
HAL Id: hal-01225068
https://hal.science/hal-01225068v1

Submitted on 5 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust observed-state feedback design for discrete-time
systems rational in the uncertainties
Dimitri Peaucelle, Yoshio Ebihara, Yohei Hosoe

To cite this version:
Dimitri Peaucelle, Yoshio Ebihara, Yohei Hosoe. Robust observed-state feedback design for discrete-
time systems rational in the uncertainties. Automatica, 2017, 76, pp.96-102. �hal-01225068�

https://hal.science/hal-01225068v1
https://hal.archives-ouvertes.fr


Robust observed-state feedback design
for discrete-time systems rational in the

uncertainties ∗

Dimitri Peaucelle1,2, Yoshio Ebihara3, Yohei Hosoe3

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, LAAS, F-31400 Toulouse, France

3 Department of Electrical Engineering, Kyoto University,

Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

November 5, 2015

Abstract

Design of controllers in the form of a state-feedback coupled to a state ob-
server is studied in the context of uncertain systems. The classical approach by
Luenberger is revisited. Results provide a heuristic design procedure that mimics
the independent state-feedback / observer gains design by minimizing the coupling
of observation error dynamics on the ideal state-feedback dynamics. The pro-
posed design and analysis conditions apply to linear systems rationally-dependent
on uncertainties defined in the cross-product of polytopes. Convex linear matrix
inequality results are given thanks to the combination of a new descriptor multi-
affine representations of systems and the S-variable approach. Stability and H∞
performances are assessed by multi-affine parameter-dependent Lyapunov matri-
ces for both cases of constant and time-varying uncertainties (or combinations of
the two). Numerical complexity issues and ways to keep it as limited as possible
are discussed and illustrated on an academic example.
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1 Introduction
The goal of the paper is to investigate, in the robust control context, the two step design
strategy proposed by Luenberger [24]: ”The first phase is design of the control law
assuming that the state vector is available. The second phase is the design of a system
that produces an approximation to the state vector. This system is called an observer,
or Luenberger observer”. The main conclusion of our work is that, at the difference of
the case of systems without uncertainties, the separation principle does not hold in the
robust case. Stability of the closed-loop cannot any more be guaranteed by indepen-
dent choices of stabilizing state-feedback and observer gains. A heuristic systematic
procedure can nevertheless be constructed with the aim of minimizing the inevitable
coupling between the state-feedback and observer dynamics. The procedure has two
design steps combined to two analysis steps and we provide a detailed exposure of this
procedure with up-to-date linear matrix inequality (LMI) convex optimization formu-
lations for each step.

Controllers with observed-state feedback structure form a sub-class of dynamic
output feedback controller models. Moreover, the observed-state feedback controllers
build with identity Luneberger observers are special representations of dynamic con-
trollers of the same order as the plant (full-order controllers). The issue of designing
full-order controllers has convex LMI-based solutions as long as the systems are not
affected by uncertainties, see [35, 3], to cite just a few. Unfortunately, as soon as the
systems are affected by uncertainties, the design problem is either non-convex or highly
conservative. The conservative case is when all uncertainties are embedded in one
non-structured norm-bounded uncertainty. In that case, some results are available, for
example [28] or also [21, 22] for results providing controllers with observed-state feed-
back structure. When aiming at preserving the knowledge of the uncertainty structure,
results boil down to solving non-convex bilinear matrix inequality (BMI) constraints as
for example in [19, 16]. As suggested in these papers, heuristics can be used to solve
the BMIs. The strategy we propose in the paper can be considered as one of such.

The plants to be stabilized by the proposed approach are in discrete-time with un-
certainties θ described in state-space by xk+1 = Ar(θ)xk + Br(θ)uk where uk is the
vector of inputs and yk = Cxk is the vector of outputs. The final goal is to design a Lu-
enberger like identity observer with dynamics x̂k+1 = Aox̂k +Bouk + L(Cx̂k − yk)
such that the system in closed-loop with the observed-state feedback uk = Kx̂k is
stable for all uncertainties.

The first design step of the proposed procedure is, as in the classical Luenbeger
strategy, the design of a robust static state-feedback control K. At this step the state
is assumed to be measured. This topic has been studied in the past by many authors,
see [5, 27] for example. The result we provide for this step is a variation on results
from [27], extended to systems rational in the uncertainties using properties exposed
in [13]. The provided LMI-based result is in terms of H∞ performance, but it could as
well include other specifications such as H2 performance or pole location. The steps
that follow can be applied whatever the methodology and whatever the specifications
imposed at this state-feedback design step.

The second design step is an observer design type problem. The observer design
problem in case of systems with uncertainties has diverse solutions in the literature.
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Two types of results can be distinguished. A first category tackles the observer problem
as part of the output filtering issue. [17] gives for that problem an LMI formulation in
the case of systems with structured polytopic uncertainties. As discussed in section
VI of that paper, the significant feature of robust filtering (which is usually considered
as dual with respect to state-feedback) is that it needs to optimize over more decision
variables than just one gain. At the difference of state-feedback where only the gain
K is designed, the methodology of [17] illustrates that robust filtering involves the
design of both an observer-like gain L and of the state matrixAo of the filter. The same
conclusions hold for results of [36] in the context of IQCs. The second category of
results tackles directly the observer design problem. These, at the difference of filter-
design results, have the main advantage not to assume open-loop stability of the plant.
Only the error ek = xk− x̂k between the plant states and the observer states is required
to be asymptotically stable. Surprisingly, robust observer results do not consider the
upper formulated issue about having the state matrix Ao as a design variable. For
example recents results of [1, 26] consider only the design of the L matrix while Ao
is chosen a priori to be the one of the nominal system (Ao = Ar(0)). In [22] the
assumption of a fixed Ao is alleviated, but results are restricted to unstructured norm-
bounded uncertainties. Our result considers both matrices Ao and Bo as free to design
variables. As discussed in [34] this problem is a difficult one, and we do not claim to
provide a final answer.

The closed-loop dynamics in terms of plant state xk and observation error ek are
driven by the following closed-loop state matrix

Ac(θ) =

[
Ar(θ) +Br(θ)K −Br(θ)K

∆A(θ) + ∆B(θ)K Ao + LC −∆B(θ)K

]
where ∆A(θ) = Ar(θ)−Ao and ∆B(θ) = Br(θ)−Bo. From this formula it is trivial
that if ∆A = 0 and ∆B = 0 then the closed loop dynamics depend only on the choice
of stabilizing gainsK and L which could be done independently. This is the separation
that is no more achievable in the robust context. A way around this difficulty would
be to minimize the norms of ∆A(θ) and ∆B(θ) independently of any other consider-
ation such as stability or performance. It is not the choice we adopt. The proposed
procedure is to minimize the effects of εk = Kek on the state-feedback dynamics (due
to the upper-right block in Ac(θ)) seen as outputs of the error dynamics perturbed by
(∆A(θ) + ∆B(θ)K)xk (lower-left block in Ac(θ)). We show, that formalized in this
way, the observer design problem has convex LMI formulations. Moreover, several
types of input-output performances can be minimized simultaneously where xk is the
input and εk is the output. [20] exposes in details the inevitable waterbed effects that
occur in observer design. When improving time response or disturbance rejection of
the observer the drawback is increased peak response due to non-zero initial condi-
tions. To handle this tradeoff between performance in the long term and short term
spikes, we propose an observer design that combines norm-to-norm and norm-to-peak
performances.

Note that xk is seen in the observer design phase as some input perturbation but
it is not just any bounded signal. For this reason our proposed procedure includes an
analysis step between the state-feedback design and the observer design steps. This
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analysis provides information on expected trajectories of xk for known state-feedback
gain K. Not only this analysis step allows to improve the quality of the observer
design but it also allows in the end to assess for closed-loop stability with small-gain
theorem argument. This small-gain argument happens to be conservative. Hence if it
is not positive, a closed-loop analysis LMI test is also proposed to analyse stability and
performance of the global observed-state feedback system.

