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Early evolution of the compressible mixing layer
issued from two turbulent streams

Sergio Pirozzoli1,†, Matteo Bernardini1, Simon Marié2 and
Francesco Grasso2

1Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma ‘La Sapienza’,
via Eudossiana 18, 00184 Roma, Italia

2DynFluid Laboratory, Conservatoire National des Arts et Métiers, 151 blvd de l’Hopital 7013,
Paris, France

Direct numerical simulation of the spatially developing mixing layer issuing from
two turbulent streams past a splitter plate is carried out under mild compressibility
conditions. The study mainly focuses on the early evolution of the mixing region,
where transition occurs from a wake-like to a canonical mixing-layer-like behaviour,
corresponding to the filling-up of the initial momentum deficit. The mixing layer
is found to initially grow faster than linearly, and then at a sub-linear rate further
downstream. The Reynolds stress components are in close agreement with reference
experiments and follow a continued slow decay till the end of the computational
domain. These observations are suggestive of the occurrence of incomplete similarity
in the developing turbulent mixing layer. Coherent eddies are found to form in
the close proximity of the splitter plate trailing edge, that are mainly organized in
bands, initially skewed and then parallel to the spanwise direction. Dynamic mode
decomposition is used to educe the dynamically relevant features, and it is found to be
capable of singling out the coherent eddies responsible for mixing layer development.

Key words: compressible turbulence, shear layer turbulence, turbulence simulation

1. Introduction
Turbulent mixing phenomena are ubiquitous in nature, from small-scale mixing in

the bloodstream to the large scales of oceanic and atmospheric streams. This research
subject has been extensively studied in the past and is also of major interest for
industrial engineering systems, in which strongly heterogeneous flows can mix in a
wide variety of situations. Turbulence is known to be a major mixing catalyst, and
its dynamical behaviour is a crucial issue for the understanding of mixing processes
(Dimotakis 2005). Flow momentum redistribution is also responsible for the radiation
of acoustic waves, and the study of mixing layers is a key building block for the
understanding of jet-radiated noise (Tam 1995).

Turbulent mixing is typically realized by merging of streams having different
properties in terms of speed, temperature, and chemical composition, past a separating
surface (in experiments, a splitter plate). Since early studies (Brown & Roshko 1974),
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Evolution of the compressible mixing layer from two turbulent streams

it has been known that large coherent structures form past the trailing edge of
the splitter plate, which are mainly organized as rollers with significant spanwise
coherence, and being the main cause of the entrainment of fresh fluid into the mixing
zone. Later, it became clear that the spatial organization of the coherent structures
in the mixing layer is significantly affected by compressibility effects (Papamoschou
& Roshko 1988), by the state of the upstream boundary layers (Bell & Mehta 1990;
Slessor, Bond & Dimotakis 1998), and by the shape of the trailing edge of the splitter
plate (Laizet, Lardeau & Lamballais 2010). Regarding the first issue, Papamoschou
& Roshko (1988) observed that the growth rate of the mixing layer is significantly
reduced in the presence of mild compressibility effects, and the controlling parameter
is the convective Mach number, defined as

Mac = u1 − u2

c1 + c2
, (1.1)

where u and c are the undisturbed velocity and sound speed associated with the
high- (subscript 1) and the low-speed (subscript 2) stream, respectively. Regarding
the second issue, it should be noted that the state of the two merging streams
may be laminar, turbulent, or transitional. In this respect, Bell & Mehta (1990)
noticed significant history effects, with an influence of the upstream state even on the
asymptotic structure of the developing mixing layer. Specifically, it was found that
tripped upstream boundary layers yield lower growth rates than untripped boundary
layers, although the mixing layer structure at about 150 boundary layer thicknesses
downstream of the splitter plate is similar to within 10 % for the Reynolds stress
components. In most analyses presented in the literature both boundary layers are
laminar, or one is laminar and one is turbulent (Sandham & Sandberg 2009). A
notable exception is the study of Goebel et al. (1990), Goebel & Dutton (1991), who
considered a wide range of flow conditions, in terms of speed and density ratios of
the two streams, with two turbulent incoming boundary layers. Although the (alleged)
asymptotic developed state of turbulent mixing layers has been extensively studied
(Bradshaw 1966), much less information is available from experiments regarding the
non-similar region just past the trailing edge of the splitter plate, mainly because of
technical difficulties in obtaining the necessary resolution in experimental facilities.
In one of the few dedicated studies, Ghaemi & Scarano (2011), used tomographic
particle image velocimetry to investigate the evolution of the wake forming past an
airfoil trailing edge (hence, for the special case of unit velocity ratio), under low-speed
conditions. Those authors highlighted the formation of counter-hairpin vortices, and
concluded that these structures were formed as a result of the generation of spanwise
vortices along the wake centreline, upon the disappearance of the solid wall.

Direct numerical simulation (DNS) of turbulent mixing layers has been possible
only in relatively recent times. To keep the computational cost within acceptable
bounds, most numerical studies have been carried out in a temporal setting,
by monitoring the time evolution of spatially periodic mixing layers. Temporal
simulations allow some insight into the early evolution of mixing layers, and in fact
in the pioneering DNS by Rogers & Moser (1994) the two streams were initialized
with the same velocity field obtained from a DNS of a turbulent boundary layer, to
realistically reproduce the flow conditions downstream of a splitter plate. Temporal
simulations have also shown that it is possible that the ultimate self-similar state may
be dependent on details of the initial conditions (George 1995), and provided insight
into the growth reduction mechanism associated with compressibility effects (Vreman,
Sandham & Luo 1996; Foysi & Sarkar 2010). Spatial mixing layer simulations have
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been rather limited, so far, and they have been typically carried out by assuming
a laminar mixing layer profile at the inflow with superposed small perturbations,
consisting of a combination of the most unstable modes to accelerate transition to a
turbulent state (Fu & Li 2006; Wang, Tanahashi & Miyauchi 2007; Zhou, He & Shen
2012). This approach allows the capture of some particular features of the spatial shear
layer, including the non-symmetric spreading, but it suffers from the same limitations
as temporal studies, in terms of unrealistic initial development. Notable exceptions
include the study of Laizet et al. (2010), who analysed the effect of trailing edge
shape on the process of mixing layer formation and that of Sandham & Sandberg
(2009), who investigated the mixing of a laminar and a turbulent stream in the
low-Mac regime by large eddy simulation (LES), including a splitter plate with zero
thickness in the computation. These studies showed significant differences with respect
to the case of mixing layers initiated through synthetic disturbances, and highlighted
the significant influence of the initial velocity deficit on the fully developed mixing
layer region. Sharma, Bhaskaran & Lele (2011) further observed that the merging
of a laminar and a turbulent boundary layer results in faster development of
self-similar velocity profiles as compared to the case of two incoming laminar
boundary layers. They also observed that in the former case the flow adjustment from
the wake-dominated regime to the mixing layer regime occurs without any major
instability, resulting in a significantly weaker radiated acoustic near field.

