a
unified framework the onset and space-time dynamic propagation (growth, kinking, branching, arrest)
of complex cracks in quasi-brittle materials under severe dynamic loading. The dynamic evolution
problem for a general class of such damage models is formulated as a variational inequality involving
the action integral of a generalized Lagrangian and its physical interpretation is given. Finite-element
based implementation is then detailed and mathematical optimization methods are directly used at the
structural scale exploiting fully the variational nature of the formulation. Finally, the link with the
classical dynamic Griffith theory and with the original quasi-static model as well as various dynamic
fracture phenomena are illustrated by representative numerical examples in quantitative accordance
with theoretical or experimental results.

Introduction

Gradient damage models as formulated in a pure variational setting [1] provide, through strain and
damage localization in narrow bands representing a regularized description of cracks, a complete and
unified framework of brittle fracture including the onset and the space-time quasi-static propagation
of cracks with possible complex topologies, see [2, 3] and references therein. The presence of the
damage gradient confirms the non-local nature of the model and induces naturally by dimensional
analysis a material internal length. From the damage mechanics point of view, local damage models
are mathematically ill-posed where damage localization is possible without any additional energy
dissipation resulting in a spurious mesh dependence of the FEM results [4, 5]. The introduction of
the damage gradient can thus be seen as a regularization of the classical continuum damage models to
overcome this difficulty although other techniques are also available [6]. The link between damage and
fracture can be established on one hand through Γ-convergence theories in terms of global minima of
the total energy as long as this internal length is small before the size of the structure [7]. On the other
hand, it is shown in [8] using matched asymptotic analysis, that the damage evolution ruled a priori
by three physical principles of irreversibility, local directional stability and energy balance satisfies
apparently the classical Griffith criterion through the definition of a fictitious energy release rate G
of the outer problem and a material toughness Gc proportional to the local damage dissipation and
the internal length. This gradient damage model has been successfully applied to investigate among
others thermal shocks [9, 10] and thin films debonding problems [11, 12].

We discuss in this work a natural dynamic extension of the original quasi-static gradient damage
models [1, 2] to account for dynamic fracture phenomena. In presence of rapid propagation of cracks
the quasi-static assumption is a priori not valid and inertial effects should be considered during the



analysis. The reasoning in [13] still applies in dynamics concerning the inability of the classical Grif-
fith theory of dynamic fracture mechanics to nucleate a crack in structures lacking sufficient initial
singularities and to predict itself solely the crack path including kinking and branching without addi-
tional hypothesis such as the principle of local symmetry. As in the quasi-static setting, these issues
can be directly addressed by an energy minimality principle in the dynamic gradient damage models.
Dynamic fracture has already been studied using the so-called phase-field models [14, 15, 16] which
turn out to belong in fact to our general dynamic gradient damage models after a particular choice of
damage constitutive laws. The other aim of this paper is to re-establish a certain link between damage
and fracture in the dynamic setting through numerical examples and study convergence of the dynamic
model towards the original quasi-static one with a vanishing loading speed in several circumstances.

This paper is organized as follows. The variational formulation of the dynamic gradient damage
model is presented which constitutes a natural extension of the original quasi-static model. Numerical
considerations are then discussed concerning in particular the temporal discretization of the time evo-
lution problem. Finally, several representative numerical examples are given to provide some insights
of the proposed formulation with respect to its use to approximate dynamic brittle fracture.

Variational formulation of the dynamic gradient damage models

We refer the reader to [1] and references therein for the basic variational ingredients and complete
construction of gradient damage models. The first step is to introduce a new scalar damage field
0 ≤ α ≤ 1 depicting a continuous transition between the undamaged part α = 0 and the crack
α = 1, see Fig. 1.
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Figure 1: The discrete crack Γ ⊂ Ω approximated by a continuous damage field 0 ≤ α ≤ 1.