The overall design procedure with two design steps and two analysis steps is ex-
posed for systems rationally-dependent on uncertainties θ. A new type of modeling is
proposed where the uncertainties lie in the cross-product of independent polytopes. A
sub-case is when uncertainties are scalars in intervals. For this type of models we pro-
pose a transformation called descriptor multi-affine representation (DMAR for short)
which is an alternative to linear-fractional representations [11, 18]. The DMAR is
directly inspired by results from [39, 6, 25] and is shown to have smaller dimensions
than the conventional linear-fractional representations. The rational dependence is con-
verted into a multi-affine dependence at the expense of introducing exogenous fictive
signals and rewriting the plant in descriptor form. As exposed in [10, 15, 13] this
descriptor structure happens to be well adapted for deriving S-variable LMI results
(also known as ”extended LMIs” [9, 33], ”dilated LMIs” [12], ”enhanced LMIs” [2]
or ”slack-variable approach” [32]). Our results are extensions of these results for the
case of multi-affine dependence. We moreover provide a methodology inspired from
[7, 8, 30] to handle systems where some uncertainties are time-varying.

The outline of the paper is as follows. Section 2 is dedicated to the exposure of the
new descriptor multi-affine representation of rationally dependent uncertain systems.
The four LMI results for state-feedback design, state-feedback loop analysis, observer
design and observed-state feedback loop analysis are given in Section 3. Based on
these, the heuristic procedure with two design steps and two analysis steps is presented
in section 4. Section 5 brings some important technical tools such as: ways to keep
the numerical burden as small as possible and extensions to systems with time-varying
uncertainties. A numerical example illustrates the results in section 6. Conclusions are
drawn in the final section.

Notation:
I stands for the identity matrix. AT is the transpose of the matrix A. {A}S stands
for the symmetric matrix {A}S = A + AT . diag

(
F1, . . . Fi, . . .

)
stands for

a block-diagonal matrix whose diagonal blocks are the Fi matrices. A � B is the
matrix inequality stating that A − B is symmetric positive definite. The terminology
“congruence operation ofA onB” is used to denoteATBA. IfA is full rank, andB �
0, the congruence operation of A on B gives a positive definite matrix: ATBA � 0. A
matrix inequality of the type N(X) � 0 is said to be a linear matrix inequality (LMI
for short), if N(X) is affine in the decision variables X . In the following, decision
variables are highlighted using the blue color. Ξv̄ = {ξv=1...v̄ ≥ 0,

∑v̄
v=1 ξv =

1} is the unitary simplex in Rv̄ . The elements ξ of unitary simplexes are used to
describe polytopic type uncertainties. In the following, uncertainties are highlighted
using the red color. For a discrete-time signal vk≥0, ‖v‖22 =

∑∞
k=0 v

T
k vk is the squared

l2 norm and ‖v‖2
2,k̄

=
∑k̄
k=0 v

T
k vk stands for the truncated squared norm. ‖v‖p =

maxk≥0(vTk vk)1/2 denotes the peak of the euclidian norm over time.
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2 Descriptor multi-affine modeling of rationally depen-
dent uncertain systems

We shall consider in this paper parameter-dependent systems such as

xk+1 = Ar(θ)xk +Br(θ)uk +Brw(θ)wk
zk = Crz(θ)xk +Drzu(θ)uk +Drzw(θ)wk
yk = Cxk

(1)

where all the matrices except C are rational in uncertain parameters gathered in the
notation θ. The parameters θ are assumed to lie in a set Θ defined as the cross product
of p̄ sets:

θ ∈ Θ = {(θ1, . . . , θp̄) ∈ Θ1 × · · · ×Θp̄} . (2)

The p̄ components of θ are independent vectors of Rmp . Each set Θp is assumed to

be a polytope with v̄p vertices from the set Vp =
{
θ

[1]
p , . . . , θ

[v̄p]
p

}
. Θp is the convex

hull of the vertices, or equivalently, each θp writes as the weighted sum of vertices with
weight from unitary simplexes:

Θp = Co(Vp) =

{
θp =

v̄p∑
v=1

ξp,vθ
[v]
p : ξp ∈ Ξv̄p

}
. (3)

In the following, V = V1 × · · · × Vp̄ is the set of all extremal values of the parameters
gathered in θ. A generic element of V will be denoted θ[v] with v = (v1, . . . , vp̄) the
vector of indices of vertices for each component. I is the set of all vectors of indices
v. θ[v] is the one to one map from I to V . The cardinality of V is ¯̄v = Πp̄

p=1v̄p.
Uncertainties θ are assumed to be constant (except for subsection 5.3 that extends

the results to the time-varying case).
A matrix M(θ) is said to be multi-affine in the parameters if it is affine in each

θp taken independently. For example M(θ) = 1 + θ1 + θ1θ2 is multi-affine in the
two uncertainties θ1, θ2. In the considered case of scalar uncertainties, they belong to
polytopes with two vertices θ1 ∈ [θ

[1]
1 , θ

[2]
1 ], θ2 ∈ [θ

[1]
2 , θ

[2]
2 ]. It is easy to see that the

following holds
M(θ) = ξ1,1ξ2,1(1 + θ

[1]
1 + θ

[1]
1 θ

[1]
2 )

+ ξ1,1ξ2,2(1 + θ
[1]
1 + θ

[1]
1 θ

[2]
2 )

+ ξ1,2ξ2,1(1 + θ
[2]
1 + θ

[2]
1 θ

[1]
2 )

+ ξ1,2ξ2,2(1 + θ
[2]
1 + θ

[2]
1 θ

[2]
2 ).

This holds for all cases. A matrix, multi-affine with respect to uncertainties defined in
the cross-product of polytopes, can be written as the multi-sum of weighted vertices
from V denoted as

M(θ) =
∑
v∈I

ξ1,v1 · · · ξp̄,vp̄M(θ[v]).

The simplest case is when the θp elements are scalars (mp = 1) defined in intervals
θp ∈ [ θ

[1]
p , θ

[2]
p ], which are polytopes of v̄p = 2 vertices. For the case when all
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elements are scalar, the cardinality of V is ¯̄v = 2p̄. In case of two scalar parameters,
the multi-sum reads as

M(θ) =
∑
v∈{(1,1),(1,2),(2,1),(2,2)} ξ1,v1

ξ2,v2
M(θ[v])

= ξ1,1ξ2,1M(θ[(1,1)]) + ξ1,1ξ2,2M(θ[(1,2)])
+ ξ1,2ξ2,1M(θ[(2,1)]) + ξ1,2ξ2,2M(θ[(2,2)]).

It is trivial to notice that the multi-affine matrixM(θ) can also be described as included
in the polytope of four vertices M(θ[(1,1)]), M(θ[(1,2)]), M(θ[(2,1)]), M(θ[(2,2)]). The
converse is not true in general. There are potentially elements in the convex hull of
these four vertices that are not in the multi-affine model. An example to this fact is
the matrix M(θ) =

[
θ1 θ1θ2 θ2

]
with θ1 ∈ [1, 2] and θ2 ∈ [1, 2]. The middle

of vertices M(θ[(1,1)]) =
[

1 1 1
]

and M(θ[(2,2)]) =
[

2 4 2
]

is equal to[
3
2

5
2

3
2

]
. It is in the polytope, but is not a realization of M(θ) since 5

2 6= ( 3
2 )2.

Lemma 1 Any rationally dependent matrix R(θ) admits a descriptor multi-affine rep-
resentation (DMAR) of the form R(θ) = E1(θ)E−1

2 (θ)E3(θ) where the E1(θ), E2(θ)
and E3(θ) matrices are multi-affine in θ.