The goal of the present paper is to study the process of mixing layer formation in
a flow configuration with sizeable compressibility effects, by numerically reproducing
the flow conditions of a well-documented flow case with two turbulent streams,
namely flow case 2 of Goebel & Dutton (1991). For that purpose we perform a
large-scale DNS in a wide computational domain which includes the two upstream
turbulent boundary layers developing on the two sides of a zero-thickness splitter
plate, and their early merging region. To our knowledge, this type of computation
has not been attempted before. The paper is organized as follows. The numerical
setup for the DNS is described in § 2; the main velocity statistics (including those
related to the early mixing layer formation and growth) are reported in § 3, where
the quality of the DNS is assessed through detailed comparison with experimental
data; the structural organization of the flow field, including a study of the scale
change resulting from mixing layer formation, is analysed in § 4; flow snapshots are
processed using dynamic mode decomposition (DMD) in § 5, to bring out dynamically
relevant flow features; and concluding remarks are given in § 6.

2. Computational setup

The computational arrangement for the DNS is sketched in figure 1. Two turbulent
boundary layers having the same thickness (δ0) at the inflow of the computational
domain, develop on the two sides of a splitter plate with zero thickness and merge
past the trailing edge, forming a turbulent mixing layer. The mesh is uniform along
the streamwise (x) and spanwise (z) direction, and stretched along the wall-normal
direction to have 1y+ . 1 at the wall. The computational box has a size of
Lx × Ly × Lz = 120δ0 × 47δ0 × 12δ0, to be able to have fully developed upstream
boundary layers, and follow the mixing layer evolution into the developed state.
The computational domain has been selected based on previous experience (Foysi &
Sarkar 2010; Sharma et al. 2011), to minimize numerical confinement effects, within
the constraints of computational cost. The origin of the coordinate system is set at
the trailing edge of the splitter plate, at x0 ≈ 40δ0 downstream of the inflow. The
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FIGURE 1. (Colour online) Sketch of the computational domain; δ0 is the boundary layer
thickness of the two streams at the inflow station. The subscript 1 is used to denote the
upper (high-speed) stream, and 2 for the lower (low-speed) stream.

Stream Ma∞ T∞ (K) Tw (K) Reδ Reθ Reτ r=U2/U1 s= ρ2/ρ1 δ1/δ2 θ1/θ2 Mac Πc

1 1.91 334 552 14 050 1315 295 0.570 1.55 1.050 0.936 0.46 0.522 1.36 214 287 16 999 1782 460

TABLE 1. Boundary layer parameters at (x − x0)/δ0 = −1. Ma∞ and T∞ indicate the
free-stream Mach number and absolute temperature, and Tw the wall temperature; δ is
the 99 % boundary layer thickness, and θ is the momentum thickness. Reτ = uτδ/νw is
the friction Reynolds number. The subscript 1 is used to denote the upper stream, and 2
for the lower stream. Mac is the convective Mach number given in (1.1), and Πc is the
effective convective Mach number given in (3.9).

physical parameters of the two incoming boundary layers are listed in table 1, where
subscripts 1 and 2 are used to denote the upper and lower streams, respectively.
While the free-stream conditions are made to fit those of case 2 of Goebel & Dutton
(1991), the properties of the two boundary layers are somewhat different, mainly as
we had to reduce the Reynolds numbers by about a factor of three (in the experiment
of Goebel & Dutton 1991, Reδ1 ≈ 51 765, Reδ2 ≈ 56 286) to make the simulation
feasible. Furthermore, in the experiment the two streams were brought together to
form the mixing layer at an angle of 2.5◦ across a thin splitter plate with a base
height of approximately 0.5 mm (18 % of the averaged boundary layer thickness). As
shown in the discussion below, these differences seem to have a very minor impact
on the mixing layer development. The computational mesh includes Nx × Ny × Nz =
6144 × 301 × 768 points, and the spacing in the wall-parallel directions (taken just
upstream of the trailing edge) is 1x+ = 4.42, 1z+ = 3.52 for the upper stream, and
1x+ = 9.83, 1z+ = 7.68 for the lower stream, where the superscript + indicates
normalization by local wall units, based on the friction velocity uτ and the viscous
legthscale δv = νw/uτ , being νw the kinematic viscosity evaluated at the wall. In our
experience (Pirozzoli & Bernardini 2013), and based on the results of the next section,
the mesh resolution is sufficient to have well-behaved boundary layer statistics.
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The numerical simulation has been carried out by means of a conservative
finite-difference algorithm. The flow solver relies on central sixth-order discretization
of the convective terms of the Navier–Stokes equations cast in fully split form
(Pirozzoli 2011), which guarantees discrete conservation of the total kinetic energy in
the limit case of inviscid, incompressible flow, also in the presence of grid stretching
in the coordinate directions. This approach allows robust spatial discretization of the
convective terms without the addition of any spurious numerical dissipation in the
form of upwinding or filtering. Being cast in locally conservative form, the method
also guarantees excellent computational efficiency, facilitating hybridization with
shock-capturing methods. A fifth-order weighted-essentially-non-oscillatory (WENO)
scheme is used to replace central differencing in the presence of discontinuities, with
switch controlled by the Ducros sensor (Bernardini, Pirozzoli & Grasso 2011). It is
worth noting that in the present simulation WENO is only activated at about 0.36 %
of the total number of mesh points, hence artificial viscosity has very little impact
on the computed solution. The diffusive terms in the Navier–Stokes equations are
expanded to Laplacian form for improved numerical stability, and also discretized
with sixth-order central-difference formulae, to guarantee proper action of molecular
diffusion at the smallest scales resolved on the computational mesh. The resulting
semi-discrete system of equations is advanced in time by means of an optimized,
fully explicit fourth-stage Runge–Kutta algorithm (Bernardini & Pirozzoli 2009).
Particular attention is devoted to the correct prescription of the inflow boundary
conditions, which is a key ingredient in the simulation of spatially developing
turbulent flows. In the present simulation the inflow conditions are prescribed through
a recycling–rescaling procedure, suitably adapted to compressible flows (Bernardini
et al. 2011), and the recycling station is placed sufficiently far from the inlet (about
30δ0) to achieve full decorrelation from the inflow, as seen from inspection of the
streamwise and spanwise two-point velocity correlations. In the absence of detailed
information from experiments, the two walls are assumed to be adiabatic.

