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ON THE ORDER MODULO p OF AN ALGEBRAIC NUMBER

(FOR p LARGE ENOUGH)

GEORGES GRAS

Abstract. Let K/Q be Galois of degree n, of Galois group G, and let η ∈ K×

be given such that 〈η〉G ⊗ Q ≃ Q[G]. For p unramified in K/Q and prime to
η, denote by np the residue degree of p, by gp the number of prime ideals p | p
then by op(η) and op(η) the orders of η modulo p and p, respectively.
In a first part, using Frobenius automorphisms, we show that for all p large
enough, some explicit divisors of pnp −1 cannot realize op(η) (Thms. 2.1, 4.1).
In a second part, we obtain that for all p large enough such that np > 1 we

have Prob(op(η) < p) ≤ 1

pgp (np−1)−ε , where ε = O
(

1
log2(p)

)

(Thm. 6.1).

Thus, under the heuristic of Borel–Cantelli this yields op(η) > p for all p large
enough such that gp(np − 1) ≥ 2, which covers the particular cases of cubic
fields with np = 3 and quartic fields with np = 2, but not the quadratic fields
with np = 2; in this case, the natural conjecture is, on the contrary, that
op(η) < p for infinitely many inert p (Conj. 8.1).

November 5, 2015

1. Frobenius automorphisms

1.1. Generalities. Let K/Q be Galois of degree n and of Galois group G. We
denote by h a possible residue degree, that is a divisor of n for which there exists
a cyclic subgroup H of G of order h. One knows that, for any generator s of H ,
there exist infinitely many prime numbers p, unramified in K/Q, such that s is the
Frobenius automorphism of a prime ideal p | p in K/Q.

The number h dividing n takes a finite number of values and we fix such an
integer h. We shall see that the results (especially the Theorem 2.1) only depend
of h and not of the choice of H of order h nor of s generating H .

1.2. Orders modulo p and modulo p. Let η ∈ K×. In the sequel we shall assume
that the Z[G]-module 〈η〉G generated by η is of Z-rank n (i.e., 〈η〉G ⊗ Q ≃ Q[G]),
but this is not needed for the following definition.

Definition 1.1. Let p be a prime number, prime to η, and let p be a prime ideal of
K dividing p. We call order of η modulo p (denoted op(η)) the least nonzero integer
k such that ηk ≡ 1 (mod p). We call order of η modulo p (denoted op(η)) the least
nonzero integer k such that ηk ≡ 1 (mod p). We have op(η) = l.c.m. (op(η), p | p).

We consider, for any prime p of residue degree np = h, the characteristic property
of the Frobenius automorphism sp, of p | p, which implies (cf. [Wa], Appendix, § 3,
or [Gr3], Section II.1.1.5, Definition II.1.2.1.2, Remark II.3.1.3.1):

ηsp ≡ ηp (mod p).

Let H := 〈sp〉 be the decomposition group of p and let σ ∈ G/H (or a repre-
sentative in G); the Frobenius automorphism sσp of pσ is σ.sp.σ

−1 and we get

ηs
σ
p ≡ ηp (mod pσ). So, if sp and σ commute this yields to ηsp ≡ ηp (mod pσ).
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2 GEORGES GRAS

In other words, we have ηsp ≡ ηp (mod
∏

σ∈G/H, σ.sp=sp.σ
pσ). In the Abelian

case, we get ηsp ≡ ηp (mod p) independently on the choice of p | p.
Lemma 1.2. Let η ∈ K× be such that 〈η〉G is of Z-rank n and let µ(K) be the
group of roots of unity contained in K. Let s ∈ G, s of order h, and let f(X) ∈ Z[X ]
be a given polynomial such that f(s) 6= 0 in Z[G].

Then, for all large enough prime number p such that s = sp for p | p, whatever

ζ ∈ µ(K) we have ηf(p) 6≡ ζ (mod p).

Hence, if d = g.c.d. (ph − 1, f(p)), whatever ζ ∈ µ(K) we have ηd 6≡ ζ (mod p).

Proof. We have ηf(p) ≡ ηf(s) (mod p); thus, if ηf(p) ≡ ζ (mod p) for some ζ, this
yields to ηf(s) − ζ ≡ 0 (mod p) giving NK/Q(η

f(s) − ζ) ≡ 0 (mod p) by the norm

in K/Q. Since 〈η〉G is of Z-rank n and f(s) 6= 0, we have ηf(s) /∈ µ(K); then
NK/Q(η

f(s) − ζ) is a nonzero rational constant depending only on η, f(s), ζ, and
the proof follows with explicit possible exceptions p in finite number. �

If for instance K/Q is Abelian, the congruence is equivalent to ηf(s) − ζ 6≡ 0
(mod p), giving a much stronger condition for a contradiction.