Proof: Recall [11, 18] that any rational matrix admits a linear-rational representa-
tion (LFR) of the typeR(θ) = R1+R2∆(θ) (I −R4∆(θ))

−1
R3 where ∆(θ) is linear

in the elements of θ. TakingE1(θ) =
[
R1 R2∆(θ)

]
,E2(θ) =

[
I 0
0 I −R4∆(θ)

]
,

E3 =

[
I
R3

]
concludes the proof. �

The LFR used in the proof usually generates a DMAR of larger dimensions than
needed, and imposes many more manipulations. This is not only because the LFR
generates an affine DMAR (not multi-affine). For example, take the following rational
system in two scalar uncertainties

xk+1 = θ1
1+θ2

xk + θ1
2θ2uk + wk, zk = 1

θ1
xk, yk = xk.

Its model depends on the following parameter-dependent matrix with DMAR[ θ1
1+θ2

θ1
2θ2

1
θ1

0

]

=

[
θ1 θ1 0
0 0 1

] 1 + θ2 0 0
0 1 0
0 0 θ1

−1  1 0
0 θ1θ2

0 1

 .
Obtaining this DMAR is very simple. Meanwhile, an equivalent LFR needs additional
manipulations and leads to a ∆(θ) matrix with at least 4 rows. The DMAR build using
the formulas in the proof of Lemma 1 would have an E2(θ) matrix with 6 rows.

DMARs are used in the following to convert rational systems (1) into equivalent
descriptor form representations where all matrices are multi-affine in the uncertain pa-
rameters. Three important examples of such representations follow. They are based on
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the DMAR [
Ar(θ) Br(θ) Brw(θ)
Crz(θ) Drzu(θ) Drzw(θ)

]
=

[
Ex(θ)
Ez(θ)

]
E−1
π (θ)

[
A(θ) B(θ) Bw(θ)

] (4)

or its transposed version ATr (θ) CTrz(θ)
BTr (θ) DT

rzu(θ)
BTrw(θ) DT

rzw(θ)


=

 Edx(θ)
Edy(θ)
Edz(θ)

E−1
dπ (θ)

[
Ad(θ) Bdw(θ)

]
.

(5)

Trivially the DMAR (4) can be obtained from (5), and conversely, with the choice
Ex(θ) = ATd (θ), Ez(θ) = BTdw(θ), Eπ(θ) = ETdπ(θ), A(θ) = ETdx(θ), B(θ) =
ETdy(θ) and Bw(θ) = ETdz(θ). The subscripts d in the DMAR (5) are used to highlight
that the matrices describe a dual system. This property is used in the proof of the
following lemma.

Lemma 2 Assume the DMAR (5), the H∞ performance of the rationally dependent
system (1) in closed-loop with a state-feedback uk = Kxk, is equal to the H∞ perfor-
mance of the descriptor multi-affine system Ed(θ)ηd,k = 0 defined by

Ed(θ) =

 I 0 Edx(θ) +KTEdy(θ) 0 0
0 I Edz(θ) 0 0
0 0 Edπ(θ) Ad(θ) Bdw(θ)


ηTd,k =

(
xTd,k+1 zTd,k πTd,k xTd,k wTd,k

)
.

(6)

Proof: System (1) with state-feedback uk = Kxk reads as

xk+1 =Ar,K(θ)xk +Brw(θ)wk
zk =Crz,K(θ)xk +Drzw(θ)wk

(7)

where Ar,K(θ) = (Ar(θ) +Br(θ)K) and Crz,K(θ) = (Crz(θ) +Drzu(θ)K). Its
H∞ performance is equal to the performance of the dual system defined by

xd,k+1 =ATr,K(θ)xd,k + CTrz,K(θ)wd,k
zd,k =BTrw(θ)xd,k +DT

rzw(θ)wd,k
. (8)

Using the DMAR (5) these equations read exactly as

xd,k+1 + (Edx(θ) +KTEdy(θ))πd,k = 0
zd,k + Edz(θ)πd,k = 0

which correspond to the two first rows of (6), with πd,k as

πd,k = −E−1
dπ (θ) (Ad(θ)xd,k +Bdw(θ)wd,k) .
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Pre-multiplying the last equation by Edπ(θ) gives the last row of (6). �
Lemma 2 will be used in the next section for building state-feedback design condi-

tions. As exposed in the following, the conditions are finite dimensional LMI. Condi-
tions need only to be tested on vertices of the polytopes, thanks to convexity of matrix
inequalities, and to the multi-affine nature of the descriptor representation.

Since states of a plant are in general not measured, state-feedback control needs
in practice to be replaced by a feedback uk = Kx̂k based on estimations of the state
x̂. This supposes the design of some observer. The following Lemma presents the
descriptor multi-affine modeling related to this problem.

Lemma 3 Assume the DMAR (4) and consider the descriptor multi-affine systemEo(θ)ηo,k =
0 defined by

Âo = Ao +BoK + LC

Eo(θ) =

[
I Ex(θ) −Âo Ao +BoK
0 Eπ(θ) −B(θ)K A(θ) +B(θ)K

]
ηTo,k =

(
eTk+1 πTo,k eTk xTk

) (9)

where ek plays the role of the state and xk is an input. The stability and input/output
performances of Eo(θ)ηo,k = 0 are equivalent to stability of the error ek = xk −
x̂k and performance of the transfert from xk to εk = Kek, for the Luenberger type
observer defined by

x̂k+1 = Aox̂k +Bouk + L(Cx̂k − yk), (10)

when assuming observed-state feedback uk = Kx̂k.

Proof: Simple manipulations with equations (1), (10) and uk = Kx̂k provide that,
for zero perturbations wk = 0, the error between the plant state xk and the state of the
observer x̂k is driven by the following equation

ek+1 = (Ao + (Bo −Br(θ))K + LC)ek
+ (Ar(θ)−Ao + (Br(θ)−Bo)K)xk.

(11)

Using the DMAR (4), equation (11) also reads as[
I Ex(θ) −Âo Ao +BoK

]
ηo,k = 0

where πo,k = −E−1
π (θ)(B(θ)Kek − (A(θ) + B(θ)K)xk. This definition of πo,k is

exactly the last row in (9). �
The two last lemmas are used in the next section for designing separately the state-

feedback gain K and then the observer matrices Ao, Bo, L. Since separation principle
does not hold for uncertain systems, a last step is then needed for robust stability anal-
ysis of the overall observer-state feedback control. The third descriptor multi-affine
model that follows is used for that purpose.
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Lemma 4 Assume the DMAR (4) and (5) and consider the descriptor multi-affine sys-
tems Ec(θ)ηc,k = 0 and Edc(θ)ηdc,k = 0 defined respectively by

Ec(θ) =


I 0 0 0 −Âo LC 0
0 I 0 Ex(θ) 0 0 0
0 0 I Ez(θ) 0 0 0
0 0 0 Eπ(θ) B(θ)K A(θ) Bw(θ)

 ,
ηTc,k =

(
x̂Tk+1 xTk+1 zTk πTc,k x̂Tk xTk wTk

) (12)

and

Edc(θ) =


I 0 0 KTEdy(θ) −ÂoT 0 0
0 I 0 Edx(θ) CTLT 0 0
0 0 I Edz(θ) 0 0 0
0 0 0 Edπ(θ) 0 Ad(θ) Bdw(θ)

 ,
ηTdc,k =

(
x̂Td,k+1 xTd,k+1 zTd,k πTdc,k x̂Td,k xTd,k wTd,k

)
.

(13)

The stability and input/output performances of Ec(θ)ηc,k = 0 and Edc(θ)ηdc,k = 0
are equivalent to stability and input/output performances of the closed-loop system
composed of the plant (1), the observer (10) and the feedback uk = Kx̂k.

