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Construction of a control
for the cubic semilinear heat equation

Thi Minh Nhat VO ∗

Abstract

In this article, we consider the null controllability problem for the cubic semi-
linear heat equation in bounded domains Ω of Rn, n ≥ 3 with Dirichlet boundary
conditions for small initial data. A constructive way to compute a control function
acting on any nonempty open subset ω of Ω is given such that the corresponding
solution of the cubic semilinear heat equation can be driven to zero at a given
final time T . Furthermore, we provide a quantitative estimate for the smallness
of the size of the initial data with respect to T that ensures the null controllability
property.
Keywords. null controllability, cubic semilinear heat equation, linear heat equa-
tion.
2010 Mathematics Subject Classification. Primary: 35K58; Secondary: 93B05.

1 Introduction and main result

Many systems in physics, mechanics, or more recently in biology or medical sciences
are described by Partial Differential Equations (PDEs). It is necessary to control the
characteristic variables, such as the speed of a fluid or the temperature of a device..., to
guarantee that a bridge will not collapse or the temperature is at the desired level for
example...In the specific words, given a time interval (0, T ), an initial state and a final
one, we have to find a suitable control such that the solution matches both the initial
state at time t = 0 and the final one at time t = T . Let Ω be a bounded connected open
set in Rn(n ≥ 3) with a boundary ∂Ω of class C2; ω be a nonempty open subset in Ω.
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Consider the cubic semilinear heat equation complemented with initial and Dirichlet
boundary conditions, which has the following form:

∂ty −∆y + γy3 = 1|ωu in Ω× (0, T ) ,

y = 0 on ∂Ω× (0, T ) ,

y(·, 0) = y0 in Ω ,

(1)

where γ ∈ {1,−1}. Well-posedness property and blow-up phenomena for the cubic
semilinear heat equation are now well-known results (see e.g. [2] and [4]). It will be
said that (1) is null controllable at time T if there exists a control function u such that
the corresponding initial boundary problem possesses a solution y which is null at final
time T . The basic discussion of this article is how to construct a control function that
leads to the null controllability property of system (1).

Our main result is the following:

Theorem 1 There exists a constant G > 1 such that for any T > 0, any y0 ∈ H1
0 (Ω)

satisfying

∥y0∥2H1
0 (Ω) ≤ max

[0;T ]

1

G(1 + t)2
√
te

G
t

,

there exists a control function u ∈ L2(ω × (0, T )) such that the solution of (1) satisfies
y(·, T ) = 0. Furthermore, the control can be computed explicitly and the construction
of the control is given below.

Remarks
1/ Theorem 1 ensures the local null controllability of (1) for any control set ω, any

small enough initial data y0 ∈ H1
0 (Ω), at any time T . It is well-known that the system

(1) without control function blows up in finite time for the case γ = −1. But thanks to
an appropriate control function, Theorem 1 affirms that the blow-up phenomena can
be prevented for very specific initial data. This issue (i.e., the null controllability for
semilinear heat equations) has been extensively studied (see e.g. [1], [7], [6], [5] and
the references therein). Obviously, the result is not new from the point of view of null
controllability, but the method completely differs from others.

2/ An important achievement of our result is that we can construct the control
function. An outline of the construction is described as follows: firstly, we remind the
construction of the control for the linear heat equation with an estimate of the cost
(see e.g [13] or [5]); secondly, from the previous result, we do similarly when adding
an outside force using the method of Y. Liu, T. Takahashi and M. Tucsnak in [9].
The solution will be forced to be null at time T by adding an exponential weight
function; lastly, thanks to an appropriate iterative fixed point process and linearization
by replacing the outside force by cubic function, the desired control is constructed, but
the result is only local, i.e. the initial condition must be small enough. The precise
construction of the control function is found in the proof of this Theorem 1.
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3/ Another main achievement of our result is to give a quantitative estimate for the
smallness of the size of the initial condition with respect to the control time T . The
upper bound of initial data is a function with respect to the final control time T , which
obviously increases to a certain value and then keeps to be a constant until T tends to
∞. .

Background
We now review the achievements of controllability for the heat equations which has

been intensively studied in the past. Consider the heat equation in the following form:
∂ty −∆y + c(t, x)y + f(t, x, y) = 1|ωu+ g in Ω× (0, T ) ,

y = 0 on ∂Ω× (0, T ) ,

y(·, 0) = y0 in Ω .