In the quasi-static model the principle of directional stability is physically feasible due to the min-
imization nature of the static equilibrium. But in dynamics we merely have a stationary Lagrangian
so our approach here will be extending the first-order stability criterion. For formulational simplic-
ities, we confine ourselves to the infinitesimal or linearized strain theory knowing that finite strain
extension is also possible [17]. We reintroduce two basic energetic quantities used in quasi-static cal-
culations: the elastic energy E (ut ,αt ) and the damage dissipation energy S(αt ) which corresponds to
the fracture surface energy of the structure Ω

E (ut ,αt ) =
1
2

∫
Ω

a(αt )Aε (ut ) · ε (ut ), S(αt ) =
∫
Ω

w(αt ) + w(1)ℓ2∇αt · ∇αt

with A the elasticity tensor, ℓ the above-mentioned internal length controlling the damage band (see
Fig. 1) and a(α) alongwithw(α) two constitutive laws for damage describing respectively degradation
of stiffness with damage and local damage dissipation. We are now in a position to bring the kinetic
energy K (u̇t ) into the picture

K (u̇t ) =
1
2

∫
Ω

ρu̇t · u̇t



and define the action integral of a generalized Lagrangian, counterpart of the quasi-static total potential
energy P (u,α)

A(u,α) =
∫
I

Lt (ut , u̇t ,αt ) dt =
∫
I

E (ut ,αt ) + S(αt ) − K (u̇t ) − Wt (ut ) dt

where I ⊂ R denotes a certain physical time interval of interest andW the linear functional grouping
all external loads. The coupled two-field time-continuous problem can then be formulated by the
following three physical principles.

1. Irreversibility: the damage α(·,x) is non-decreasing to prevent crack healing.

2. First-order stability: the action integral variation is always positive with respect to arbitrary
test displacement v in the kinematic admissible space C(u) incorporating Dirichlet boundary
conditions and arbitrary test damage β restricted to the damage admissible space D(α) taking
into account the irreversibility condition

A′(u,α)(v − u, β − α) ≥ 0 for all v ∈ C(u) and β ∈ D (α) (1)

3. Energy balance: the rate of the total energy should be equal to the total external power

Ėt + K̇t + Ṡt =W (u̇t ) +
∫
∂ΩD

a(αt ) Aε (ut )n · U̇t

Wisely choosing the test functions v and β in the variational inequality (1) and exploiting the
topological natures of the two admissible spaces, we obtain the pointwise wave equation and the crack
minimality criterion at the structural scale{

ρüt = div
(
a(αt )Aε (ut )

)
+ ft

E (ut ,αt ) + S(αt ) ≤ E (ut , β) + S(β) for all 1 ≥ β ≥ αt ≥ 0.
(2a)
(2b)

Although (2b) is formally the same as in the quasi-static case, here the displacement ut follows the
elastodynamic equation (2a) (with a stress tensor modulated by the stiffness degradation function)
and not the static equilibrium corresponding to the minimality of the total potential energy. As will be
shown through numerical examples, it has a direct impact on the apparent crack evolution law.

Equations (2a) and (2b) are the governing laws of the so-called phase-field models [14, 15, 16]
with a particular choice of damage constitutive laws (and a non-essential scaling of internal length
ℓ 7→ 2ℓ̃)

a(α) = (1 − α)2, w(α) = w1α
2 (3)

with w1 = Gc/(2ℓ). The physical properties of general gradient damage models have been carefully
studied in [18, 19, 2, 20, 21] in a quasi-static setting but most of those are still applicable here. In
particular, the choice (3) leads to the absence of a purely elastic domain in which damage is zero and
an elastic behavior σ = Aε is observed. As is already pointed out in [14, 16], the stress is increasing
(hardening) in the damage interval (0, 14 ) during a homogeneous 1-d traction test, which complicates
the physical interpretation of the damage variable. Here in this paper, we will be focused on the fol-
lowing constitutive functions

a(α) = (1 − α)2, w(α) = w1α (4)

with w1 = 3Gc/(8ℓ). The main advantage of this model (4) is the presence of a purely elastic domain
controlled by a critical stress σc =

√
w1E, while the surface energy is still quadratic with respect to

the damage variable leading to a minimal computational cost because of a constant Hessian matrix,
see [2] for a comparison of these two models among others.