Proof: The proof follows exactly the same lines as the two previous ones and
involve respectively the DMAR (4) applied to the system equations and the DMAR
(5) applied to the equations of the dual system. The detailed proof is not provided for
conciseness purpose. �

Remark 1 Lemma 2, 3 and 4 assume implicitly that the rationally dependent system
(1) is well-posed in the sense that all matrices are bounded when θ ∈ Θ. This as-
sumption is equivalent to stating that the Eπ(θ) and Edπ(θ) are invertible for all un-
certainties θ ∈ Θ. It also implies that the descriptor representations have no impulsive
modes. All vectors are uniquely defined and finite for given finite states and perturba-
tions. Stability of the descriptor systems is hence in the usual sense of the boundedness
and convergence of the state.

3 LMIs for robust synthesis and analysis

3.1 Robust H∞ state-feedback design

Theorem 1 If there exist ¯̄v symmetric positive definite matrices P [v]
d � 0 and matrices

Sdx, Sdy , Sdπ of appropriate dimensions such that the following LMIs hold simultane-
ously for all v ∈ I

diag
(
P

[v]
d , I, 0, − P [v]

d , −µ2
dI
)

≺
{[

I
0

] [
Sdx 0 SdxEdx(θ[v]) + SdyEdy(θ[v]) 0 0

]}S
+

{
Sdπ

[
0 I Edz(θ

[v]) 0 0
0 0 Edπ(θ[v]) Ad(θ

[v]) Bdw(θ[v])

]}S
,

(14)
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then K = Sdy
T (Sdx

T )−1 is a robustly stabilizing state-feedback gain that guaran-
tees that the closed-loop with uk = Kxk has an H∞ performance smaller than µd
whatever θ ∈ Θ.

Proof: First we shall use the fact that the matrices are multi-affine in the parame-
ters. Take the multi-sum of all inequalities (14) with positive weights ξp,vp ≥ 0. For
all θ[v]-dependent terms the result gives any generic uncertain matrix as∑

v∈I
ξ1,v1 · · · ξp̄,vp̄Ad(θ[v]) = Ad(θ).

The weighted multi-sum of constant parameters has no effect on the constant parame-
ters when the ξp vectors are in the unitary simplexes∑

v∈I
ξ1,v1

· · · ξp̄,vp̄Sx = Sx.

Finally we shall denote Pd(θ) the multi-affine matrix uniquely defined for a given
unitary simplex definition of the parameters:∑

v∈I
ξ1,v1

· · · ξp̄,vp̄P
[v]
d = Pd(θ).

Thanks to convexity of matrix inequalities and multi-affine dependence of matrices,
the ¯̄v LMIs (14) hold if and only if for all uncertainties θ ∈ Θ one has

diag
(
Pd(θ), I, 0, − Pd(θ), −µ2

dI
)

≺
{[

I
0

] [
Sdx 0 SdxEdx(θ) + SdyEdy(θ) 0 0

]}S
+

{
Sdπ

[
0 I Edz(θ) 0 0
0 0 Edπ(θ) Ad(θ) Bdw(θ)

]}S
.

With the change of variable Sdy = SdxK
T these inequalities also read as

diag
(
Pd(θ), I, 0, − Pd(θ), −µ2

dI
)
≺ {SdEd(θ)}S

where

Sd =

[
Sdx
0

Sdπ

]
(15)

and Ed(θ) is the matrix defining the descriptor multi-affine system of Lemma 2. After
congruence operation of ηd,k 6= 0 on this last matrix inequality, one gets along the
trajectories (Ed(θ)ηd,k = 0):

xTd,k+1Pd(θ)xd,k+1 − xTd,kPd(θ)xd,k
+zTd,kzd,k − µ2

dw
T
d,kwd,k < 0.

In case of zero disturbances (wd,k = 0) this inequality implies that the quadratic
parameter-dependent Lyapunov function xTd Pd(θ)xd is decreasing. The system is

10



asymptotically stable.
In case of zero initial conditions (xd,0 = 0), and taking the sum from k = 0 to k = k̄,
one gets

‖zd‖22,k̄ ≤ µ
2
d‖wd‖22,k̄ − x

T
d,k̄+1Pd(θ)xd,k̄+1

which, since Pd(θ) is positive definite, implies

‖zd‖22,k̄ ≤ µ
2
d‖wd‖22,k̄.

For k̄ growing to infinity one concludes that ‖zd‖2 ≤ µd‖wd‖2. The L2 induced norm
of the system is smaller than µd. Since we are dealing with LTI systems it is equivalent
to stating that the H∞ performance is smaller than µd. Both stability and performance
are ensured for all uncertainties θ ∈ Θ thus proving both robust stability and robust
performance. �

The proof indicates that the LMI condition implies stability and performance of
the state-feedback control. The result is conservative. The sources of conservatism are
twofold. The first one comes from restricting the S-variable Sd to being parameter-
independent. The second comes from its structuring in an upper-triangular form (15).
To understand further these conservatism sources, the reader is suggested to see [13].

3.2 Analysis of a given state-feedback gain
The second source of conservatism mentioned above is needed for rendering convex
the state-feedback design, but it can be removed for analysis purpose. This feature is
used in the next analysis result. To emphasize that the state-feedback gain K is from
now on considered as fixed, it is no more written in blue color.

Theorem 2 If there exist ¯̄v symmetric positive definite matrices P [v] � 0 and matrices
Q and S of appropriate dimensions such that the following LMIs hold simultaneously
for all v ∈ I

diag
(
P [v], 0, Q− P [v], −I

)
≺
{
S

[
I Ex(θ[v]) 0 0
0 Eπ(θ[v]) A(θ[v]) +B(θ[v])K B(θ[v])

]}S
,

(16)

then the system with state-feedback uk = Kxk + εk is robustly stable and the state of
the plant xk is bounded for bounded errors on the control signal εk by ‖Wx‖2 ≤ ‖ε‖2
where W = Q1/2.

Proof: For a start note that the plant in closed-loop with uk = Kxk + εk and for
zero input perturbations wk = 0 reads as

xk+1 = (Ar(θ) +Br(θ)K)xk +Br(θ)εk.

Using the DMAR (4) and introducing a πk exogenous vector as in proof of Lemma 3,
the system equivalently reads as[

I Ex(θ) 0 0
0 Eπ(θ) A(θ) +B(θ)K B(θ)

]
ηk = 0

ηTk =
(
xTk+1 πTk xTk εTk

)
.

11



Now, thanks to convexity of matrix inequalities and multi-affine dependence of the
matrices, the ¯̄v LMIs (16) hold if and only if for all uncertainties θ ∈ Θ one has

diag
(
P (θ), 0, Q− P (θ), −I

)
≺
{
S

[
I Ex(θ) 0 0
0 Eπ(θ) A(θ) +B(θ)K B(θ)

]}S
,

where P (θ) is defined the same way as Pd(θ) in the proof of Theorem 1. After con-
gruence operation of ηk 6= 0 on this last inequality, one gets

xTk+1P (θ)xk+1 − xTk P (θ)xk + xTkQxk − εTk εk < 0.

In case of zero error on the control signal εk = 0 the inequality proves stability thanks
to the decreasing parameter-dependent Lyapunov function xTP (θ)x. In case of zero
initial conditions x0 = 0, and taking the sum over all positive k, one gets ‖Wx‖2 ≤
‖ε‖2 where W = Q1/2. �

In the conference version of this manuscript [29] that addressed the sub-case of
polytopic systems, it is shown that feasibility of LMIs from the theorem corresponding
to Theorem 1, implies feasibility of LMIs from the theorem corresponding to Theorem
2. We are unfortunately not able to prove such implication in the present more general
case with rationally dependent uncertain systems.