In the following, unless otherwise specified, the velocity difference between the two
streams, 1U = U1 − U2, is used to normalize the velocity statistics, and lengths are
made non-dimensional with respect to the arithmetic average of the 99 % thicknesses
of the upper and lower boundary layers (δ = (δ1 + δ2)/2) evaluated just upstream of
the trailing edge. The following scaled coordinates will then be used: ξ = (x− x0)/δ,
η= y/δ, ζ = z/δ.

3. Velocity statistics
The statistical properties of the incoming boundary layers are provided in figure 2,

where we show the mean velocity profile in van Driest scaling, uVD=
∫ u

0 (ρ/ρw)
1/2 du,

and the density-scaled Reynolds stress components, Rij= (ρ/ρw)u′iu′j (here the overbar
denotes Reynolds-averaged values, and the primes fluctuations thereof). In figure 2(a)
the linear viscous sublayer law and the logarithmic overlap layer law are also shown
for reference, with standard values of the log-law constants, k = 0.41, C = 5. The
wake region is found to be stronger for the lower stream, which has higher friction
Reynolds number, and consistently the streamwise velocity variance is also found to
be somewhat higher than for the upper stream. Overall, the figure suggests that the
incoming boundary layers are fully developed, thus ensuring proper initiation of the
mixing process of the two streams.

Mean vorticity contours are shown in a side view in figure 3. A weak compression
wave is observed to form at the trailing edge on the high-speed (upper) side, whereas
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FIGURE 2. (Colour online) Mean velocity profile (a) and Reynolds stresses (b) on the
two sides of the splitter plate, upstream of the trailing edge (ξ =−1). Solid lines indicate
the upper stream, and dashed lines the lower stream. The dot-dashed lines in (a) are
the viscous sublayer linear law (u+ = y+), and the logarithmic overlap layer (u+ = C +
1/k log y+, with C= 5, k= 0.41).
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FIGURE 3. (Colour online) Mean spanwise vorticity in the x–y plane (axes are not to
scale). The sixteen contours are from −1 to 1, in colour scale from blue to red. The
thick lines denote the lower (yL) and upper (yU) boundary of the mixing layer (in black),
and the mixing layer mid-line (y0, in white), according to the definition given by Goebel
& Dutton (1991).

a weak expansion wave forms on the low-speed (lower) side, with subsequent
upward deflection of the mixing layer. It is known in the incompressible case (Pope
2000) that the deflection of the mixing layer axis occurs towards the side with
less entrainment, which is the low-speed side, under ordinary circumstances. The
slight upward deflection observed here is thus likely to be an effect of the non-unity
density ratio. To visually appreciate the mixing layer evolution, in figure 3 we show
the mixing layer mid-line (y0, marked as a thick white line), and the position of the
lower and upper boundary of the mixing layer (yL, yU, thick black lines). These are
defined by vertically scanning the mean velocity profiles as suggested by Goebel et al.
(1990), as follows. For those profiles for which a location where u < U2 − 0.11U
does not exist (i.e. the momentum deficit is low), the upper and lower boundaries of
the mixing layer are defined as the transverse locations where the mean streamwise
velocity equals U1− 0.11U and U2+ 0.11U, respectively, and the mid-line is defined
as the transverse position where the mean velocity equals (U1 + U2)/2. For those
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FIGURE 4. (Colour online) Evolution of mixing layer thicknesses past the splitter plate,
scaled by the reference upstream boundary layer thickness, δ = (δ1 + δ2)/2, in linear
scale (a) and logarithmic scale (b). Open symbols: apparent thickness b (squares), vorticity
thickness ∆ω (circles). Solid squares: Goebel & Dutton (1991). Dashed line: ∆ω ∼ ξ 1.36;
solid line: ∆ω ∼ ξ 0.587.

profiles with strong momentum deficit, the lower edge of the mixing layer is defined
to be the transverse location where the mean velocity equals U2 − 0.11U, and the
mixing layer centreline is defined as the average of yU and yL. This definition explains
the jump in yL occurring at ξ ≈ 20.