If s is of order h, any nonzero element of Z[G] can be writen f(s) where f is a
polynomial of degree < h (e.g. if h = 1, then f ∈ Z\{0}). Of course, an interesting
application of the Lemma, independently of p, is for instance that f(X) | Xh − 1
in Z[X ].

2. Consequences for the values of op(η)

We have the factorization ph − 1 =
∏

δ|h Φδ(p), where Φδ(X) is the δth cyclo-

tomic polynomial (see [Wa], Ch. 2). So we can consider the particular divisors
∏

δ∈I Φδ(p), where I is any strict subset of the set of divisors of h. Of course, it
will be sufficient to restric ourselves to maximal subsets I, which gives the divisors

Dh,δ(p) :=
ph − 1

Φδ(p)
, δ | h. For instance, if h = 6, we get the set:

{ p5 + p4 + p3 + p2 + p+ 1, p5 − p4 + p3 − p2 + p− 1, p4 − p3 + p− 1, p4 + p3 − p − 1}.

giving the complete set of divisors:

{ 1, p − 1, p + 1, p2 − 1, p2 − p + 1, p3 − 2 p2 + 2 p − 1, p3 + 1, p4 − p3 + p − 1, p2 + p + 1, p3 − 1,

p3 +2 p2 +2 p+1, p4 + p3 − p− 1, p4 + p2 +1, p5 − p4 + p3 − p2 + p− 1, p5 + p4 + p3 + p2 + p+1}.

Theorem 2.1. Let K/Q be Galois of degree n and of Galois group G. Let h | n be
a possible residue degree in K/Q. Let µ(K) be the group of roots of unity contained
in K. Let η ∈ K× be such that the Z[G]-module generated by η is of Z-rank n.

Then for all large enough prime number p with residue degree h and for any p | p,
the least integer k ≥ 1 for which there exists ζ ∈ µ(K) such that ηk ≡ ζ (mod p) is

a divisor of ph − 1 and cannot divide any of the integers Dh,δ(p) :=
ph − 1

Φδ(p)
, δ | h,

where Φδ is the δth cyclotomic polynomial.

Hence, op(η) and op(η) do not divide any of the Dh,δ(p) (cf. Definition 1.1).

Proof. Let k′ = g.c.d. (k, ph− 1). Then we have k′ = λk+µ (ph− 1), λ, µ ∈ Z, and

ηk
′ ≡ ηλ k ≡ ζλ (mod p); so k′ = k | ph − 1.

Suppose that k divides some Dh,δ(p) =
ph − 1

Φδ(p)
=

∏

δ′|h, δ′ 6=δ
Φδ′(p). Let s be the

Frobenius automorphism of p and H = 〈s〉 its decomposition group. Thus ηk ≡ ζ
(mod p) yields to ηDh,δ(p) ≡ ζ′ (mod p), ζ′ ∈ µ(K), giving

ηDh,δ(p) ≡ ηDh,δ(s) ≡ ζ′ (mod p).
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From Z[H ] ≃ Z[X ]/(Xh − 1), we get Dh,δ(s) =
∏

δ′|h, δ′ 6=δ
Φδ′(s) 6= 0 in Z[G] since

Dh,δ(X) /∈ (Xh− 1)Z[X ]; the Dh,δ(X) ∈ Z[X ] being independent of p, the Lemma
1.2 gives a contradiction for all p large enough with residue degree np = h. �

This result is the generalization of particular cases used in [Gr1] for h = 2. For
instance, in the above case h = 6 and p large enough (with np = 6), the orders
op(η) are divisors of p6 − 1 which are not divisors of the integers in the set:

{ p5 + p4 + p3 + p2 + p+ 1, p5 − p4 + p3 − p2 + p− 1, p4 − p3 + p− 1, p4 + p3 − p − 1}.

For p = 1093, only 76 divisors are possible among the 384 divisors of p6 − 1.

The case h = 1 (p totally split in K/Q) gives the poor information op(η) > 1
equivalent to η 6≡ 1 (mod p) which is obvious for p large enough.

The case h = ℓ (a prime) implies that op(η) is not a divisor of p− 1 nor a divisor
of pℓ−1+ · · ·+p+1 for p large enough; this means that op(η) = d1d2 with d1 | p−1,
d1 6= 1, d2 | pℓ−1 + · · · + p + 1, d2 6= 1 (taking care of the fact that when p ≡ 1
(mod ℓ), we have g.c.d. (p− 1, pℓ−1 + · · ·+ p+ 1) = ℓ).

The expression “for all large enough prime p of residue degree h” in the theorem
is effective and only depends, numerically, of h and the conjugates of η.