3.3 Robust observer design
All elements are now available for the design of a robust observer for the system.
The goal of this observer is to make possible the usage of the already designed state-
feedback in case the states are not measured. The objective is hence not to reconstruct
exactly the states (which is an ill posed problem for systems with uncertainties) but
to build some dynamic filter that provides an estimate x̂k that minimizes the error
εk between the actual control Kx̂k and the ideal state-feedback control Kxk. The
observer design is hence state-feedback gainK dependent. It also uses the results from
the analysis phase which provides an indication on the possible trajectories of the state
xk. At this stage the state-feedback gain K obtained from Theorem 1 and the Q matrix
obtained from the analysis phase (Theorem 2) are assumed fixed. To emphasize this
feature, these matrices are no more written in blue color.

Let the following notation

Ŝa = Sa + SbK + SlC,
Nx(θ, Sx, Sa, Sb, Sl)

=
[
Sx SxEx(θ) −Ŝa Sa + SbK

]
,

Nπ(θ) =
[

0 Eπ(θ) −B(θ)K A(θ) +B(θ)K
]

which are affine in the blue decision variables and multi-affine in the uncertainties θ.

Theorem 3 If there exist 2¯̄v symmetric positive definite matrices P [v]
∞ � 0, P [v]

p �
KTK and matrices Sx, Sa, Sb, Sl, S2π , Spπ of appropriate dimensions such that the

12



following LMIs hold simultaneously for all v ∈ I

diag
(
P

[v]
2 , 0, KTK − P [v]

2 , −γ2
2Q

)
≺
{[

I
0

]
Nx(θ[v], Sx, Sa, Sb, Sl)

}S
+
{
S2πNπ(θ[v])

}S
,

(17)

diag
(
P

[v]
p , 0, − P [v]

p , −γ2
pQ

)
≺
{[

I
0

]
Nx(θ[v], Sx, Sa, Sb, Sl)

}S
+
{
SpπNπ(θ[v])

}S
,

(18)

then Ao = Sx
−1Sa, Bo = Sx

−1Sb, L = Sx
−1Sl define an observer (10) that guaran-

tees the following two norm-to-norm and norm-to-peak properties:

‖ε‖2 ≤ γ2‖Wx‖2 , ‖ε‖p ≤ γp‖Wx‖2

where εk = Kek. The properties hold whatever bounded x and whatever uncertainty
θ ∈ Θ.

Proof: The first step, as in the two previous proofs, is based on convexity of the
matrix inequalities and multi-affine nature of the parameter-dependent matrices. The
LMIs (17) and (18) are feasible if and only if the following inequalities hold for all
uncertainties θ ∈ Θ:

diag
(
P2(θ), 0, KTK − P2(θ), −γ2

2Q
)

≺
{[

I
0

]
Nx(θ, Sx, Sa, Sb, Sl)

}S
+ {S2πNπ(θ)}S ,

diag
(
Pp(θ), 0, − Pp(θ), −γ2

pQ
)

≺
{[

I
0

]
Nx(θ, Sx, Sa, Sb, Sl)

}S
+ {SpπNπ(θ)}S

where the P2(θ) and Pp(θ) matrices have the same multi-affine definition as Pd(θ)
in the proof of Theorem 1. With the change of variable Sa = SxAo, Sb = SxBo,
Sl = SxL these inequalities also read as

diag
(
P2(θ), 0, KTK − P2(θ), −γ2

2Q
)
≺ {S2Eo(θ)}S

diag
(
Pp(θ), 0, − Pp(θ), −γ2

pQ
)
≺ {SpEo(θ)}S

where S2 =

[
Sx
0

S2π

]
, Sp =

[
Sx
0

Spπ

]
and Eo(θ) is the matrix defined

in (9). After congruence operation of ηo,k 6= 0 on these two inequalities one gets that
the observation error satisfies both following properties

eTk+1P2(θ)ek+1 − eTk P2(θ)ek + εTk εk − γ2
2x

T
kQxk < 0,

eTk+1Pp(θ)ek+1 − eTk Pp(θ)ek − γ2
px

T
kQxk < 0.

13



From the first inequality, one directly conclude that the observation error ek is internally
asymptotically stable (proved by the Lyapunov function xTP2(θ)x). Moreover, taking
the sum over all positive k, the first inequality gives ‖ε‖2 ≤ γ2‖Wx‖2 for all zero
initial conditions. For zero initial conditions as well, taking the sum from k = 0 to
k = k̄ − 1 of the second inequality gives

eTk̄ Pp(θ)ek̄ ≤ γ
2
p‖Wx‖22,k̄−1 ≤ γ

2
p‖Wx‖22.

Recall that the P [v]
p matrices are constrained as P [v]

p � KTK. By convexity and multi-
affine property of Pp(θ), the condition implies that for all θ ∈ Θ one has Pp(θ) �
KTK and hence εT

k̄
εk̄ ≤ eT

k̄
Pp(θ)ek̄ ≤ γ2

p‖Wx‖22. Since the property hold for all k̄
one concludes that it also holds for the peak value, hence ‖ε‖p ≤ γp‖Wx‖2. �

3.4 Analysis of the observed-state feedback loop
At this stage we have proposed LMI results that allow to design separately some state-
feedback gain and some Luemberger like observer. Since separation principle does
not hold for uncertain systems, there is not guarantee yet that the closed-loop system
combining the two is stable. The goal of this section is to analyse the closed-loop.
From this point we assume the state-feedback gain K provided by Theorem 1, the Q
matrix obtained from Theorem 2, and the observer matrices Ao, Bo, L obtained from
Theorem 3, are all fixed. To emphasize this feature, these matrices are no more written
in blue color.

Based on the upper computed value γ2, one can directly conclude about stability
using the small-gain theorem:

Theorem 4 If γ2 < 1, the closed-loop composed of (1) and

x̂k+1 = (Ao +BoK + LC)x̂k − Lyk , uk = Kx̂k (19)

is robustly stable for all θ ∈ Θ.

Proof: Introducing again the error signal ek = xk − x̂k the closed-loop system
writes as the feedback interconnection of

xk+1 = (Ar(θ) +Br(θ)K)xk −Br(θ)εk, x̃k = Wxk

with the error dynamics

ek+1 = (Ao + (Bo −Br(θ))K + LC)ek
+ (Ar(θ)−Ao + (Br(θ)−Bo)K)W−1x̃k

, εk = Kek.

Theorem 2 guarantees that the l2-induced norm of the first system with εk as inputs
and x̃k as outputs, is less than 1. Meanwhile, Theorem 3 guarantees the l2-induced
norm of the second with x̃k as inputs and εk as outputs, is less than γ2. By small-gain
theorem the closed-loop is hence stable if γ2 < 1. Since the upper bounds are valid for
all uncertainties θ ∈ Θ, stability is robust. �

An other test, is to perform a closed-loop LMI-based analysis of the system with
observed-state feedback control.
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Theorem 5 If there exist ¯̄v symmetric positive definite matrices P [v]
c � 0 and a matrix

Sc of appropriate dimensions such that the following LMIs hold simultaneously for all
v ∈ I

diag
(
P

[v]
c , I, 0, − P [v]

c , −µ2
cI
)
≺
{
ScEc(θ

[v])
}S

, (20)

then the system (1) in feedback loop with (19) is robustly stable and its H∞ perfor-
mance is smaller than µc whatever θ ∈ Θ.

Proof: The proof follows the same lines as the previous ones, this time based on
the descriptor multi-affine model (12). It is not provided for conciseness purpose. �

An alternative version of Theorem 5 is also possible based on the dual representa-
tion (13) given in Lemma 4.

Theorem 6 If there exist ¯̄v symmetric positive definite matrices P [v]
dc � 0 and a matrix

Sdc of appropriate dimensions such that the following LMIs hold simultaneously for
all v ∈ I

diag
(
P

[v]
dc , I, 0, − P [v]

dc , −µ2
dcI

)
≺
{
SdcEdc(θ

[v])
}S

, (21)

then the system (1) in feedback loop with (19) is robustly stable and its H∞ perfor-
mance is smaller than µdc whatever θ ∈ Θ.