A comparison of the evolution of the mixing layer apparent thickness, b= yU − yL,
with the experimental data of Goebel & Dutton (1991) is presented in figure 4(a). Very
good agreement is recovered, even in the early development region. It is noteworthy
that the position with a sudden drop of b, which according to the previously given
definition corresponds to a change from a strong velocity deficit state to a ‘canonical’
mixing layer state, is well captured. In figure 4 we also show the evolution of the
vorticity thickness, defined as ∆ω =1U/(maxy ∂u/∂y), which is the most frequently
used indicator for mixing layer thickness in numerical simulations. As expected from
its definition, ∆ω shows fast growth past the splitter plate trailing edge, associated with
a sudden reduction of shear, and it attains a nearly linear behaviour at a distance of
about 20δ past the trailing edge. In this region, which is typically associated with a
self-similar state of the mixing layer (Pope 2000), we find ∆ω≈ b, in agreement with
the claims of Goebel & Dutton (1991).

Clearer scrutiny of the mixing layer thickness evolution is provided in figure 4(b),
where the vorticity data are shown in a logarithmic scale, to highlight power-law
behaviour. It is found that in the very early stages of mixing layer formation (ξ . 3),
the vorticity thickness increases faster than linearly, as

∆ω ∼ ξ 1.36. (3.1)

This behaviour can be tentatively explained as follows. Referring to figure 5, we
assume that: (i) the merging boundary layers have the same thickness δ (see table 1),
and have a power-law mean velocity profile, hence ui(y)=Ui(y/δ)α for y6 δ; (ii) the
mixing layer spreads symmetrically with respect to the geometric mid-plane, and
∆(ξ) is its local thickness; (iii) for |y| > ∆/2, the boundary layers are not affected
by the entrainment process. From these hypotheses, taking as mixing length the local
mixing layer thickness, and the local velocity difference across the mixing layer,
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FIGURE 5. Idealized sketch of mixing layer early development; δ is the initial thickness of
the boundary layers (assumed to be the same), and ∆ is the local mixing layer thickness.

u1(∆/2) − u2(∆/2) as the typical eddy velocity scale, it follows that the relevant
eddy viscosity at a given streamwise station is

νt ∼∆ · (u1(∆/2)− u2(∆/2))=∆ ·1U · (∆/(2δ))α. (3.2)

Dimensional arguments easily yield the mixing layer thickness evolution equation

d∆
dξ
∼ 1

U0

νt

∆
= 1U

U0

(
∆

2δ

)α
, (3.3)

where U0 = (U1 +U2)/2 is an average convection velocity, whence it readily follows

∆(ξ)∼ ξ 1/(1−α). (3.4)

Incidentally, after the mixing layer has grown to a thickness greater that the boundary
layer thickness, the above analysis returns the classical linear growth law (Pope 2000).
However, until saturation is complete, (3.4) suggests that the growth rate should
be faster than linear. At the low Reynolds number of the boundary layers under
consideration, power-law exponents are expected to be in the range 0.182.α. 0.196
(Pope 2000), which we have verified by fitting the DNS velocity profiles. The growth
rate exponent predicted by (3.4) is then in the range between 1.22 and 1.24, not too
far from the DNS data fit of (3.1).

It is also noteworthy that, although figure 4(a) seems to suggest that linear growth
is achieved past ξ ≈ 20, figure 4(b) in fact favours power-law growth, with

∆ω ∼ ξ 0.587. (3.5)

In retrospect, a similar behaviour can be traced in the numerical simulation of
Sandham & Sandberg (2009), for the merging of a laminar and a turbulent stream.
This non-canonical behaviour will be further commented on below.

A comparison of the velocity statistics with the experimental data of Goebel &
Dutton (1991) is presented in figure 6 at various stations across the developing mixing
layer, where the cross-stream coordinate is scaled with respect to b, and the reference
velocity is 1U. The scaled mean velocity profiles (left-most column) highlight the
presence of significant momentum defect in the proximity of the plate trailing edge
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FIGURE 6. (Colour online) Comparison of mean velocity and Reynolds stress components
at various streamwise stations past the splitter plate: ξ = 3.65 (a), ξ = 9.11 (b), ξ = 19.69
(c), ξ = 36.46 (d), ξ = 54.68 (e). Lines: present DNS; symbols: (Goebel & Dutton 1991).
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caused by flow retardation within the issuing boundary layers, which is gradually
filled up as the flow evolves, although remnants are still visible (see also the analysis
below) near the outflow of the computational domain. Overall, agreement with the
experiments is quite remarkable, also given the previously noticed discrepancy in
the Reynolds numbers and the assumption of a splitter plate with zero thickness.
Similar considerations also apply to the streamwise turbulence intensity (second
column from left), whose main peak is well predicted throughout, occurring in all
cases near the mixing layer mid-line, where turbulence kinetic energy production is
maximum. A shoulder in the streamwise velocity variance distribution is observed in
the lower part of the mixing layer, approximately corresponding to the inflectional
point of the momentum defect zone. Poorer agreement is found for the vertical
Reynolds stress component (third column), which is overestimated with respect to
experiments by up to 50 %, and which is likely to be due to difficulties in measuring
the cross-stream velocity with laser Doppler velocimetry. This also implies, although
to a lesser extent, discrepancies in the prediction of the shear stress peak (last
column). The turbulence levels away from the mixing layer core are found to be
substantially higher in experiments, presumably because of sound background wind
tunnel turbulence. Similar results for the fully developed state are obtained from
spatial simulations with synthetic inflow conditions (Salvadore, Bernardini & Botti
2013).

The evolution of the maximum velocity deficit across the mixing layer, defined
as U2 − miny u(y), is shown in figure 7. Based on its definition, this property is
expected to tend asymptotically to zero as x→∞, where a canonical mixing layer
behaviour should be recovered. Figure 7 shows a two-stage evolution whereby the
momentum defect initially scales as ξ−1/2, and then decays exponentially past ξ ≈ 20.
This behaviour can be explained by the prevalence of a wake-like behaviour in the
trailing edge near field, recalling the scaling of momentum defect in a planar wake
(Pope 2000), which is then followed by rapid fill-up in the far field. It is noteworthy
that linear stability analysis of mixing layers in the presence of momentum defect
(Zhuang & Dimotakis 1995) suggested the existence of two modes of instability,
namely a wake mode which is dominant in the presence of strong deficit, superposed
onto a canonical mixing layer mode. The results of the stability analysis appear to
be consistent with the observed two-stage evolution of the mixing layer properties.