Remark 2.2. It is clear that if, for instance, r ∈ N is a small nonzero integer, the
Theorem 2.1 implies that for all large enough prime p with residue degree h and
for any p | p, the least integer k ≥ 1 for which there exists ζ ∈ µ(K) such that
ηk ≡ ζ (mod p) cannot divide any of the integers r.Dh,δ(p), δ | h (indeed, ηr is
still “small” in an Archimedean point of view).

So the “probabilities” of op(η) | r.Dh,δ(p) increase (from 0) if the factor r (such
that r | Φδ(p)) increases (from r = 1). In the example h = ℓ, where op(η) = d1d2,
d1 | p− 1, d2 | pℓ−1 + · · ·+ p+ 1, we have d1, d2 → ∞ when p → ∞.

3. A numerical example

Let K be the cyclic cubic field of conductor 7 defined, from a primitive 7th root
of unity ζ7, via x = ζ7 + ζ−1

7 , by the polynomial X3 +X2 − 2X − 1.

Let η = 8x + 5 of norm −203; then for p < 200, inert in K, we obtain the
exceptional example o17(η) = 307 = p2 + p+ 1 and no other when p increases; we
get some illustrations with a small r > 1 (p = 101, r = 2, with op(η) = r. (p2+p+1)),
according to the following numerical results (note that when p ≡ 1 (mod 3), we
have op(η) =

1
3 × g.c.d. (op(η), p− 1)× g.c.d. (op(η), p

2 + p+ 1)):

(i) p ≡ 2 (mod 7):

p g.c.d. (op(η), p− 1) g.c.d. (op(η), p2 + p+ 1)
23 11 553
37 36 201
79 78 6321
107 53 11557
149 37 22351
163 54 26733
191 190 36673

(ii) p ≡ 3 (mod 7):

p g.c.d. (op(η), p− 1) g.c.d. (op(η), p2 + p+ 1)
17 ∗ 1 307
31 15 993
59 58 3541
73 9 5403
101 ∗∗ 2 10303
157 26 8269
199 198 39801
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(iii) p ≡ 4 (mod 7):

p g.c.d. (op(η), p− 1) g.c.d. (op(η), p2 + p+ 1)
11 10 133
53 26 2863
67 33 4557
109 27 11991
137 136 18907
151 75 22953
179 89 32221
193 192 37443

(iv) p ≡ 5 (mod 7):

p g.c.d. (op(η), p− 1) g.c.d. (op(η), p2 + p+ 1)
19 9 381
47 23 2257
61 10 1261
89 11 8011
103 102 10713
131 65 17293
173 172 30103

4. A lower bound for op(η)

When η is fixed in K×, very small orders are impossible as p → ∞ because of the
following theorem giving Archimedean constraints; in this result none hypothesis
is done on the rank of the Z[G]-module generated by η nor on the field K itself.

Theorem 4.1. Let µ(K) be the group of roots of unity of K. Let η ∈ K× \ µ(K).
Let ν ∈ N \ pN be such that ν η ∈ ZK (the ring of integers of K).

Then, for any p prime to η, the congruence ηk ≡ ζ (mod p), ζ ∈ µ(K), k ≥ 1,

implies k ≥ log(p)− log(2)

max
(

log(c0(η)) + log(ν), log(ν))
, where c0(η) = maxσ∈G(|ησ |

)

.

If η ∈ ZK (i.e., ν = 1), then k ≥ log(p − 1)

log(c0(η))
.

In other words, if ZK,(p) is the ring of p-integers of K, the order of the image of η

in ZK,(p)

/

µ(K) . (1 + pZK,(p)), as well as op(η), satisfies the above inequalities.

Proof. Put η = θ
ν , with θ ∈ ZK . The congruence is equivalent to θk = ζ νk + Λ p,

where Λ ∈ ZK \ {0} (because η /∈ µ(K)). Taking a suitable conjugate of θ, we can
suppose |Λ| ≥ 1. Thus |Λ| p = |θk− ζ νk| ≤ |θ|k+νk giving |θ|k+νk ≥ p; so, taking
a conjugate θ0 such that |θ0| = maxσ∈G(|θσ|), we have |θ0|k + νk ≥ p, with |θ0| > 1
since θ ∈ ZK \ µ(K).

(i) If ν ≥ 2, then p ≤ |θ0|k + νk ≤ 2max(|θ0|k, νk) and we obtain the result.

(ii) The case ν = 1, used in [Gr1], Lemme 6.2, gives |θ0|k ≥ p − 1, hence the

better upper bound k ≥ log(p−1)
log(c0(η))

since |θ0| = c0(η) > 1. �

Under the assumptions of Theorem 2.1 we have the following result.