(2)

For linear case with f ≡ 0, (2) is null controllable with no restriction on y0, T and
ω, which means the global null controllability holds. There are at least two ways to
approach such result. The first one is due to G. Lebeau and L. Robbiano [8], who
connect null controllability to an interpolation estimate for elliptic system. The second
one is due to A. Fursikov and O. Imanuvilov [7], and is based on a global Carleman
inequality which is an estimate with an exponential weight function and on a minimiza-
tion technique to construct the control function. For nonlinear case, A. Fursikov and O.
Imanuvilov [7] also give us the proof of global null controllability when f(t, x, s) satisfies
the global Lipschitz condition in s variable with f(t, x, 0) ≡ 0 by means of Schauder’s
fixed point theorem, and assert the local null controllability when f(t, x, s) satisfies the
superlinear growth condition in s by means of the implicit function theorem. In [7],
A. Fursikov and O. Imanuvilov point out that null controllability works in case the
initial data is small enough but without an explicit formula. In addition, S. Anita and
D. Tataru [1] improve the result of A. Fursikov and O. Imanuvilov by providing sharp
estimates for the controllability time in terms of the size of the initial data. A little
bit different from this document, in [6], E. Fernández-Cara and E. Zuazua establish
the first result in the literature on the null controllability of blowing-up semilinear heat
equation. In detail, they prove that the system is null-controllable at any time provided
a globally defined and bounded trajectory exists and the nonlinear term f(x, t, s) is such

that |f(s)| grows slower than |s|log 3
2 (1 + |s|) as |s| → ∞. Furthermore, they observe

that it is not possible to obtain a global controllability result for a cubic nonlinear term.
More recently, the controllability of a parabolic system with a cubic coupling term has
been studied by J-M. Coron, S. Guerrero and L. Rosier in [3].

Another interesting problem is to study the case where the blow-up phenomena will
not occur, for example when γ = 1. Our method gives the following result:
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Corollary 1 There exists a constant G > 1 such that for any T > 0, any y0 ∈ L2(Ω)
satisfying

∥y0∥2L2(Ω) ≤ max
[0;T ]

T

G(1 + t)2
√
te

G
t

,

there exists a control function u ∈ L2(ω × (0, T )) such that the solution of (1) with
γ = 1 satisfies y(·, T ) = 0.

The article is organized as follows. In section 2, we deal with the linear heat equa-
tion. The construction of the control for the linear heat equation with outside force is
described there. In section 3, we apply this construction with a fixed point argument
in order to prove the main results: Theorem 1; Corollary 1.

2 Linear cases

In this section, we survey the null controllability properties for the linear heat equation.

2.1 Basic linear case

Now we recall the results about the null controllability and observability for linear heat
equation.

Theorem 2 For any T > 0 and any z0 ∈ L2(Ω), there exists a control function u ∈
L2(ω × (0, T )) such that the solution z of

∂tz −∆z = 1|ωu in Ω× (0, T ) ,

z = 0 on ∂Ω× (0, T ) ,

z(·, 0) = z0 in Ω ,

satisfies z(·, T ) = 0 in Ω. Furthermore, u can be chosen such that the following estimate
holds:

∥u∥L2(ω×(0,T )) ≤ Ce
C
T ∥z0∥L2(Ω) for some positive constant C = C(Ω, ω) .

The positive constant C is given in the following equivalent theorem (observability
estimate for the heat equation).
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Theorem 3 There exists a constant C > 0 such that, for any T > 0, for each ϕT ∈
L2(Ω), the associated solution of the system

∂tϕ+∆ϕ = 0 in Ω× (0, T ) ,

ϕ = 0 on ∂Ω× (0, T ) ,

ϕ(·, T ) = ϕT in Ω ,

satisfies

∥ϕ(·, 0)∥L2(Ω) ≤ Ce
C
T ∥ϕ∥L2(ω×(0,T )) .

The two above results are quite an old subject which started at least from the works
of [8] and [7]. Many improvements are given in [13], [6], [5], [12], [10], [11]. We turn
now to study the null controllability problem for linear case, but with an outside force.

2.2 Linear case with the outside force

Consider the linear heat equation with the outside force, which has the following form:
∂ty −∆y = f + 1|ωu in Ω× (0, T ) ,

y = 0 on ∂Ω× (0, T ) ,

y(·, 0) = y0 in Ω .

(3)

For the moment, we choose y0 ∈ L2(Ω) and f ∈ L2(Ω× (0, T )).

Let {Tk}k≥0 be the sequence of real positive numbers given by:

Tk = T − T

ak
, (4)

where a > 1. Put fk = 1|(Tk,Tk+1)f . We start to describe the algorithm to construct the
control: we initiate with z0 = y0 and w−1 = 0. Define the sequences {zk}k≥0, {uk}k≥0,
{vk}k≥0, {wk}k≥0 as follows. Let vk be the solution of

∂tvk −∆vk = fk in Ω× (Tk, Tk+1) ,

vk = 0 on ∂Ω× (Tk, Tk+1) ,

vk(·, Tk) = wk−1(·, Tk) in Ω .

(5)

Introduce
zk+1 = vk(·, Tk+1) . (6)

Let

uk = −Ce
C

Tk+1−Tk φk , (7)
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where 
∂tφk +∆φk = 0 in Ω× (Tk, Tk+1) ,

φk = 0 on ∂Ω× (Tk, Tk+1) ,

φk(·, Tk+1) = φ
Tk+1

k in Ω .