The evolution of the Reynolds stress peaks with the distance from the trailing edge
is depicted in figure 8. A sudden rise of all Reynolds stress components is observed
past the trailing edge up to ξ ≈ 3, which is associated with flow rearrangement, and
then followed by monotonic decay. This behaviour is overall consistent with the
findings of Bell & Mehta (1990) for a low-speed tripped mixing layer. However,
those authors were unable to measure close enough to the trailing edge to clearly
probe the near-field peaks. Most previous studies, including Bell & Mehta (1990),
Goebel & Dutton (1991), as well as the theory of self-similar mixing layers (Pope
2000) suggest saturation of the Reynolds stresses with the trailing edge distance,
when scaled by the mixing layer velocity difference. While tendency to saturation
here may be inferred from a linear representation as in figure 8(a), the same data cast
in a log-log representation (figure 8b) do in fact suggest continuing decrease of the
Reynolds stresses in the far-field region, according to a weak inverse power law of the
streamwise coordinate, and no clear tendency to saturation. In particular, the inferred
behaviour for the turbulent shear stress, which is the only component entering the
mean streamwise momentum equation, is −u′v′ ∼ ξ−0.33, for ξ & 10. This finding is
consistent with the previously noticed nonlinear growth of the mixing layer thickness
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FIGURE 7. (Colour online) Evolution of maximum velocity defect with trailing edge
distance. The dashed line denotes the trend ξ−1/2.
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FIGURE 8. (Colour online) Evolution of Reynolds stress peaks with trailing edge distance,
in linear scale (a) and logarithmic scale (b). Symbols: u′2 (circles), v′2 (squares), w′2
(triangles), u′v′ (diamonds). The dashed line in (b) denotes the trend ξ−0.33.

(recalling figure 4b). In fact, analysis of the mean streamwise momentum equation
(Townsend 1976; Pope 2000) indicates that a necessary condition for self-similarity
is

d∆
dξ
∼ u2

0, (3.6)

where u0 is the typical velocity scale of turbulent fluctuations. The power-law
exponents found in DNS for the turbulent shear stress and for the mixing layer
thickness (such as from (3.5), which yields d∆ω/dξ ∼ ξ−0.413) are in satisfactory
agreement with (3.6). However, full self-similarity also requires similarity of the
Reynolds stress balance equation, which can only be achieved if ∆ ∼ ξ , u0 ∼ const.
(Townsend 1976). The present data then point to the attainment of a state of
incomplete similarity, whereby equilibrium of the mean velocity field is reached
prior to equilibration of the velocity fluctuations field. While the existence of such
a state does not seem to be very surprising, to our knowledge it has not been
theoretically predicted nor numerically studied before, and probably deserves some
further investigation. Full similarity, hence saturation of the Reynolds stresses, is not
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DNS Bell & Mehta (1990) Goebel & Dutton (1991)

r=U2/U1 0.57 0.6 0.57
s= ρ2/ρ1 1.55 1 1.55
d∆/dx 0.028 0.046 0.038

max(u′2)/(1U)2 0.0292 0.03 0.0289

max(v′2)/(1U)2 0.0143 0.015 0.0098

max(w′2)/(1U)2 0.0195 0.022 NA
max(−u′v′)/(1U)2 0.0090 0.011 0.0086

TABLE 2. Asymptotic mixing layer parameters from the present DNS and from
experiments. In the DNS, the growth rate is estimated by linearly fitting the vorticity
thickness distribution for ξ & 50, and the Reynolds stresses are taken at ξ ≈ 58.

reached in the present simulation as it probably requires a much longer fetch, and
indeed the experiments of Bell & Mehta (1990) showed evidence for saturation only
at ξ & 150. Analysis of the Favre-averaged stresses shows differences of no more
than 1 % with respect to the Reynolds averages, hence density variations do not seem
to be responsible for the observed scalings. In any case, it is noteworthy (see table 2)
that the mixing layer state (in terms of the Reynolds stress peaks) at the right-most
station available is comparable with the asymptotic structure quoted in experiments
(Bell & Mehta 1990; Goebel & Dutton 1991).

Although the mixing layer growth rate is found to be significantly different from
linear, we have nevertheless attempted to compare with existing experimental data, by
locally fitting the vorticity thickness distribution in figure 4 with a straight line towards
the end of the computational domain. The results of this exercise are summarized
in table 2. As probably to be expected, the table highlights significant differences in
the alleged asymptotic growth rates from incompressible experiments, as well as from
experiments with the same flow conditions. In this respect we note that the generally
accepted correlation for incompressible mixing layers (Brown & Roshko 1974)

d∆
dx

∣∣∣∣
i

=Cδ

(1− r)(1+ s1/2)

2(1+ rs1/2)
, (3.7)

by taking Cδ = 0.165 (Goebel & Dutton 1991), would yield d∆/dx|i = 0.0465.
Hence, the present DNS would yield a growth rate reduction factor with respect
to the incompressible case (d∆/dx)/(d∆/dx)i ≈ 0.601, whereas the data of Goebel
& Dutton (1991) yield (d∆/dx)/(d∆/dx)i ≈ 0.816. Several (more or less empirical)
formulae have been proposed to relate compressible growth rates to incompressible
ones, one of the most well established being by Slessor, Zhuang & Dimotakis (2000),
who stipulated the correction factor to be

(d∆/dx)/(d∆/dx)i = (1+ αΠ 2
c )
−β, (3.8)

where α ≈ 4, β ≈ 0.5, and Πc is an ‘effective’ convective Mach number

Πc =max
(√

γi − 1
ci

)
1U, (3.9)

thus also covering the case that the two streams have different specific heat ratios, γi.
Applied to the flow conditions under study here, Πc = 0.52, which translates into a