Corollary 4.2. Suppose that η ∈ ZK ; let p be of residue degree h > 1 such that

op(η) = r. d, d | Dδ,h(p), r | Φδ(p) (cf. Remark 2.2). Then r ≥ log(p − 1)

log(c0(η
Dδ,h(s)))

,

where s generates a decomposition group of p.

5. Densities–Probabilities for op(η) and op(η)

In this section, we examine some probabilistic aspects concerning the orders
modulo p | p of an algebraic number η ∈ K×. For any prime number p unramified
in K/Q we recall that gp is the number of prime ideals p | p and np the common
residue degree of these ideals. Let ZK be the ring of integers of K; the residue
fields Fp = ZK/p are isomorphic to Fpnp .
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5.1. Densities. It is assumed in this section that η ∈ K× is a variable modulo p,
prime to the given p (i.e., η ∈ (ZK,(p)/pZK,(p))

×). For each prime ideal p | p, let
ηp ∈ F×

p be the residue image of η. The density of such numbers η, whose diagonal

image is given in
∏

p|p
F×
p , is

1

(pnp − 1)gp
because the map: η (mod p) 7→ (ηp)p|p

yields to an isomorphism (chinese remainder theorem) and, in some sense, the gp
conditions on the ηp, p | p, are independent as η varies (the notion of density is
purely algebraic). Thus the orders op(η) and op(η) have obvious densities (see § 5.4).
5.2. Probabilities and Independence. We shall speak of probability when, on
the contrary, η ∈ K× is fixed and p → ∞ is the variable; but to avoid trivial cases
(as η ∈ Q× for which op(η) | p − 1), we must make some hypothesis on η so that
op(η) can have any possible value dividing pnp − 1 (see Theorem 2.1, Remark 2.2
and Theorem 4.1).

Let H be the decomposition group of a prime ideal p | p, p unramified in K/Q.
Considering F×

p as a H-module (H is generated by the global Frobenius s = sp
which makes sense in Fp/Fp),

∏

p|p
F×
p is the induced representation and we get

∏

p|p
F×
p =

⊕

σ∈G/H
σF×

p where σF×
p = Fpσ for all σ ∈ G/H .

In the same way, the representation 〈η〉G can be written 〈η〉G =
∑

σ∈G/H
σ〈η〉H ,

where 〈η〉H is the multiplicative Z[H ]-module generated by η. So, for natural
congruential reasons, independently of p, concerning the map η (mod p) 7→ (ηp)p|p,
the representation 〈η〉G must be induced by the H-representation 〈η〉H , i.e., we

must have 〈η〉G =
⊕

σ∈G/H
σ〈η〉H (otherwise, any Z-relation between the conjugates

of η gives non-independant variables ηp in a probabilistic point of view). Since any
cyclic subgroup H of G is realizable as a decomposition group when p varies, the
above must work for any H ; taking H = 1, ve get that 〈η〉G is of Z-rank n, giving
the following heuristic.

Heuristic 5.1. Let K/Q be Galois of degree n and of Galois group G. Consider
η ∈ K× and, for any prime number p unramified in K/Q and prime to η, let (ηp)p|p
be the diagonal image of η in

∏

p|p
F×
p . The components ηp are independent as p varies

(in the meaning that for given ap ∈ F×
p , Prob(ηp = ap, ∀p | p) =

∏

p|p
Prob(ηp = ap))

if and only if η generates a Z[G]-module of Z-rank n.

5.3. Remarks and examples. We suppose that η generates a Z[G]-module of
Z-rank n, which has trivial consequences:

(i) This implies that η is not in a strict subfield L of K; otherwise, if H is a
non-trivial cyclic subgroup of G such that L ⊆ KH , for any unramified prime p
such that H is the decomposition group of p | p with Frobenius s (of order h), the
order of η (mod p) is not a random divisor of ph − 1 but a divisor of p − 1, the
residue field of KH at p being Fp for infinitely many primes p.

(ii) In the same way, η cannot be an element of K× of relative norm 1 because

of the relation NK/KH (η) = 1 giving ηp
h−1+···+p+1 ≡ 1 (mod p). For instance, for

the unit η = 2
√
2 + 3 and any p inert in Q(

√
2), we obtain ηp+1 ≡ 1 (mod p) (i.e.,

op(η) | p+ 1), giving infinitely many primes p such that op(η) < p:

(p, op(η)) = (29,10), (59,20), (179,36), (197,18), (227,76), (229,46), (251,84),(269,30), (293,98),
(379,76), (389,78), (419,140), (443,148), . . .