Here φ
Tk+1

k is the unique minimizer (see proof of Theorem 1.1, page 1399, [5]) of the
following functional depending on ϵk > 0: Jϵk : L2 (Ω) → R given by

Jϵk(ϕ
Tk+1

k ) =
Ce

C
Tk+1−Tk

2

∫ Tk+1

Tk

∫
ω

|ϕk|2dxdt+
ϵk
2

∫
Ω

|ϕTk+1

k |2dx+

∫
Ω

ϕk(·, Tk)zkdx ,

where C is the constant in Theorem 2 and
∂tϕk +∆ϕk = 0 in Ω× (Tk, Tk+1) ,

ϕk = 0 on ∂Ω× (Tk, Tk+1) ,

ϕk(·, Tk+1) = ϕ
Tk+1

k ∈ L2 (Ω) .

Let wk be the solution of
∂twk −∆wk = 1|ωuk in Ω× (Tk, Tk+1) ,

wk = 0 on ∂Ω× (Tk, Tk+1) ,

wk(·, Tk) = zk in Ω .

(8)

Therefore (see e.g. [5])

wk(·, Tk+1) = ϵkφ
Tk+1

k in Ω (9)

and
1

Ce
C

Tk+1−Tk

∫ Tk+1

Tk

∫
ω

|uk|2dxdt+
1

ϵk

∫
Ω

|wk(·, Tk+1)|2dx ≤ ∥zk∥2L2(Ω) . (10)

Finally, put yk = vk + wk, then it solves
∂ty0 −∆y0 = f0 + 1|ωu0 in Ω× (T, T1) ,

y0 = 0 on ∂Ω× (T, T1) ,

y0(·, 0) = y0 in Ω

and 
∂tyk+1 −∆yk+1 = fk+1 + 1|ωuk+1 in Ω× (Tk+1, Tk+2) ,

yk+1 = 0 on ∂Ω× (Tk+1, Tk+2) ,

yk+1(·, Tk+1) = wk(·, Tk+1) + zk+1 in Ω .

Notice that yk(·, Tk+1) = yk+1(·, Tk+1), therefore the functions y =
∑
k≥0

1|[Tk,Tk+1]yk and

u =
∑
k≥0

1|[Tk,Tk+1]uk satisfy (3).

Now we are able to state our result: (recall that a and ϵk are needed in (4) and (9)
respectively).
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Theorem 4 Let C be the constant in Theorem 2. There are λ > 0, a > 1 and a
sequence {ϵk}k≥0 of real positive numbers such that for any y0 ∈ H1

0 (Ω) and any f ∈
L2(Ω× (0, T )) such that fe

3λC
T−t ∈ L2(Ω× (0, T )), the above constructed control function

u =
∑
k≥0

1|[Tk,Tk+1]uk

is in L2(ω × (0, T )) and drives the solution of (3) to y(·, T ) = 0. Furthermore, there
exists a positive constant K such that the following estimate holds:

∥∇ye
λC
T−t∥C([0,T ];L2(Ω)) ≤ K

(
1 +

√
T
)
e

3λC
T ∥∇y0∥L2(Ω) +K (1 + T ) ∥fe

3λC
T−t∥L2(Ω×(0,T )) .

Now, we come to the proof of Theorem 4.

2.3 Proof of Theorem 4

Our strategy to prove Theorem 4 is as follows: we want to get ∥ye
M

T−t∥C([0,T ];L2(Ω)) < +∞
for some suitable constant M > 0 in order to deduce that y (·, T ) = 0. To do so,
since y =

∑
k≥0

1|[Tk,Tk+1]yk and yk = vk + wk is given by (5)-(8), we start to estimate

∥vk∥C([Tk,Tk+1];L2(Ω)) and ∥wk∥C([Tk,Tk+1];L2(Ω)). In same time, we also derive an inequality

for ∥ue
B

T−t∥L2(ω×(0,T )) for some suitable constant B > 0 in order to get u ∈ L2(ω×(0, T )).

Finally, we will focus on estimating ∥∇ye
D

T−t∥C([0,T ];L2(Ω)) for some suitable constant
D > 0.

By the classical energy estimate for the heat equation with outside force, one has
from (5)-(8)

∥v0∥C([T0,T1];L2(Ω)) ≤
√
T∥f0∥L2(Ω×(T0,T1)) ,

∥vk+1∥C([Tk+1,Tk+2];L2(Ω)) ≤
√
T∥fk+1∥L2(Ω×(Tk+1,Tk+2)) + ∥wk(·, Tk+1)∥L2(Ω)

and
∥wk∥C([Tk,Tk+1];L2(Ω)) ≤

√
T∥uk∥L2(ω×(Tk,Tk+1)) + ∥zk∥L2(Ω) .