The two analysis conditions are not equivalent (see [13]). Both give upper bounds,
but there is no a priori order between µc and µdc.

4 Heuristic design of observed-state feedback
The previous section exposes results that allow to elaborate a heuristic for robust
observed-state feedback design. Most of this heuristic algorithm is implicitly described
along the exposure of the LMI results. It is now summarized.

Step 1 - State-feedback gain design
Assume the goal is the design of an output feedback dynamic controller that ensures

robust stability and some robust input/output H∞ performance level µobj . The first
step is to design a state-feedback gain K using Theorem 1 for some fixed µd < µobj .
Choosing µd smaller than µobj lies in the fact that the observed-state feedback that
will follow will inevitably degrade the performance. Hence the ideal state-feedback
should do better than the goal µobj . One can also solve the LMIs of Theorem 1 while
minimizing µ2

d. Note that it is also possible to do multi-objective state-feedback design
combining pole location constraints as well as H∞, H2 and impulse-to-peak perfor-
mances. See for example [13] for methods to build LMI conditions for these other
performances.

Step 2 - Analysis of trajectories in case of state-feedback
Whatever performances obtained for the ideal state-feedback, the goal is now to

build a robust observer that keeps the dynamics as similar as possible. To realize this,
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the proposed methodology consists in first having an estimate of what type of state-
trajectories are expected when applying state-feedback. This is done by searching for
W matrices using LMIs of Theorem 2.

It should be noticed here that the LMIs of Theorem 2 may not be feasible, even
if the state-feedback is proved to be a stabilizing one since issued from Theorem 1.
This is because all these conditions are conservative and there is at our knowledge no
way to prove that in general feasibility of LMIs in Theorem 1 implies feasibility of
the LMIs in Theorem 2. Yet, in the special case of polytopic systems (see [29]) this
property holds. But we were not able to prove this fact for the more general case of
rationally dependent systems treated here. If LMIs of Theorem 2 are found unfeasible,
then to proceed one needs to build less conservative analysis results. Such results can
be obtained using the augmentation technique described in [13].

Assume two matrices W1 and W2 are solutions of the LMIs (16) and satisfy Q1 =
W1

2 ≺ Q2 = W2
2. Then for the same ε the following inequalities hold ‖W1x‖2 ≤

‖W2x‖2 ≤ ‖ε‖2. It is clear from these that the matrix W2 provides a tighter infor-
mation in terms of the effect of ε on the state x. To characterize worst case effects of
control errors ε on the state trajectories it is hence natural to “maximize” W . One way
to do so is to maximize the trace of Q or to maximize its smallest eigenvalue when
solving the LMIs. In the examples we shall maximize a linear combination of the trace
and the smallest eigenvalue.

Step 3 - Design of an observer for state-feedback fitting
In case of systems without uncertainties a natural (and optimal) choice of Ao and

Bo is such that the last term in (11) is zero. That is, duplicating the system Ar and Br
matrices of the system, to the observer. In such case, the error is asymptotically stable
if Ao + LC has all Schur stable eigenvalues. This property is part of the separation
principle that makes possible the separate design of state-feedback and observer gains.
In case of systems with uncertainties, this choice is no more possible. The separation
principle does not hold. Therefore, the dynamics of the error are perturbed by some
(hopefully small) perturbation dependent on the trajectories of the observed plant. Be-
cause of that, the actual control signal Kx̂k differs from the ideal state-feedback Kxk.
The error between the two is εk = Kek and should be kept small. The heuristic design
of observer matrices Ao, Bo and L we propose is hence to ensure that the error ek is
stable and the transfer from xk to εk is a small as possible.

The issue is to adopt some norm to measure ε. One classical norm would be the
l2 norm ‖ε‖2. Unfortunately, such norm that measures the total energy over all time
samples could be small but with high peak values. Typically it can give very fast
converging observers, but that generate large, irrelevant, spikes on ε at the first time
instants k = 1, 2, 3 etc. See [20] for discussions about this inevitable waterbed effect.
To handle such phenomena the observer design of Theorem 3 allows to minimize a
compromise between the l2 norm ‖ε‖2 and the peak ‖ε‖p. In practice it can be done by
minimizing the weighted sum β2γ

2
2 + βpγ

2
p for a priori chosen values of β2 and βp.

Step 4 - Analysis of obtained observed-state feedback
If γ2 < 1 Theorem 4 ensures that the closed loop with observed-state feedback

robustly stabilizes the plant. To know more about the closed-loop one can also apply
Theorems 5 and 6. The LMIs can be solved while minimizing µ2

c and µ2
dc respectively.

The optimal values are upper bounds on the robust H∞ performance of the observed-

16



state feedback loops. They can be different one from the other (see [13] for discussions
about this fact). Both are expected to be greater than µd in the sense that observed-state
feedback will have worse performances than the pure state-feedback based on which
the observer was designed. If either one of the guaranteed costs satisfies µc ≤ µobj or
µdc ≤ µobj , the design goal is achieved.

The 4 steps define a heuristic algorithm. The methodology is not guaranteed to
attain the design goal, even if such solution exists. To our knowledge there is no con-
vex design result for robust output feedback design. The proposed methodology is one
possible heuristic. It has the advantage to be based on classical state-feedback with
observer. Moreover, each of the steps is useful by itself. Step 1 gives a new methodol-
ogy for state-feedback design in presence of rationally uncertainty-dependent systems.
Step 2 gives a method to evaluate bounds on state trajectories in presence of control
errors. Step 3 solves the robust observer design problem for which we could not find
any comparable result in the literature. Step 4 can be seen as a natural extension of
analysis results from [13] for the descriptor multi-affine representations introduced by
the present paper.

5 System dependent variations on the results

5.1 Reduced size LMIs, removing rows
When comparing results in the conference version of this work (see [29]) and the results
exposed here, one can notice that the former results involve no Sπ like variable, while
here this S-variable is most necessary to derive the results in the case of rationally
dependent uncertain systems. A question that could arise is whether this additional
S-variable brings improvements to the polytopic case as well. The answer is no, and
this is demonstrated by Lemma 3.1 in [13] (see also [30]).

Let us illustrate this statement on the LMIs (16). In case of systems that are multi-
affine in the uncertainties (such as the polytopic systems), then the DMAR can be
chosen such that Ex(θ) = Eπ(θ) = I . For this choice, the data-dependent matrix that
multiplies the S-variable in (16) has all its first rows that are parameter-independent.
Lemma 3.1 from [13] can be applied and gives the following equivalent LMIs

diag
(
P [v], Q− P [v], −I

)
≺
{
S̃
[
I −(A(θ[v]) +B(θ[v])K) B(θ[v])

]}S
.

It is exactly the one that can be found in [29]. This LMI is trivially preferable since
it is of reduced size and contains less decision variables (the S̃ matrix has smaller
dimensions than S).

Note that the procedure described here applies in a similar way whatever parameter-
independent rows in the matrix[

I Ex(θ[v]) 0 0
0 Eπ(θ[v]) A(θ[v]) +B(θ[v])K B(θ[v])

]
.

17



All the LMI conditions of the present manuscript admit reduced size equivalent formu-
lations as soon as some rows in the matrices that multiply the S-variables are indepen-
dent of uncertainties and of decision variables. This is an easy to check property and
can be implemented readily in software tools.

5.2 Reduced size LMIs, removing columns
In [13] and [30] one can also find a procedure to build LMIs of reduced size when
some properties hold in terms of parameter-independent columns of that same matrices
(Lemma 3.2 in [13]). An example of application of this other procedure is given below.
The procedure can unfortunately be conservative. The solution to the reduced size LMI
result of the following Theorem 7 is such that if the LMIs are feasible then the LMIs
of Theorem 1 are feasible as well for µd = µ̃d. The converse is not guaranteed.