(iii) LetK = Q(j, 3
√
2), where j is a primitive 3th root of unity, and let η = 3

√
2−1

(a unit of Q( 3
√
2)); for the same reason with H = Gal(K/Q(j)), from ηs

2+s+1 = 1,
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we get, for any prime p inert in K/Q(j), ηp
2+p+1 ≡ 1 (mod p) (for p = 7, η is of

order 19 modulo p and we have infinitely many p such that op(η) | p2 + p+ 1).

In such a non-Abelian case, some relations of dependence can also occur on a
specific component F×

p , p | p. Since η = 3
√
2 − 1 ∈ Q( 3

√
2), for any prime p inert in

K/Q( 3
√
2) (in which case, p splits in K/Q(j)), there exists a rational a such that

3
√
2 ≡ a (mod p), 3

√
2 ≡ a j2 (mod ps), 3

√
2 ≡ a j (mod ps

2

). So η ≡ a− 1 (mod p)
is of order a divisor of p − 1 modulo p, but not necessarily modulo p: for p = 5

we have 3
√
2 ≡ 3 (mod p), 3

√
2 ≡ 3j2 (mod ps), 3

√
2 ≡ 3j (mod ps

2

). Then η ≡ 2
(mod p) is of order 4 modulo p, but η ≡ 3j2 − 1 (mod ps) is of order 8 modulo ps.
So the order of η modulo 5 is 8 but we have some constraints on the ηp.

5.4. Probabilities for the order of η modulo p. Now we suppose that the
Z[G]-module generated by η is of Z-rank n.

Remarks 5.2. (i) Using the Theorem 2.1 we know that for p → ∞ with np > 1,
op(η) ∤ Dnp,δ(p), ∀ δ | np; in particular, op(η) ∤ p − 1. For this, the hypothesis on
the Z-rank of 〈η〉G is fundamental. In other words, the probability of some orders
is zero. So the “standard” probabilities used in the sequel will give majorations of
the true probabilities. This is strengthened by the Remark 2.2.

(ii) Moreover, the Theorem 4.1 gives obstructions for very small orders, the defect
of probabilities being less than O(log(p)), to be distributed among all orders. Thus,
this favors large orders, which goes in the good direction because we shall study
probabilities of orders op(η) less than p when np ≥ 2.

In a first approach, we can neglect these aspects and give some results in an
heuristic point of view corresponding to the case where η is considered as a variable
(so that probabilities coincide with densities) and we use the heuristic that when η
is fixed once for all, probabilities are much lower than densities as p → ∞.

If D | pnp − 1, op(η) | D is equivalent to ηDp = 1 for all p | p. So we obtain,

for any D | pnp − 1, Prob
(

op(η) = D
)

≤ Prob
(

op(η) | D
)

=
∏

p|p
Prob

(

ηDp = 1
)

.

Since F×
p is cyclic of order pnp − 1, we get Prob

(

ηDp = 1
)

=
D

pnp − 1
and we get, for

any D | pnp − 1, Prob
(

op(η) = D
)

≤
(

D

pnp − 1

)gp
. If gp = 1, we can replace this

inequality by Prob
(

op(η) = D
)

≤ φ(D)

pnp − 1
, where φ is the Euler function. When

gp > 1, the exact expression is more complicate since op(η) = D if and only if
op(ηp0) = D for at least one prime ideal p0 | p and op(ηp) | D for all p | p, p 6= p0,
but we shall see that we do not need it since we use rough majorations.

6. Probabilities of orders op(η) < p

Suppose p large enough, non totally split in K/Q. In [Gr1], the number η is a
fixed integer of K× and we have to consider the set

Ip(η) :=
{

[η]p, . . . , [η
k]p, , . . . , [η

p−1]p
}

,

where [ . ]p denotes a suitable residue modulo pZK .

We need that Ip(η) be a set with p − 1 elements, to obtain valuable statistical
results on the “local regulators ∆θ

p(z)”, z ∈ Ip(η); this is equivalent to ηk 6≡ 1
(mod p) for all k = 1, . . . , p− 1, hence to op(η) > p (cf. Definition 1.1).

So we are mainely interested by the computation of Prob
(

op(η) < p
)

and we
intend to give an upper bound for this probability when np > 1. As we know from
Theorem 2.1, op(η) ∤ p − 1 for p → ∞, but op(η) < p remains possible for small p

(e.g. η = 5 +
√
−1 for which p = 19 is inert in Q(

√
−1) and o19(η) = 3× 5).
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We suppose K 6= Q and np > 1. We observe that np takes a finite number of
values as p varies (e.g. np ∈ {2, 3} if G ≃ D6).