By using the following estimates, which implied by (10):

∥uk∥L2(ω×(Tk,Tk+1)) ≤
√
Ce

C
2

1
Tk+1−Tk ∥zk∥L2(Ω) and ∥wk(·, Tk+1)∥L2(Ω) ≤

√
ϵk∥zk∥L2(Ω) ,

(11)
we get

∥vk+1∥C([Tk+1,Tk+2];L2(Ω)) ≤
√
T∥fk+1∥L2(Ω×(Tk+1,Tk+2)) +

√
ϵk∥zk∥L2(Ω) (12)

and

∥wk∥C([Tk,Tk+1];L2(Ω)) ≤
√
CTe

C
2

1
Tk+1−Tk ∥zk∥L2(Ω) + ∥zk∥L2(Ω) . (13)
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Since by (6) vk+1(·, Tk+2) = zk+2, it implies using (12) that

∥zk+2∥L2(Ω) ≤
√
T∥fk+1∥L2(Ω×(Tk+1,Tk+2)) +

√
ϵk∥zk∥L2(Ω) .

As a result, for any constant A > 0, we get∑
k≥0

e
A

T−Tk+1 ∥zk∥L2(Ω)

= e
A

T−T1 ∥z0∥L2(Ω) + e
A

T−T2 ∥z1∥L2(Ω) +
∑
k≥0

e
A

T−Tk+3 ∥zk+2∥L2(Ω)

≤ e
A

T−T1 ∥y0∥L2(Ω) + e
A

T−T2

√
T∥f0∥L2(Ω×(0,T1))

+
√
T
∑
k≥0

e
A

T−Tk+3 ∥fk+1∥L2(Ω×(Tk+1,Tk+2)) +
∑
k≥0

e
A

T−Tk+3
√
ϵk∥zk∥L2(Ω)

≤ e
A

T−T1 ∥y0∥L2(Ω) +
√
T
∑
k≥0

e
A

T−Tk+2 ∥fk∥L2(Ω×(Tk,Tk+1)) +
∑
k≥0

e
A

T−Tk+3
√
ϵk∥zk∥L2(Ω)

≤ e
A

T−T1 ∥y0∥L2(Ω) +
√
T
∑
k≥0

e
aA

T−Tk+1 ∥fk∥L2(Ω×(Tk,Tk+1)) +
∑
k≥0

e
a2A

T−Tk+1
√
ϵk∥zk∥L2(Ω) .

(14)
Choose

ϵk =
1

4
e
−

2A(a2−1)
T−Tk+1 , (15)

in order that e
a2A

T−Tk+1
√
ϵk ≤ 1

2
e

A
T−Tk+1 , then (14) becomes∑

k≥0

e
A

T−Tk+1 ∥zk∥L2(Ω) ≤ 2e
A

T−T1 ∥y0∥L2(Ω) + 2
√
T
∑
k≥0

e
aA

T−Tk+1 ∥fk∥L2(Ω×(Tk,Tk+1)) . (16)

On one hand, for any constant M > 0, we obtain by (12), (13) and (15)∑
k≥0

e
M

T−Tk+1 ∥yk∥C([Tk,Tk+1];L2(Ω))

≤
∑
k≥0

e
M

T−Tk+1 ∥vk∥C([Tk,Tk+1];L2(Ω)) +
∑
k≥0

e
M

T−Tk+1 ∥wk∥C([Tk,Tk+1];L2(Ω))

≤ e
M

T−T1

√
T∥f0∥L2(Ω×(T0,T1)) +

∑
k≥1

e
M

T−Tk+1

√
T∥fk∥L2(Ω×(Tk,Tk+1))

+
∑
k≥0

e
M

T−Tk+2
√
ϵk∥zk∥L2(Ω) +

∑
k≥0

e
M

T−Tk+1

(
1 +

√
CTe

C
2

1
Tk+1−Tk

)
∥zk∥L2(Ω)

≤
∑
k≥0

e
M

T−Tk+1

√
T∥fk∥L2(Ω×(Tk,Tk+1))

+1
2

∑
k≥0

e
aM−A(a2−1)

T−Tk+1 ∥zk∥L2(Ω) +
∑
k≥0

e
M

T−Tk+1 ∥zk∥L2(Ω)

+
√
CT

∑
k≥0

e
(M+ C

2(a−1))
1

T−Tk+1 ∥zk∥L2(Ω)

≤
∑
k≥0

e
M

T−Tk+1

√
T∥fk∥L2(Ω×(Tk,Tk+1)) +

3
2

(
1 +

√
CT
) ∑

k≥0

e
N

T−Tk+1 ∥zk∥L2(Ω) ,
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where N =max
{
aM − A (a2 − 1) ,M,M + C

2(a−1)

}
, which implies under the condition

N ≤ A with (16) that∑
k≥0

e
M

T−Tk+1 ∥yk∥C([Tk,Tk+1];L2(Ω)) ≤ 3
(
1 +

√
CT
)
e

A
T−T1 ∥y0∥L2(Ω)

+3
√
T
(
1 +

√
CT
) ∑

k≥0

e
aA

T−Tk+1 ∥fk∥L2(Ω×(Tk,Tk+1)) .