Numerical implementation

The implementation of the space-time continuous model (1) is mainly adapted from [2, 22] for dis-
cretization schemes and numerical treatment of the damage equation (2b). The fields u et α are dis-
cretized in space by isoparametric finite elements with the same interpolation functions based on a
mesh Ωh ⊂ Ω the typical size of which should be sufficiently small compared to the internal length
ℓ in order to estimate correctly the surface energy S(αt ). In explicit dynamics linear elements are
largely preferred because of its lower computational cost and a simply obtainable diagonal lumped
mass matrix.

The central difference Newmark scheme with β = 0 is used for temporel discretization of the
wave equation (2a), given its precision, its symplectic nature producing little numerical dissipation and
its explicit character requiring no inversion of matrices at every time step. The conditional stability
∆t < ∆tCFL ≈ h/c is not very inconvenient in our applications as cracks can propagate at a speed
comparable to the material speed of sound.

In absence of the temporel derivative of the damage field α̇, the energy minimization problem
(2b) isn’t a genuine evolution problem except that the irreversibility condition should be discretized
conforming to the time steps. We obtain hence a bound-constrained convex minimization problem (or
even a quadratic programming problem using constitutive laws (4)). which will be solved at the struc-
tural scale by the Gradient Projection (identification of active bounds) combined with the Conjugate
Gradient method (approximated solution corresponding to the free variables), cf. [23].

In the time-continuous model the dynamic equilibrium (2a) and the damage stability criterion (2b)
are coupled in the variational inequality (1). It turns out that our choice of the temporal discretization
(explicit Newmark scheme) decouples automatically at every time step two separate and independant
sub-problems respectively at u fixed and at α fixed. When using other implicit schemes, staggered
or operator-split schemes should be used [22, 15]. Combing spatial and temporal discretization, we
obtain the following numerical model.

Algorithm 1 Discretized numerical model of the evolution problem (1).
1: Given initial conditions u0, u̇0 et α−1.
2: for every time step n do
3: Solve αn = argmin

(E (un, ·) + S(·)) subjected to constraints 1 ≥ αn ≥ αn−1 ≥ 0.
4: Solve the dynamic equilibrium Mün = Fn

ext − Fint(un,αn).
5: Calculate the velocity u̇n+1/2 = u̇n−1/2 + ∆tün for n > 0 or u̇1/2 = u̇0 + ∆tü0/2 for n = 0.
6: Update the displacement un+1 = un + ∆tu̇n+1/2.
7: end for

It is shown in [24] that the time-discrete model using an implicit Euler scheme [22] converges to
the continuous one governed by the three principles when ∆t → 0. Our experience suggests the same
using the explicit central difference scheme. Note that in the discrete model we make use only of the
variational inequality (1). The energy balance criterion in the continuous model will be automatically
satisfied when the time increment tends to zero.

Links with the Griffith theory of dynamic fracture

In order to better understand the proposed dynamic gradient damage model using a regularized de-
scription of cracks, we consider a mode III (antiplane) dynamic crack propagation case in a two dimen-
sional plate (0,L) × (−H,H). The loading velocity k is varied and its influence on the crack speed is
studied. With a minor modification of the elastic energy E (u,α) similar to [22], the crack is enforced
to propagate along a straight predefined path. The aim is to provide through this academic example
an intuitive interpretation of the variational inequality (1) in terms of fracture mechanics languages.
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Figure 2: Mode III (antiplane) dynamic crack propagation case in a two dimensional plate (0,L) ×
(−H,H) with a loading speed parametrized by k. A structured crossed triangular mesh with h = 0.01
is used and the following parameters are adopted: L = 5, H = 1, ρ = 1, µ = 0.2, Gc = 0.01, ℓ = 0.05.

Denoting the current crack length by l (t), we have the approximation S (α(t)
) ≈ (Gc)eff l (t) with

(Gc)eff =
(
1+3h/(8ℓ)

)
Gc the numerical amplified material toughness due to spatial discretization, see

[7]. The crack speed can thus be obtained by linear regression during the steady propagation phase.
This antiplane tearing example is physically similar to the 1-d film peeling problem studied using
Griffith theory in [25] and the displacement field is well approximated by the 1-d result when the
plate width H is small. According to [25], the crack speed as a function of the loading velocity k is
given by

dl
dU

(k) =

√
µH

Gc + ρHk2 or
dl
dt

(k) =

√
µHk2

Gc + ρHk2

from which we retrieve the quasi-static limit dl/dU (0) =
√
µH/Gc announced in [7] and the dynamic

shearing velocity dl/dt(∞) =
√
µ/ρ, classical result of the Griffith theory of dynamic fracture [26].