Let Dp := {D | pnp − 1, D < p, D ∤ Dnp,δ(p), ∀ δ | np}; then we have for all p
large enough:

Prob
(

op(η) < p
)

= Prob
(

op(η) ∈ Dp

)

≤
∑

D∈Dp

(

D

pnp − 1

)gp
=

1

(pnp − 1)gp

∑

D∈Dp

Dgp .

A trivial upper bound for
∑

D∈Dp

Dgp is
p−1
∑

k=1
kgp = O(1)pgp+1, giving the inequality

Prob
(

op(η) < p
)

≤ O(1)

pgp(np−1)−1
for which the application of the Borel–Cantelli

heuristic supposes gp(np − 1) ≥ 3, giving possible obstructions for quadratic or
cubic fields with p inert, and quartic fields with np = 2. But we can remove the
obstructions concerning the cubic and quartic cases by giving a best upper bound
using an analytic argument suggested by G. Tenenbaum.

Theorem 6.1. Let K/Q be Galois of degree n and of Galois group G, and let
η ∈ K× be such that the Z[G]-module generated by η is of Z-rank n. For any
prime p, let gp be the number of prime ideals p | p and let np be the residue degree
of p in K/Q. Then, for all large enough unramified p, such that np > 1, we get

Prob(op(η) < p) ≤ 1

pgp (np−1)−ε
, where ε = O

( 1

log2(p)

)

.

Proof. Let Sp :=
∑

D∈Dp

Dgp ; under the sole conditions D | pnp − 1, D < p, we have

Sp <
∑

D|pnp−1

(

p

D

)gp
Dgp = pgp × τ(pnp − 1), where τ(m) denotes the number of

divisors of the integer m. From [T], Theorem I.5.4, we have for all c > log(2) and

for all m large enough, τ(m) ≤ m

c

log2(m) , where log2 = log ◦ log. Taking c = 1 and

m = pnp − 1 < pnp , this yields Sp < p
gp+np

1
log2(p

np
−1) for all p large enough. Thus,

Prob(op(η) < p) ≤ Sp

(pnp − 1)gp
≤ 1

(pnp − 1)gp × p−gp−np/log2(p
np−1)

=
1

p
gp (np−1)−O

(

1
log2(p)

) . �

To apply the Borel–Cantelli heuristic to obtain the finiteness of primes p such
that op(η) < p, we must have gp (np − 1) > ε+1, hence gp (np − 1) ≥ 2. Otherwise,
if gp (np − 1) ≤ 1, we get gp = 1 & np = 2. So this is not sufficient to conclude

for quadratic fields with p inert since in this case, Prob(op(η) < p) ≤ 1

p1−ε
with

ε = O
(

1
log2(p)

)

.

Remarks 6.2. (i) We can replace the condition Prob
(

op(η) < p
)

by the condition

Prob
(

op(η) < pκ
)

for any real κ such that 1 ≤ κ < np− 1
gp
, in which case the Borel–

Cantelli heuristic still applies and may have some interest for large np; for instance,
if K = Qr is the subfield of degree ℓr, r ≥ 1, of the cyclotomic Zℓ-extension (ℓ a
prime), and if we take primes p totally inert in K/Q, then the result applies with
κ = ℓr − 2 (if ℓr 6= 2) for η as usual.

(ii) In the case of quadratic fields, we have to estimate
1

p2 − 1

∑

D∈Dp

φ(D) and a

numerical experimentation with the following PARI program (see [P]) shows that
the number of such divisors D ∈ Dp is conjecturally larger than 1

3 log2(p) (we have

no counterexamples for 7 < p ≤ 108); but there are much solutions p (probably
infinitely many) for which this number of divisors is less than 2 log2(p).
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{B = 108; p = 1;while(p < B, p = nextprime(p+ 2);D = divisors(p2 − 1);
d = 0; k = 0;N = 0;while(d < p − 1, k = k + 1; d = component(D, k);
if(Mod(p − 1, d)! = 0&Mod(p + 1, d)! = 0, N = N + 1));
Z = N − 1/3 ∗ log(log(p)); if(Z < 0, print(p, ””, N)))}

We shall return more precisely to the quadratic case in § 8.4. We can state:

Conjecture 6.3. Let K/Q be Galois of degree n ≥ 3 and of Galois group G. Let
η ∈ K× be such that the Z[G]-module generated by η is of Z-rank n. For any prime
p, prime to η, we denote by op(η) the order of η modulo p.

Then op(η) > p for all unramified prime p, non totally split in K/Q, except a finite
number.

7. numerical evidences for the above conjecture

This section is independent of any η ∈ K× but only depends on given parameters
(np, gp). For np ≥ 2, we explicitely compute Sp :=

∑

D∈Dp

Dgp and the upper bound

Sp

(pnp − 1)gp
of Prob

(

op(η) < p
)

, using the program described below.