Therefore

∥ye
M

T−t∥C([0,T ];L2(Ω))

≤
∑
k≥0

e
M

T−Tk+1 ∥yk∥C([Tk,Tk+1];L2(Ω))

≤ 3
(
1 +

√
CT
)(

e
A

T−T1 ∥y0∥L2(Ω)

)
+ 3

√
T
(
1 +

√
CT
)
∥fe

a2A
T−t∥L2(Ω×(0,T )) .

(17)

On the other hand, by the first inequality in (11), one has for any constant B > 0∑
k≥0

e
B

T−Tk+1 ∥uk∥L2(ω×(Tk,Tk+1)) ≤
∑
k≥0

e
B

T−Tk+1

√
Ce

C
2

1
Tk+1−Tk ∥zk∥L2(Ω)

≤
√
C
∑
k≥0

e
(B+ C

2(a−1))
1

T−Tk+1 ∥zk∥L2(Ω) ,

which implies under the condition B + C
2(a−1)

≤ A with (16), that

∑
k≥0

e
B

T−Tk+1 ∥uk∥L2(ω×(Tk,Tk+1)) ≤ 2
√
Ce

A
T−T1 ∥y0∥L2(Ω)

+2
√
CT

∑
k≥0

e
aA

T−Tk+1 ∥fk∥L2(Ω×(Tk,Tk+1)) .

Therefore

∥ue
B

T−t∥L2(ω×(0,T )) ≤
∑
k≥0

e
B

T−Tk+1 ∥uk∥L2(ω×(Tk,Tk+1))

≤ 2
√
Ce

A
T−T1 ∥y0∥L2(Ω) + 2

√
CT∥fe

a2A
T−t∥L2(Ω×(0,T )) .

(18)

By taking B = M = C
2(a−1)

and A = C
a−1

, we conclude from (17) and (18) that

∥ye
C

2(a−1)
1

T−t∥C([0,T ];L2(Ω)) + ∥ue
C

2(a−1)
1

T−t∥L2(ω×(0,T ))

≤ c
(
1 +

√
T
)
e

aC
a−1

1
T ∥y0∥L2(Ω) + c

√
T
(
1 +

√
T
)
∥fe

a2C
a−1

1
T−t∥L2(Ω×(0,T )) ,

(19)

for some constant c. We turn now to the case y0 ∈ H1
0 (Ω). For any constant D > 0,

put p = p(t) = e
D

T−t and g = py then g satisfies the following system
∂tg −∆g = p′y + p(1|ωu− f) in Ω× (0, T ) ,

g = 0 on ∂Ω× (0, T ) ,

g(·, 0) = e
D
T y0 in Ω .

9



Applying classical energy estimate, one has

∥∇g∥C([0,T ];L2(Ω)) ≤ e
D
T ∥∇y0∥L2(Ω) + ∥p′y∥L2(Ω×(0,T )) + ∥pu∥L2(Ω×(0,T )) + ∥pf∥L2(Ω×(0,T )) ,

which implies, for any ρ ∈ (1, 3/2) the existence of Kρ > 0 such that

∥∇ye
D

T−t∥C([0,T ];L2(Ω)) ≤ e
D
T ∥∇y0∥L2(Ω) +Kρ∥ye

ρD
T−t∥L2(Ω×(0,T ))

+∥ue
ρD
T−t∥L2(Ω×(0,T )) + ∥fe

3D
T−t∥L2(Ω×(0,T )) .

(20)

Take

a =

√
3

2ρ
and D =

C

2ρ
(√

3
2ρ

− 1
) , (21)

in order that a > 1, ρD = C
2(a−1)

and a2C
a−1

= 3D. Then, it implies by combining (19)

and (20) that

∥∇ye
D

T−t∥C([0,T ];L2(Ω)) ≤ K
(
1 +

√
T
)
e

3D
T ∥∇y0∥L2(Ω) +K (1 + T ) ∥fe

3D
T−t∥L2(Ω×(0,T )) ,

(22)
for some constant K. With λ = 1

2ρ(
√

3
2ρ

−1)
in order that D = λC, we have completed

the proof of Theorem 4.

3 Proof of main results

This section focuses on the proof of the main results, Theorem 1 and Corollary 1, which
ensures that system (1) is null controllable with the different conditions of the initial
data. First, we start with the proof of Theorem 1.