Theorem 7 If there exist ¯̄v symmetric positive definite matrices P [v]
d � 0 and matrices

Sdx, Sdy , Sdπ of appropriate dimensions such that the following LMIs hold simultane-
ously for all v ∈ I

diag
(
P

[v]
d , ETdz(θ

[v])Edz(θ
[v]), − P [v]

d , −µ̃2
dI
)

≺
{[

I
0

] [
Sdx SdxEdx(θ[v]) + SdyEdy(θ[v]) 0 0

]}S
+
{
Sdπ

[
0 Edπ(θ[v]) Ad(θ

[v]) Bdw(θ[v])
]}S

,

(22)

then K = Sdy
T (Sdx

T )−1 is a robustly stabilizing state-feedback gain that guarantees
that the closed-loop with uk = Kxk has anH∞ performance smaller that µ̃d whatever
θ ∈ Θ.

5.3 The time-varying uncertainty case
The case when some parameters are time-varying can be treated in the same framework
as the one exposed in the paper using a methodology inspired from [7, 8] and that is
also described in [30]. To illustrate how all LMI results exposed in the present paper
can extend to the case of time-varying uncertainties, we shall introduce some additional
notations and concentrate on the LMI result of Theorem 2. The others follow in the
same manner.

Let us assume that in the set of parameters described in (2) some are constant and
others are time-varying. The ones that are constant are with indexes p ∈ Pc and the
time-varying ones are such that p ∈ Ptv . The two sets are of course disjoint and
their union is {1 . . . p̄}. The number of vertices of the multi-affine representations for
each constant and time-varying parameters separately are ¯̄vc = Πp∈Pc

v̄p and ¯̄vtv =
Πp∈Ptv

v̄p respectively. For an element v ∈ I we shall denote v+ ∈ I any other
vector of indices of vertices such that the indices of v+ and v coincide for the constant
uncertainties, i.e. v+

p = vp, ∀p ∈ Pc. The indices v+
p∈Ptv

are independent of vp∈Ptv

and represent the possibility of any time-varying uncertainty to evolve to any other
admissible value between the current sample of time and the next one. Finally we shall
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denote wc = (vp∈Pc) and w+
tv = (v+

p∈Ptv
) the vectors of indices related only to the

constant and the next step time-varying uncertainties respectively.
With these notations two extensions of Theorem 2 are possible for the time-varying

case. The first one can be understood as related to the quadratic stability concept of
[4] where a common Lyapunov matrix is used for all uncertainties. Here it amounts to
have the P (θ) matrix independent of time-varying uncertainties.

Theorem 8 If there exist ¯̄vc symmetric positive definite matrices P [wc] � 0, and two
matrices Q and S of appropriate dimensions such that the following LMIs hold simul-
taneously for all v ∈ I

diag
(
P [wc], 0, Q− P [wc], −I

)
≺
{
S

[
I Ex(θ[v]) 0 0
0 Eπ(θ[v]) A(θ[v]) +B(θ[v])K B(θ[v])

]}S
,

(23)

then the system with state-feedback uk = Kxk + εk is robustly stable and the state of
the plant xk is bounded for bounded errors on the control signal εk by ‖Wx‖2 ≤ ‖ε‖2
where W = Q1/2.

The other one relies on the fact that for discrete-time systems both the S-variable
and the Lyapunov matrix can depend on the time-varying uncertainties as long as one
looks at all possible jumps from one value of the uncertainty to any other during each
time sample. The result is as follows and the proof follows exactly the ones propped in
[30].

Theorem 9 If there exist ¯̄v symmetric positive definite matrices P [v] � 0, a matrix Q
and ¯̄vtv matrices S[w+

tv] of appropriate dimensions such that the following LMIs hold
simultaneously for all v ∈ I, v+ ∈ I

diag
(
P [v+], 0, Q− P [v], −I

)
≺
{
S[w+

tv ]

[
I Ex(θ[v]) 0 0
0 Eπ(θ[v]) A(θ[v]) +B(θ[v])K B(θ[v])

]}S (24)

then the system with state-feedback uk = Kxk + εk is robustly stable and the state of
the plant xk is bounded for bounded errors on the control signal εk by ‖Wx‖2 ≤ ‖ε‖2
where W = Q1/2.

In all cases Theorem 8 is more conservative than Theorem 9 but with much less
decision variables and less LMI constraints (¯̄v LMIs in the first, while there are ¯̄v¯̄vtv
LMIs in the second). For both these results, the methodology of Lemma 3.2 in [13]
can often be applied to reduce the size of the LMIs, see [30] for the details. When all
uncertainties are time-varying the size reduction procedure can provide LMIs with no
S-variables as in classical results such as [4].

19



6 Numerical example
For illustration purpose we consider the toy example with the following dynamics

xk+1 =

[
−θ1

2/θ2 −θ1

1 0

]
xk +

[
0
θ2

]
uk +

[
θ1

0

]
wk

and with zk =
[

1 0
]
xk + θ2uk, yk =

[
0 1

]
xk. The DMAR we shall use is

given by:

Ex =

[
θ1 0
0 1

]
, Ez =

[
0 1

]
, Eπ =

[
θ2 0
0 1

]
,

A =

[
−θ1 −θ2

1 0

]
, B =

[
0
θ2

]
, Bw =

[
θ2

0

]
.

The uncertain parameters are in intervals around the nominal value 1 with discrepan-
cies δ1, δ2: i.e. θ1 ∈ [ 1 − δ1, 1 + δ1 ] and θ2 ∈ [ 1 − δ2, 1 + δ2 ]. The case without
uncertainties is when (δ1, δ2) = (0, 0). Note that for the nominal values θ1 = θ2 = 1,
the poles of the system are on the unit disc. The nominal plant is not asymptotically
stable and the plant is unstable for some values of the uncertainties. The observed-state
feedback design methodology is applied with µd = 10 at the first step for results in
Table 1 and with minimization of µd for results in Table 2. At the second step the
following convex criterion is maximized: Tr(Q) + 10 · λmin(Q). Table 3 indicates
the dimensions of the LMI problems for all tested cases (depends on the number of
uncertain parameters). These dimensions are those after applying the parameter inde-
pendent rows reduction method. All LMIs where build using the YALMIP parser [23]
and solved with SDPT3 solver [38].

The case when δ = 0 allows to see that the procedure for removing decision vari-
ables based on parameter-independent rows allows to simplify significantly the numer-
ical burden and in particular to remove all S-variables. In this special case the values γ2

and γp are negligible since the optimization finds a solution such that the xk dependent
term in (11) is zero. Separation principle is confirmed.

The expected difference between Theorem 1 and Theorem 7 is as expected in terms
of smaller dimensions for the second. This reduction is at the expense of possibly
higher conservatism. This fact occurs only once (see third row of Table 2 where µd <
µ̃d), yet is rather negligible. Larger gap could occur for larger size systems.

Although there is no guarantee that Theorem 5 and Theorem 6 would provide the
same values, it happens to be the case for almost all tests, except for the case with
maximal discrepancy (last row of Table 1). Dimensions of the analysis conditions build
based on the primal or dual representations are different depending on the structure of
the data.

Comparing Tables 1 and 2 there is no clear answer on how should the value µd be
chosen at the first step. Optimizing it does not lead to better closed-loop performances
in the end.