7.1. General program about the divisors D ∈ Dp. It is sufficient to precise
np > 1, gp and the interval [b, B] of primes p. The program gives the least value

CB
b =: C of C(p), when p varies in [b, B], where we put

Sp

(pnp − 1)gp
=:

1

pC(p)
. The

favourable cases for the Borel–Cantelli principle are those with CB
b > 1, but the

inequalities CB
b ≥ C∞

b := Infp∈[b,∞]C(p), do not mean that the Borel–Cantelli
principle applies since we ignore if C∞

b > 1 or not for b large enough, since C∞
b is

an increasing function of b.

In the applications given below, np is a prime number (for which Dδ,np
(p) ∈

{p− 1, pnp−1 + · · · + p+ 1}); for more general values, one must first compute the
set Dp as defined in the Theorem 2.1.

{B = 107; b = 106; gp = 1;np = 2;CC = gp ∗ (np − 1) + 1; p = b;
while(p < B, p = nextprime(p+ 2); S = 0.0;M = pnp − 1;
D = divisors(M); d = 0; k = 0;while(d < p− 1, k = k + 1; d = component(D, k);
if(Mod(p − 1, d)! = 0&Mod(M/(p − 1), d)! = 0, S = S + dgp));
C = (gp ∗ log(M) − log(S))/log(p); if(C < CC,CC = C)); print(CC)}

The initial value CC := gp (np − 1) + 1 ≥ 2 is an obvious upper bound for CB
b .

7.2. Application to quadratic fields with np = 2. We have gp = 1, np = 2.
We obtain C ≈ 0.56402... for 106 ≤ p ≤ 107, and we obtain C ≈ 0.58341... for
107 ≤ p ≤ 108.

For larger primes p it seems that the constant C stabilizes.

If we replace D by φ(D) the result is a bit better (e.g. C ≈ 0.64766... instead of
0.56402... for 106 ≤ p ≤ 107).

These results are coherent with the conclusions that we shall give in § 8.4.
7.3. Application to cyclic cubic fields with np = 3. We use the program with
gp = 1, np = 3. For instance, for 106 ≤ p ≤ 107, we get C ≈ 1.5652... > 1 as
expected from Theorem 6.1.

7.4. Application to quartic fields with np = 2. For gp = 2, np = 2, and
106 ≤ p ≤ 107, we get C = 1.6103....

Of course, for np = 4 we get the larger constant C = 2.4596.... But if np = 4
we can test the similar stronger condition Prob

(

op(η) < p2
)

for which one finds
C = 1.28442..., giving the conjectural finiteness of totally inert primes p such that
op(η) < p2.
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8. Numerical examples with fixed η and p → ∞

The above computations are of a density nature and the upper bound
1

pC
is

much higher than the true probability. So we intend to take a fixed η ∈ K×,
restrict ourselves to primes p with suitable parameter np, and to compute the order
of η modulo p to find the solutions p of op(η) < p.

The programs verify that η generates a Z[G]-module of rank n. In the studied
cases, K/Q is Abelian (G = C2, C3, C4, C2 × C2) and this condition is equivalent
to ηe 6= 1 in 〈η〉G ⊗Q, for all rational idempotent e of Q[G].

8.1. Cubic cyclic fields. We then consider the following program with the poly-
nomial P = X3 +X2 − 2X − 1 (see data in Section 3). Put η = ax2 + bx+ c; then
a is fixed and b, c vary in [−10, 10] and p in [3, 104]:

{P = x3 + x2 − 2 ∗ x− 1;x0 = Mod(x, P ); x1 = −x02 − x0 + 1;x2 = x02 − 2;
a = 1; for(b = −10, 10, for(c = −10, 10,
Eta0 = a ∗ x02 + b ∗ x0 + c;Eta1 = a ∗ x12 + b ∗ x1 + c;Eta2 = a ∗ x22 + b ∗ x2 + c;
N = norm(Eta0);R1 = Eta0 ∗ Eta1 ∗ Eta2;R2 = Eta02 ∗ Eta1−1 ∗ Eta2−1;
if(R1! = 1&R2! = 1&R1! = −1&R2! = −1,
p = 1;while(p < 104, p = nextprime(p+ 2); if(Mod(N, p)! = Mod(0, p),
T = Mod(p, 7)2; if(T ! = 1, P1 = P +Mod(0, p);
A = Mod(a, p);B = Mod(b, p);C = Mod(c, p);X = Mod(A ∗ x2 + B ∗ x+ C,P1); Y = 1;
for(k = 1, p− 1, Y = Y ∗X; if(component(Y, 2) == 1,
print(a, ””, b, ””, c, ””, p, ””, k); k = p− 1))))))))}

We obtain no solutions except the following triples (where ηk ≡ 1 (mod p); the
eventual multiples of k are not written):

(a, b, c, p, op(η)) = (1,−7, 7, 137, 56), (1,−3, 3, 37, 28), (1, 4, 8, 47, 37), (1, 6,−10, 31, 18).