3.1 Proof of Theorem 1

The idea of the proof of Theorem 1 is as follows: first, by applying the result in Theorem
4, we construct a control sequence um ∈ L2(Ω× (0, T )) such that the solution of

∂tym −∆ym + γy3m−1 = 1|ωum in Ω× (0, T ) ,

ym = 0 on ∂Ω× (0, T ) ,

ym(·, 0) = y0 in Ω ,

satisfies ym(·, T ) = 0 in H1
0 (Ω); secondly, by proving ym converges to y and um converges

to u, we will get the desired result. Now, we start the first step by checking that the
function f = −γy3m−1 satisfies the condition of Theorem 4. Denote D = λC. First take

y0 such that y0(·, 0) = y0 and γy30e
3D
T−t ∈ L2(Ω × (0, T )), for example y0 = e−

D
T−t e

D
T y0.

10



Now by induction, we will prove that γy3me
3D
T−t ∈ L2(Ω× (0, T )) for any m ≥ 1. Indeed,

suppose y3m−1e
3D
T−t ∈ L2(Ω× (0, T )), by Theorem 4, ym verifies

∥∇ym(·, t)e
D

T−t∥L2(Ω) ≤ K
(
1 +

√
T
)
e

3D
T ∥∇y0∥L2(Ω) +K (1 + T ) ∥y3m−1e

3D
T−t∥L2(Ω×(0,T )) .

Using Sobolev embedding, we obtain

∥y3me
3D
T−t∥2L2(Ω×(0,T ))

≤ c
∫ T

0
∥∇ym(·, t)e

D
T−t∥6L2(Ω)dt

≤ cKT
((

1 +
√
T
)
e

K
T ∥∇y0∥L2(Ω) + (1 + T ) ∥y3m−1e

3D
T−t∥L2(Ω×(0,T ))

)6
< ∞

from the induction assumption. Thus, the control um constructed in Theorem 4 leads
to ym(·, T ) = 0, which completes the first step. Now, we pass to the second step by

proving that {ym(·, t)e
D

T−t} is bounded in C([0, T ], H1
0 (Ω)) for any m ≥ 1. From the

inequality in Theorem 4 with D = λC (or simply (22)) and Sobolev embedding, we get

∥∇ym(·, t)e
D

T−t∥L2(Ω)

≤ K
(
1 +

√
T
)
e

3D
T ∥∇y0∥L2(Ω) + cK (1 + T )

(∫ T

0

∥∇ym−1(·, t)e
D

T−t∥6L2(Ω)dt

) 1
2

≤ K
(
1 +

√
T
)
e

3D
T ∥∇y0∥L2(Ω) + cK

√
T (1 + T ) ( sup

t∈[0,T ]

∥∇ym−1(·, t)e
D

T−t∥L2(Ω))
3 ,

which implies

sup
t∈[0,T ]

∥∇yme
D

T−t∥L2(Ω)

≤ K
(
1 +

√
T
)
e

3D
T ∥∇y0∥L2(Ω) + cK

√
T (1 + T ) ( sup

t∈[0,T ]

∥∇ym−1e
D

T−t∥L2(Ω))
3 .

Therefore, if

8
(
K
(
1 +

√
T
)
e

3D
T ∥∇y0∥L2(Ω)

)2
≤ 1

cK
√
T (1 + T )

and

e
3D
T ∥∇y0∥L2(Ω) = sup

t∈[0,T ]

∥∇y0e
3D
T−t∥L2(Ω) ≤ 2K

(
1 +

√
T
)
e

3D
T ∥∇y0∥L2(Ω) ,

then by induction, we have for any m ≥ 1

sup
t∈[0,T ]

∥∇yme
3D
T−t∥L2(Ω) ≤ 2K

(
1 +

√
T
)
e

3D
T ∥∇y0∥L2(Ω) . (23)

Thus, yme
D

T−t is bounded in C([0, T ];H1
0 (Ω)) for any m ≥ 1, whenever ∥y0∥H0

1 (Ω) is

sufficiently small. Now we prove that {yme
D

T−t} and {ume
D

T−t} are Cauchy sequences in

11



C([0, T ], H1
0 (Ω)) and L2(ω × (0, T )), respectively, for any m ≥ 1. Indeed, put Ym+1 =

ym+1 − ym and Um+1 = um+1 − um for any m ≥ 1 then Ym+1 is solution of
∂tYm+1 −∆Ym+1 = −γ(y3m − y3m−1) + 1|ωUm+1 in Ω× (0, T ) ,

Ym+1 = 0 on ∂Ω× (0, T ) ,

Ym+1(·, 0) = 0 in Ω .

Firstly, we will estimate Um+1e
D

T−t . Recall that the control function um is constructed
by

um =
∑
k≥0

um,k = −
∑
k≥0

Ce
C

Tk+1−Tk φm,k ,

where φm+1,k − φm,k solves
∂t(φm+1,k − φm,k) + ∆(φm+1,k − φm,k) = 0 in Ω× (Tk, Tk+1) ,

(φm+1,k − φm,k) = 0 on ∂Ω× (Tk, Tk+1) ,

(φm+1,k − φm,k)(·, Tk+1) ∈ L2(Ω) .