S. Pirozzoli, M. Bernardini, S. Marié and F. Grasso

3010 20 40 500

3010 20 40 500

3010 20 40 500

5

 0

–5

5

 0

–5

5

 0

–5

(a)

(b)

(c)

FIGURE 9. (Colour online) Instantaneous contours of (a) streamwise velocity,
(b) temperature and (c) pressure in the x–y plane. 32 contour levels are shown in
the respective ranges: 0.45 < u/U1 < 1.1, 0.65 < T/T1 < 1.2, 0.75 < p/p1 < 1.07. The
colour scale ranges from blue (lower end) to red (higher end).

growth rate reduction factor (d∆/dx)/(d∆/dx)i = 0.69, which is not too far from the
present DNS. It should also be noted that the growth reduction factor observed here is
also entirely consistent with the findings of Clemens & Mungal (1995), who reported
(d∆/dx)/(d∆/dx)i= 0.63 at Mac= 0.42, and (d∆/dx)/(d∆/dx)i= 0.56 at Mac= 0.50.

4. Flow organization

Contours of velocity, temperature and pressure from instantaneous flow fields
are shown in figure 9, in a side view. The figure highlights well the slow process
of mixing of the two streams which leads to strongly convoluted interfaces with
the surrounding irrotational fluid. However, no clear sign of flow organization into
coherent spanwise vortices (rollers) is observed, as in classical visualizations (Brown
& Roshko 1974). This is a likely effect of flow compressibility which acts to
suppress the Kelvin–Helmholtz instability. Indeed, in the experiments of Clemens &
Mungal (1995), the formation of well-organized rollers at a similar convective Mach
number was only observed at ξ ≈ 200, well downstream of the present computational
outflow. The pressure field is found to be organized into small-sized blobs with
positive/negative deviation from the free-stream value in the proximity of the trailing
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FIGURE 10. (Colour online) Instantaneous contours of (a) streamwise velocity,
(b) temperature and (c) pressure in the x–z geometric symmetry plane. 32 contour
levels are shown in the respective ranges: 0.45 < u/U1 < 1.1, 0.65 < T/T1 < 1.2,
0.75< p/p1 < 1.07. The colour scale ranges from blue (lower end) to red (higher end).

edge, which is a clear imprint of the small-sized vortices issued from the incoming
boundary layers. Large-scale organization of the pressure field into alternating, positive
and negative, delta-scaled blobs is observed further downstream, which is probably
the precursor of the formation of rollers.

Top view visualizations are shown in figure 10, which indeed indicates inception of
large-scale organization in the developing mixing layer. Specifically, the streamwise
velocity organizes itself (as in any shear flow) into low- and high-speed streaks with
spanwise spacing which monotonically grows from the trailing edge proximity (as
inherited from the upstream near-wall streaks) to the computational outflow. On the
other hand, the temperature and the pressure fields exhibit the signature of very wide
flow structures, which eventually fill up the whole computational domain. Hints of
spanwise organization are clear even at ξ ≈ 7–8, and large eddies inclined by about
70◦ with respect to the free stream are observed until ξ ≈ 40. Similar diagonal patterns
were also observed in the flow visualizations of Clemens & Mungal (1995), although
at slightly higher Mach number (Mac & 0.62). At ξ ≈ 40, the eddies become more
or less parallel to the spanwise direction. It is worth recalling that temporal stability
of compressible laminar mixing layers (Sandham & Reynolds 1991) indicates the
presence of both two-dimensional and three-dimensional unstable modes, the former
expected to be dominant at Mac . 0.6, and the latter at higher convective Mach
numbers. The results of the present simulation (at Mac ≈ 0.45) apparently support
a similar scenario in which two-dimensional disturbances eventually occur, although
strong amplification of oblique disturbances is observed in a transitory stage. Since
a box sensitivity study is not feasible, these observations should be taken with some
caution, being potentially affected by the spanwise size of the computational domain
(here, Lz/∆ω ≈ 3.7 at the end of the computational domain).

To quantify the growth of the size of the turbulent eddies, in figure 11 we provide
the spanwise spectral densities of the streamwise velocity and pressure, taken at
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FIGURE 11. (Colour online) Spanwise spectral densities of streamwise velocity (a) and
pressure (b) in the mixing layer symmetry plane, at ξ = 1.24, 6.37, 14.91, 25.16, 35.42,
45.67, 55.92 (the arrow indicating increasing x). The dot-dashed line in (a) denotes the
trend E(k)∼ k−5/3, and in (b) the trend E(k)∼ k−7/3.

the mixing layer mid-plane. As already observed from the flow visualizations, the
spectra show an overall shift to lower wavenumbers (i.e. larger scales) on progressing
downstream, and the formation of an inertial layer in the u spectrum, with exponent
not far from −5/3. On the other hand, the pressure spectra do not seem to exhibit the
k−7/3 inertial layer which would be expected in isotropic turbulence at sufficiently high
Reynolds number (Batchelor 1951). This is presumably due to the action of the mean
shear which activates ‘rapid’ source terms related to mean shear/turbulence interaction
in the Poisson equation for pressure (Blake 1986), or to low-Reynolds-number effects,
as the Taylor-scale Reynolds number here is no larger than 80, all the way to the
end of the computational domain.