In Fig. 3 (first two figures), we compare the numerical results with this 1-d analytical solutions and
a very good agreement is found between them. In this particular case where the crack path is enforced,
the crack advances according to the dynamic Griffith criterion G(l̇) = (Gc)eff during the steady propa-
gation phase, as is shown in Fig. 3 (right). The (apparent) dynamic energy release rate is calculated us-
ing domain perturbation techniques [27] adapted in our gradient damage model case and is given by

Gt =

∫
Ω\Γt

σ(ut ,αt ) · (∇ut∇θt ) +
1
2
ρu̇t · u̇t div θ − 1

2
σ(ut ,αt ) · ε (ut ) div θt + ρüt · ∇utθt + ρu̇t · ∇u̇tθt

with σ(ut ,αt ) = a(αt )Aε(ut ) the stress tensor and θt a domain perturbation simulating a virtual crack
extension at the current crack tip at time t.
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Figure 3: Crack speeds (with respect to time and imposed displacement) as a function of loading veloc-
ities: comparaison with the 1-d analytical solution using Griffith criterion G(l̇) = (Gc)eff; Evolution
of the calculated dynamic energy release rate.



Quasi-static limits of the dynamic model

According to [28], our dynamic gradient damage model (1) converges to the quasi-static model of
[2] with the directional stability condition replaced by its first-order static equilibrium and damage
criterion condition, supposing temporel regularity of the crack (as in the classical Griffith theory).
We verify this result by imposing a small loading speed k/c ≈ 0.2% in the above antiplane tearing
case. From Fig. 4 (left) we see that dynamic solution coincides well with the quasi-static solution,
showing that Gdyn ≈ Gstat ≈ (Gc)eff during the propagation phase. Next we consider a heterogeneous
plate as did in [25] with a toughness Gc change from Γ1 to Γ2 at x = 1 and two cases are studied:
hardening case Γ1 < Γ2 and softening case Γ1 > Γ2. In the hardening case as predicted by analytical
results of [25] based on classical Griffith theory, the crack comes to an halt at x = 1 before a restart
when the energy release rate re-attain the second material toughness Γ2 = 2Γ1. Both quasi-static and
dynamic solutions give the same result, as no crack jump is observed. This is not the case anymore
when the material toughness Gc = Γ1 suddenly drops to a smaller value Γ2 =

1
2Γ1. In Fig. 4 (right),

the quasi-static solution of [2] underestimates the crack jump and predicts no crack arrest, by relating
directly the static energy release rate G to the material toughness Γ2 just after the toughness change.
However, the correct way, as indicated by our dynamic solutions, is to satisfy the (quasi-static) energy
conservation condition during the jump as analyzed by a complete dynamic calculation [25].
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Figure 4: Crack lengths and calculated energy release rates at a very slow loading speed, in a ho-
mogeneous Gc plate (left) and a heterogeneous Gc plate (middle: hardening case Γ1 < Γ2 and right:
softening case Γ1 > Γ2).

Conclusions and outlook

In this paper we have proposed a general class of dynamic gradient damage models as a natural ex-
tension of the original quasi-static one [1]. Our formulation contains the so-called phase-field models
[14, 15, 16] with a particular choice of damage constitutive laws (3). Through an academic antiplane
tearing test with a predefined crack path, it is shown that this model with a regularized description of
cracks is in line with the Griffith theory of dynamic fracture G(l̇) = Gc in this simplest case. How-
ever all the power of the model lies in the prediction of crack kinking or branching solely using the
crack minimality criterion (2b), see Fig. 5 the result of which are in good accordance with experi-
mental results [29]. Future work will be devoted to a better understanding of the kinking or branching
mechanism predicted by this model.
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