Furthermore, we also have constructed the functions wm+1,k and wm,k by applying
Theorem 4 with f = −γy3m and f = −γy3m−1 respectively:

∂t(wm+1,k − wm,k)−∆(wm+1,k − wm,k)

= −Ce
C

Tk+1−Tk (φm+1,k − φm,k) in Ω× (Tk, Tk+1) ,

(wm+1,k − wm,k) = 0 on ∂Ω× (Tk, Tk+1) ,

(wm+1,k − wm,k)(·, Tk) = zm+1,k − zm,k in Ω ,

(wm+1,k − wm,k)(·, Tk+1) = ϵk(φm+1,k − φm,k)(·, Tk+1) in Ω .

(24)

Multiplying the two sides of the first equation in (24) by (φm+1,k−φm,k) and integrating
over Ω× (Tk, Tk+1), we get

−Ce
C

Tk+1−Tk

∫ Tk+1

Tk

∫
ω

|φm+1,k − φm,k|2dxdt

=

∫
Ω

(wm+1,k − wm,k)(·, Tk+1)(φm+1,k − φm,k)(·, Tk+1)dx

−
∫
Ω

(wm+1,k − wm,k)(·, Tk)(φm+1,k − φm,k)(·, Tk)dx

= ϵk

∫
Ω

| (φm+1,k − φm,k) (·, Tk+1)|2dx−
∫
Ω

(zm+1,k − zm,k)(φm+1,k − φm,k)(·, Tk)dx .

Therefore, we can write

Ce
C

Tk+1−Tk

∫ Tk+1

Tk

∫
ω

|φm+1,k − φm,k|2dxdt+ ϵk

∫
Ω

| (φm+1,k − φm,k) (·, Tk+1)|2dx

=

∫
Ω

(zm+1,k − zm,k)(φm+1,k − φm,k)(·, Tk)dx

≤ ∥zm+1,k − zm,k∥L2(Ω)∥ (φm+1,k − φm,k) (·, Tk)∥L2(Ω) .

12



By the classical observability estimate (see Theorem 3), we deduce that

Ce
C

Tk+1−Tk

∫ Tk+1

Tk

∫
ω

|φm+1,k − φm,k|2dxdt

≤ ∥zm+1,k − zm,k∥L2(Ω)

(
Ce

C
Tk+1−Tk

∫ Tk+1

Tk

∫
ω

|φm+1,k − φm,k|2dxdt
) 1

2

.

Therefore, we get

√
Ce

C
2

1
Tk+1−Tk ∥φm+1,k − φm,k∥L2(ω×(Tk,Tk+1)) ≤ ∥zm+1,k − zm,k∥L2(Ω) .

As a result

∥Um+1e
D

T−t∥L2(Ω×(0,T )) = ∥
∑
k≥0

(um+1,k − um,k)e
D

T−t∥L2(Ω×(Tk,Tk+1))

= ∥
∑
k≥0

Ce
C

Tk+1−Tk e
D

T−t (φm+1,k − φm,k)∥L2(Ω×(Tk,Tk+1))

≤
∑
k≥0

Ce
C

Tk+1−Tk e
D

T−Tk+1 ∥φm+1,k − φm,k∥L2(Ω×(Tk,Tk+1))

≤
√
C
∑
k≥0

e
(D+ C

2(a−1))
1

T−Tk+1 ∥zm+1,k − zm,k∥L2(Ω×(Tk,Tk+1)) .

(25)
Recall that the constants a and D were given in the proof of Theorem 4 (see (21)) and
satisfy D+ C

2(a−1)
= C

2ρ(a−1)
+ C

2(a−1)
≤ C

(a−1)
. Following the same computations as in the

proof of Theorem 4 (see (16)), we get∑
k≥0

e
C

a−1
1

T−Tk+1 ∥zm+1,k − zm,k∥L2(Ω) ≤ 2
√
T
∑
k≥0

e
aC
a−1

1
T−Tk+1 ∥y3m,k − y3m−1,k∥L2(Ω×(Tk,Tk+1))

≤ 2
√
T∥(y3m − y3m−1)e

3D
T−t∥L2(Ω×(0,T ) .

(26)
Therefore, combining (25) and (26), it holds:

∥Um+1e
D

T−t∥L2(ω×(0,T )) ≤ 2
√
CT∥(y3m − y3m−1)e

3D
T−t∥L2(Ω×(0,T ) . (27)

Secondly, following the same computations than in the proof of Theorem 4 (see (22)),
we obtain

∥∇Ym+1(·, t)e
D

T−t∥L2(Ω) ≤ K (1 + T ) ∥
(
y3m − y3m−1

)
e

3D
T−t∥L2(Ω×(0,T )) ∀t ∈ (0, T ) .