In Table 1 tests are reported with different weights on the optimization at the ob-
server design step. As the weight β2 increases one naturally gets smaller values for
the γ2 gain. Since this value (when smaller than one) is a guarantee of closed-loop
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Table 1: Results for different discrepancies and optimization settings when µd = 10 at
first step

(δ1, δ2) (β2, βp) (γ2, γp) µc µdc
(0, 0) (1, 1) (10−4, 10−4) 2.8152 2.8152

(0.1, 0) (1, 1) (1.0747, 1.0410) 2.6672 2.6672
(0, 0.1) (1, 1) (0.3947, 0.3524) 2.4546 2.4546

(0.1, 0.1) (10, 1) (1.2736, 1.1765) 6.5901 6.5901
(0.1, 0.1) (1, 1) (1.2962, 1.0985) 6.1252 6.1252
(0.1, 0.1) (1, 10) (1.3339, 1.0809) 5.3226 5.3226
(0.2, 0.1) (1, 1) (1.3006, 1.2181) 11.2285 11.2285
(0.1, 0.2) (1, 1) (1.3242, 1.1553) 6.8505 6.8505
(0.2, 0.2) (1, 1) (3.5392, 3.0228) ∞ 14.3142

Table 2: Results for different discrepancies when µd is minimized at first step and for
(β2, βp) = (1, 1) at third step.

(δ1, δ2) µd µ̃d (γ2, γp) µc µdc
(0, 0) 1 1 (10−4, 10−4) 3.3731 3.3731

(0.1, 0) 1.5303 1.5303 (0.2349, 0.2349) 2.8013 2.8013
(0, 0.1) 1.2497 1.2502 (0.3061, 0.2777) 2.5644 2.5644

(0.1, 0.1) 2.0284 2.0284 (0.5611, 0.5181) 4.3398 4.3398
(0.2, 0.1) 3.8506 3.8506 (1.1902, 1.0970) 10.1302 10.1302
(0.1, 0.2) 3.1161 3.1161 (1.3334, 1.1567) 7.7934 7.7934
(0.2, 0.2) 8.7776 8.7776 (3.0445, 2.5166) ∞ ∞

Table 3: Size of the LMIs and of the S-variables in case none, one, or both parameters
are uncertain: {Nr, Nc}. Nr gives the size of each individual LMI. This figure should
be multiplied by the number of vertices to get the overall size of the LMI problem.
The number of decision variables involved in the S-variables is the productNrNc. Th1
stand for Theorem 1, etc.

(δ1, δ2) Th1 Th7 Th2 Th3 Th5 Th6
(0, 0) {5, 0} {5, 0} {3,0} {6,0} {5,0} {5,0}
(1, 0) {6, 1} {6, 1} {5,2} {7,1} {7,2} {7,2}
(0, 1) {7, 2} {6, 1} {5,2} {8,2} {7,2} {10,5}
(1, 1) {7, 2} {6, 1} {6,3} {8,2} {8,3} {11,6}
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Figure 1: Impulse responses. First plot is the output zk, the two others are the errors
between the plant state and the observer state.

stability, one could expect that choosing large values for β2 would be preferable. This
happens not to be the case as shown by the finally attained values µc. To obtain a good
closed-loop behavior it is important that the observer has not too large peak responses.

For the test with δ1 = δ2 = 0.2 we get the following matrices

K =
[

0.6525 1.2696
]
,

Q =

[
0.0748 0.0377
0.0377 0.0422

]
, Ao =

[
−0.7832 −1.1081
1.1373 0.9274

]
,

Bo =

[
0.1425
0.2195

]
, L =

[
0.3059
0.4883

]
Notice that the obtainAo matrix is far from being equal to the nominal matrixAr(θ1 =
1, θ2 = 1). The same comment applies to the Bo matrix.

The impulse responses (w0 = 1 and then wk>0 = 0) of the plant in closed-loop
with the obtained robust controller are plotted in Figure 1. The impulse responses are
for 20 randomly chosen values of the uncertainties. The plots illustrate that the input-
output performance is satisfactory but is not achieved by some separation with, first, a
fast convergence of the observation error, and, then, a pure state-feedback control.
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7 Comments and conclusions

7.1 Additional comments about the S-variable approach
All theorems and lemma exposed in the paper involve S-variables. Proofs of stabil-
ity are obtained thanks to multi-affine Lyapunov matrices P•(θ). But the conditions
involve additional variables S•. As seen in the proofs, these matrices vanish as soon
as the descriptor-represented trajectories of the system are taken into account. The S-
variables are related to Finsler’s lemma [37] or, from a more general viewpoint, to the
S-procedure [40], which is why we adopt the S-variable terminology [13].

Notice that the S-variables involved in the analysis Theorems 2, 5 and 6 are tall
full matrices, while in the design Theorems 1 and 3 the corresponding S-variables have
a structure as in (15). This structure is conservative, but useful because makes the
design constraints linear and hence convex in the decision variables. As discussed in
[31, 14, 13] other choices are possible. This one has the advantage of guaranteeing the
results to be less conservative than those build with a common Lyapunov matrix for all
uncertainties (see chapter 4 in [13]).

7.2 State-feedback / observer gain iterations
The proposed methodology suggests to first design a state-feedback and then based on
it to design an observer. Having in mind that the two problems are somehow dual one
of the other, it could be natural to assume possible in the same framework to design the
state-feedback gain (and why not the Ao matrix) for fixed observer matrices L and Bo.
This happens to be possible when structuring the S-variable in (21) as in (15) and with
a mild change of variables. Nevertheless we chose not to present this result because it
can be proved that such condition will never hold if the open loop system is not robustly
stable. The structure (15) in this case brings a serious conservatism. Future work will
be devoted to address this issue in order to propose heuristic iterative procedures that
could iterate between the two state-feedback design and observer design conditions.
Ideally such procedure should need to have at each step a guarantee that the next step
is feasible. As discussed in section 4, this is not yet the case.

7.3 Conclusions
A new point-of-view on robust observer design emerges from the paper. Since exact
observation is impossible for systems with uncertainties it solves the issue in an ap-
proximated way, searching for those dynamic filters that would make the observed-state
feedback dynamics as close as possible to the ideal state-feedback dynamics. Although
this strategy seems a natural extension of results by Luenberger, it is at our knowledge
new.

Additionally to this core contribution, the paper also provides a new descriptor
multi-affine representation for rationally-dependent uncertain systems. With the help
of the S-variables framework, numerically tractable LMI conditions involving multi-
affine parameter-dependent Lyapunov functions are produced and tested on an illus-
trative example. Future work will be devoted to testing the method on more realistic
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examples, which could be continuous-time systems. For such systems the stucture on
the S-variables will need to be reconsidered.
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Differences between the submitted paper and its confer-
ence versions
The manuscript entitled ”Robust observed-state feedback design for discrete-time sys-
tems rational in the uncertainties” is an extended version of the conference paper pre-
sented at the 19th IFAC World Congress in Cape Town, year 2014, which was entitled
”LMI results for robust control design of observer-based controllers, the discrete-time
case with polytopic uncertainties”. The main difference between the two papers is that
the new journal version is dedicated to systems that are rational in several uncertain-
ties while the conference paper treated the simpler case where systems are affine in
one polytopic uncertainty. Related to this change, the journal version includes a new
contribution in terms of modeling systems rational in the uncertainties as descriptor
multi-affine systems. While the conference version concentrated on observer design
since state-feedback design is already largely treated in the literature for affine poly-
topic systems, the journal version provides new results for both observer feedback and
state-feedback in the context of rationally dependent systems. It also gives new results
for the analysis of such systems.

In addition to these changes, the manuscript of the journal version includes an
other contribution, also published at the 19th IFAC World Congress in Cape Town,
year 2014, which was entitled ”Slack variable approach for robust stability analysis of
switching discrete-time systems.”. The result of that conference paper is extended here
to illustrate the fact that an identical framework can be used for both time-invariant and
time-varying uncertainties. In the journal version we provide a unified notation to also
treat the case of mixed time-invariant / time-varying uncertainties.
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