The spectral densities are plotted in pre-multiplied form as a function of the
distance from the trailing edge in figure 12. This type of representation has the
advantage of clearly highlighting the size of the energy-containing eddies, and it has
the property that equal areas underneath the curves correspond to equal energy, when
a semi-logarithmic representation is used. Further, in order to scale out the effect
of variation of the amplitude of the disturbances with ξ , the spectra are scaled with
respect to the total energy, i.e. Êu(k)=Eu(k)/u′2. The normalized velocity and pressure
spectra are shown in figure 12(a,b) as a function of kδ, and confirm the scale change
effect previously noticed in figure 11, in that the spectral peak shifts to larger scales
with the downstream coordinate. Apparently, collapse of the pre-multiplied spectra is
found if the wavenumber is scaled with respect to the local vorticity thickness, as
shown in figure 12(c,d). In this representation, the spectral ridge of u is very nearly
constant starting from ξ ≈ 10, whereas the peak of p is slightly shifted to higher
wavenumbers. This is further confirmed from inspection of the integral length scales,
as shown in figure 13, which highlight well the proportionality of the velocity length
scale to the vorticity thickness (with Λz/∆ω ≈ 0.2), and to a lesser extent of the
pressure scale (with Λz/∆ω ≈ 0.6, still decreasing). It is noteworthy that the observed
integral length scale of the u-containing eddies is comparable to that observed in the
outer part of turbulent boundary layers, in which Λz/δ ≈ 0.2–0.3 (Pirozzoli 2012),
which probably points to a universal scaling law for the momentum streaks in all
shear flows, either free or wall bounded. Finally, the enhanced spanwise coherence
of the pressure field as compared to the velocity field is consistent with the flow
visualizations of figure 10.
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FIGURE 12. Pre-multiplied and normalized spanwise spectral densities of streamwise
velocity (kzÊu, a,c) and pressure (kzÊp, b,d), as a function of the trailing edge distance.
Wavenumbers are scaled with respect to δ in (a,b), and with respect to the local vorticity
thickness, ∆ω in (c,d). Contour levels are shown from 0.01 to 0.24, in intervals of 0.01,
from light to dark grey shades.
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FIGURE 13. (Colour online) Integral length scales of u (solid line) and pressure (dashed
line) as a function of trailing edge distance, scaled with respect to δ (a) and with respect
to the local vorticity thickness ∆ω (b).
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5. Dynamic mode decomposition

The DMD (Schmid 2010) is a technique of spectral analysis which operates
on a sequence of snapshots u(tn) obtained from either experiments or, as in our
case, simulations to extract information based on Koopman’s analysis of dynamical
systems (Rowley et al. 2009). Introducing a linear time advancement operator A as
u(tn+1)=Au(tn), the DMD algorithm extracts approximate eigenvalues and eigenmodes
of a reduced-order representation of A. While having some connection with proper
orthogonal decomposition (POD), DMD produces modes associated with a single
frequency, whereas POD modes may in general have broadband frequency content.
Furthermore, for linear systems, the DMD modes coincide with the global modes,
and for perfectly time-periodic data the DMD modes coincide with the Fourier modes.
The essence of the DMD can be viewed as follows, with more complete and rigorous
descriptions provided in Rowley et al. (2009) and Schmid (2010). Snapshots of data
are organized as columns into a matrix V N

1 = {v1, v2, . . . , vN} (of size M × N, say),
where two subsequent snapshots vj and vj+1 are separated by a constant time interval
1t. Following the idea underlying Krylov subspace techniques, and in particular the
Arnoldi method, it is possible to approximate the linear mapping A from one snapshot
to the next using an (N − 1)-dimensional snapshot basis

{v2, . . . , vN} = A{v1, v2, . . . , vN−1} ≈ {v1, v2, . . . , vN−1}S, (5.1)

or in matrix form
V N

2 = AV N−1
1 ≈ V N−1

1 S, (5.2)

where the reduced-order matrix S is of companion type. Its eigenvalues (Ritz values)
approximate some of the eigenvalues of A and the associated eigenvectors provide the
coefficients of the linear combination that is needed to express the modal structure
within the snapshot basis. S is easily estimated through a least-square procedure, by
performing a QR decomposition of V N−1

1 to solve (5.2), thus obtaining S=R−1QTV N
2 .

The DMD algorithm has been initially applied to temporal snapshots of the pressure
field taken in an x–y plane (at z= Lz/2), in a subdomain containing the final part of
the splitter plate and the initial part of the mixing layer, extending from ξ = −2 to
ξ = 11.6. A total of 300 snapshots, with time separation 1t = 0.2δ/1U, have been
processed. The Ritz values (λ) associated with the resulting reduced-order system S
are shown in figure 14 in the complex plane. Essentially all eigenvalues lie on the unit
circle, which is to be expected as the system is statistically stationary. The eigenvalues
of S are transformed via the mapping ω= log(λ/1t), and shown in figure 15, where
the real and imaginary parts represent the exponential growth or decay rate and the
temporal frequency, respectively. Since the processed data are real, all eigenvalues are
real or in complex-conjugate pairs, and the associated DMD spectrum is symmetric
about the zero frequency. The size and colouring of the symbols reported in the
figure are indicative of the coherence of the associated modes, which is useful to
distinguish large-scale energetic structures from smaller-scale, less-energetic ones.
Coherence is gauged by projecting each dynamic mode onto the POD basis (U)
computed from the singular value decomposition of the data sequence V N−1

1 = UΣW .
This decomposition provides the matrices U and W containing the spatial and
temporal structures respectively, whose energy ranking is given by the singular values
Σ (Schmid 2010).

The pressure fields associated with three representative dynamic modes (labelled in
figure 15) are displayed in figure 16. Besides the one stationary mode corresponding
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FIGURE 14. (Colour online) Ritz values of the reduced system detected by DMD for
temporal snapshots of the pressure field in an x–y plane between ξ =−2 and ξ = 11.6.
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FIGURE 15. (Colour online) Spectrum of eigenvalues from the DMD algorithm applied to
the pressure field in an x–y plane between ξ =−2 and ξ = 11.6. The colour and symbol
size of the eigenvalues indicate the coherence of the associated dynamic modes (more
coherent modes are rendered with larger symbols and in shades of red).

to the mean field (not shown), the most coherent mode (a) is characterized by
large blobs with alternate positive and negative pressure, covering approximately
three oscillatory periods over the streamwise extent of the interrogation window,
and growing in the streamwise direction. Interestingly, these organized modes arise
immediately past the end of the splitter plate, and they are apparently not inherited
from any large-scale structure embedded in the upstream boundary layers. A similar
pattern is also retrieved in mode (b), which is characterized by structures with
comparable scale, but leaning in the streamwise direction. Mode (c) in figure 16 has a
similar shape as mode (a); however its associated eigenvalue has lower frequency, and
the associated spatial scale is correspondingly larger. Furthermore, it is characterized
by a spatial extent in the η direction which is less than for mode (a).