(28)
But, from |a3 − b3| ≤ 2|a− b|(a+ b)2 and Hölder inequality, we have:

∥y3m − y3m−1∥2L2(Ω) ≤ 4

∫
Ω

(ym − ym−1)
2(ym + ym−1)

4dx

≤ 4

(∫
Ω

(ym − ym−1)
6

) 1
3
(∫

Ω

(ym + ym−1)
6

) 2
3

≤ c∥∇ym −∇ym−1∥2L2(Ω)∥∇ym +∇ym−1∥4L2(Ω)

≤ 4c∥∇Ym∥2L2(Ω)

(
∥∇ym∥2L2(Ω) + ∥∇ym−1∥2L2(Ω)

)2
.
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As a result,

∥(y3m − y3m−1)e
3D
T−t∥L2(Ω×(0,T )) =

(∫ T

0

∥(y3m − y3m−1)∥2L2(Ω)e
6D
T−tdt

) 1
2

≤
(∫ T

0

4c∥∇Ym∥2L2(Ω)(∥∇ym∥2L2(Ω) + ∥∇ym−1∥2L2(Ω))
2e

6D
T−tdt

) 1
2

≤
(∫ T

0

4c∥∇Yme
D

T−t∥2L2(Ω)(∥∇yme
D

T−t∥2L2(Ω) + ∥∇ym−1e
D

T−t∥2L2(Ω))
2dt

) 1
2

.

So by (23), it implies:

∥(y3m − y3m−1)e
3D
T−t∥L2(Ω×(0,T ))

≤ 4
√
Tc sup

t∈[0,T ]

∥∇Yme
D

T−t∥L2(Ω)

(
sup

t∈[0,T ]

∥∇yme
D

T−t∥L2(Ω)

)2

≤ 4
√
Tc sup

t∈[0,T ]

∥∇Yme
D

T−t∥L2(Ω)

(
2K
(
1 +

√
T
)
e

3D
T ∥∇y0∥L2(Ω)

)2
.

(29)

Gathering (28), (27) and (29), yields:

∥∇Ym+1(·, t)e
D

T−t∥L2(Ω)

≤ K (1 + T ) ∥
(
y3m − y3m−1

)
e

3D
T−t∥L2(Ω×(0,T ))

≤ 4K (1 + T )
√
Tc sup

t∈[0,T ]

∥∇Yme
D

T−t∥L2(Ω)

(
2K
(
1 +

√
T
)
e

3D
T ∥∇y0∥L2(Ω)

)2
and

∥Um+1e
D

T−t∥L2(ω×(0,T ))

≤ 2
√
CT∥(y3m − y3m−1)e

3D
T−t∥L2(Ω×(0,T )

≤ 8
√
CTc sup

t∈[0,T ]

∥∇Yme
D

T−t∥L2(Ω)

(
2K
(
1 +

√
T
)
e

3D
T ∥∇y0∥L2(Ω)

)2
.

Therefore, whenever

4K (1 + T )
√
Tc
(
2K
(
1 +

√
T
)
e

3D
T ∥∇y0∥L2(Ω)

)2
< 1 ,

which can be written

∥y0∥2H1
0 (Ω) ≤ max

[0;T ]

1

G(1 + t)2
√
te

G
t

for some constant G > 1, then ym converges to y in C([0, T ], H1
0 (Ω)) and um converges

to u in L2(ω × (0, T )). This completes the proof.

14



3.2 Proof of Corollary 1

Now, we prove Corollary 1. Consider the following system:
∂tŷ −∆ŷ + ŷ3 = 0 in Ω× (0, T/2) ,

ŷ = 0 on ∂Ω× (0, T/2) ,

ŷ(·, 0) = y0 in Ω .

Recall that no blow-up phenomena occurs. We can establish by classical energy estimate
that ŷ(·, T/2) ∈ H1

0 (Ω). Furthermore, one has

∥ŷ (·, T/2)∥2H1
0 (Ω) ≤

1

T
∥y0∥2L2(Ω) ≤ max

[0;T ]

1

G(1 + t)2
√
te

G
t

.

Consequently, applying Theorem 1, we obtain the existence of ũ ∈ L2(Ω × (T/2, T ))
such that the solution of

∂tỹ −∆ỹ + ỹ3 = 1|ωũ in Ω× (T/2, T ) ,

ỹ = 0 on ∂Ω× (T/2, T ) ,

ỹ(·, T/2) = ŷ(·, T/2) in Ω ,

satisfies ỹ(·, T ) = 0 .
Put

y(·, t) =
{

ỹ(·, t) for t ∈ (0, T/2) ,
ŷ(·, t) for t ∈ [T/2, T ] ,

then y satisfies (1) in case γ = 1 with

u(·, t) =
{

0 for t ∈ (0, T/2) ,
ũ(·, t) for t ∈ [T/2, T ]

and y(·, T ) = 0 . This completes the proof of Corollary 1.
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