The same analysis has been repeated for snapshots taken in the geometric mid-plane
in the same streamwise interval, and the shape of the leading modes is shown in
figure 17. It should be noted that, since the DMD algorithm has been applied
plane-wise, the modes in figure 17 do not necessarily correspond to those of
figure 16. Here the most salient feature, clearly noticeable in the leading modes,
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FIGURE 16. (Colour online) Leading dynamic modes in an x–y plane, with snapshots
taken in the interval −26 ξ 6 11.6, corresponding to the labelled eigenvalues in figure 15.
Contours of modal pressure in colour scale from blue (negative values) to red (positive
values).
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FIGURE 17. (Colour online) Leading dynamic modes in the y= 0 plane, with snapshots
taken in the interval −26 ξ 6 11.6. Contours of modal pressure in colour scale from blue
(negative values) to red (positive values).
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FIGURE 18. (Colour online) Leading dynamic mode in the y = 0 plane, with snapshots
taken in the interval 12 6 ξ 6 32. Contours of modal pressure in colour scale from blue
(negative values) to red (positive values). The solid lines are inclined by 70◦ with respect
to the streamwise direction.
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FIGURE 19. (Colour online) Leading dynamic mode in the x–y plane (a) and in the y= 0
plane (b), with snapshots taken in the interval 32 6 ξ 6 56. Contours of modal pressure
in colour scale from blue (negative values) to red (positive values).

is the appearance of substantial spanwise coherence of the pressure field emerging
without apparent connection with the upstream turbulent boundary layers. At this stage,
it appears that the leading pressure-containing eddies are strongly undulated in the
spanwise direction. These eddies may be interpreted as the precursors of the formation
of mixing layer rollers, which have been observed in mixing layers at low/moderate
values of the convective Mach number (Brown & Roshko 1974; Clemens & Mungal
1995). It is noteworthy that, while their presence cannot immediately be inferred from
the instantaneous visualizations reported in figures 9 and 10, they are clearly detected
by the DMD algorithm, which identifies these structures as the most significant
from the dynamical point of view. To analyse the downstream evolution of these
large-scale structures, the DMD analysis in the mid-plane has been repeated for
snapshots in the intermediate region 12 6 ξ 6 32 (figure 18) and in the far-field
region 326 ξ 6 56 (figure 19). It becomes evident that in the intermediate region the
pressure eddies gain further spanwise coherence, organizing themselves into diagonal
bands filling the whole computational box. Further downstream, the bands become
almost aligned along the spanwise direction, and the spanwise modulation is much
reduced. Correspondingly, the modal pressure in the x–y plane exhibits a pattern
typical of mixing layer rollers. The DMD modes here appear to provide a condensed
form of the information contained in the instantaneous flow visualization of figure 10.
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6. Conclusions
We have carried out a DNS study of a mixing layer developing from two turbulent

boundary layers, at relatively high convective Mach number. The study has highlighted
the predictive capabilities of DNS, in that the mean velocity profile and the main
velocity statistics agree very well with reference experimental results (Goebel &
Dutton 1991). The flow is found to be organized into three parts: (i) a near field
(extending up to about 2–3 boundary layer thicknesses past the end of the splitter
plate), which is substantially affected by the momentum deficit inherited from the
parent boundary layers, and in which the Reynolds stress components attain strong
peaks; (ii) an intermediate field (extending up to about 20 boundary layer thicknesses
past the splitter plate), in which the momentum deficit decays according to an
inverse-square-root law, as in plane turbulent wakes; and (iii) a far field in which the
momentum deficit is re-absorbed, and the flow converges to the classical mixing layer
structure. The analysis shows that the mixing layer growth in region (i) is quite fast,
occurring according to a power law of the trailing edge distance significantly greater
than unity. This observation (common in previous spatial studies) is interpreted as the
consequence of incomplete entrainment of the boundary layers into the developing
mixing layer. A qualitative change in the mixing layer growth takes place in regions
(ii) and (iii), in which we observe slower, sub-linear growth. Correspondingly, we find
decay of the Reynolds stress components according to a weakly negative power-law,
without evidence of saturation as expected in fully self-similar mixing layers. This
observation has been found to be the likely result of incomplete similarity, whereby
mean momentum attains an equilibrium state prior to the turbulent stress distribution.
The lack of full self-similarity in the present study would then be the consequence
of the limited streamwise extent of the computational domain. Establishing the
spatial development scale for the achievement of full self-similarity would then be an
interesting topic for a follow-up study.

In terms of flow structures, we find very little hint of spatial organization in region
(i), whereas spanwise coherence is observed in region (ii), where the typical eddies
appear to be skewed with respect to the flow direction, and in region (iii), where
they tend to be aligned along the spanwise direction. Notably, no distinct roller of the
type found in experiments (Brown & Roshko 1974) has been observed, which is due
either to compressibility effects, or again to limitation in the computational domain, or
both. As expected, the size of the velocity- and pressure-containing eddies is found to
grow in the streamwise direction, apparently in approximately proportional fashion to
the local vorticity thickness. In terms of the latter, the normalized spanwise integral
scales are found to have values comparable to those of boundary layers (scaled by
the boundary layer thickness), pointing to a universal behaviour of the eddy size in
all shear flows. Further insight into the flow organization is provided by the DMD of
the flow, which usefully isolates the process of mixing layer formation and saturation.
In particular, DMD seems to provide hints on the formation of rollers, which are not
(yet) clearly visible in the instantaneous flow realizations.
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