We have here an example (η = x2 + 4x + 8, p = 47) where op(η) = 37 divides

p2+p+1 = 37×61; this can be possible because p is too small regarding ηs
2+s+1 =

1 + 8 p = 377 (see Lemma 1.2).

8.2. Quartic cyclic or biquadratic fields. We consider the quartic cyclic field
K defined by the polynomial P = X4 − X3 − 6X2 + X + 1 of discriminant 342.

The quadratic subfield of K is k = Q(
√
17) and K = k

(

√

17+
√
17

2

)

. The program

is analogous to the previous one with np = 2. Put η = ax3 + bx2 + cx+ d; then b,
c, d vary in [−10, 10], and p in [3, 104]:

{P = x4 − x3 − 6 ∗ x2 + x+ 1; x0 = Mod(x, P );x1 = −1/2 ∗ x03 + 3 ∗ x0 + 3/2;
x2 = x03 − x02 − 6 ∗ x0 + 1;x3 = −1/2 ∗ x03 + x02 + 2 ∗ x0− 3/2;
a = 1; for(b = −10, 10, for(c = −10, 10, for(d = −10, 10,
Eta0 = a ∗ x03 + b ∗ x02 + c ∗ x0 + d;Eta1 = a ∗ x13 + b ∗ x12 + c ∗ x1 + d;
Eta2 = a ∗ x23 + b ∗ x22 + c ∗ x2 + d;Eta3 = a ∗ x33 + b ∗ x32 + c ∗ x3 + d;
N = norm(Eta0);
R1 = Eta0 ∗ Eta1 ∗ Eta2 ∗ Eta3;R2 = Eta0 ∗ Eta2−1;R3 = Eta0 ∗ Eta1−1 ∗ Eta2 ∗ Eta3−1;
if(R1! = 1&R2! = 1&R3! = 1&R1! = −1&R2! = −1&R3! = −1,
p = 1;while(p < 104, p = nextprime(p+ 2);
if(Mod(N, p)! = Mod(0, p),
if(issquare(Mod(p, 17)) == 1, u = sqrt(Mod(17, p)); v = (17 + u)/2;
if(issquare(v) == 0, P1 = P +Mod(0, p);A = Mod(a, p);B = Mod(b, p);
C = Mod(c, p);D = Mod(d, p);X = Mod(A ∗ x3 + B ∗ x2 + C ∗ x+D,P1); Y = 1;
for(k = 1, p− 1, Y = Y ∗X; if(component(Y, 2) == 1,

print(a, ””, b, ””, c, ””, d, ””, p,””, k); k = p− 1))))))))))}

We obtain no solutions except the following ones (where ηk ≡ 1 (mod p) and
where we consider only a representative of η modulo p and k = op(η)):

(a, b, c, d, p, op(η)) = (1,−10, 2,−10, 19, 12), (1,−9, 6, 9, 43, 33), (1,−8, 7, 7, 461, 276),

(1,−3, 0,−6, 223, 64), (1,−1,−6,−10, 229, 184), (1,−1, 3,−2, 59, 40),
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(1, 3,−8, 6, 53, 9), (1, 3,−5, 10, 83, 21), (1, 9,−7, 5, 43, 22).

For the last three cases, the order divides p+ 1 for the same reason as above.

Then we have the more exceptional solution (1,−4, 1, 8, 1549, 1395)where 1395 =
9× 5× 31 with 9 | p− 1 and 5× 31 | p+ 1.

8.3. Quadratic fields. We consider the field K defined by the polynomial P =
X2 − 3 and the following program with η = a

√
3 + b, b ∈ [−10, 10]:

{P = x2 − 3; x0 = Mod(x, P );x1 = −x0; a = 1; for(b = −10, 10,
Eta0 = a ∗ x0 + b;Eta1 = a ∗ x1 + b;N = norm(Eta0);
R1 = Eta0 ∗ Eta1;R2 = Eta0 ∗ Eta1−1; if(R1! = 1&R2! = 1&R1! = −1&R2! = −1,
p = 104;while(p < 105, p = nextprime(p+ 2); if(Mod(N, p)! = Mod(0, p),
T = Mod(3, p); if(issquare(T ) == 0, P1 = P +Mod(0, p);
A = Mod(a, p);B = Mod(b, p);X = Mod(A ∗ x+B, P1); Y = 1; for(k = 1, p− 1, Y = Y ∗X;
if(component(Y, 2) == 1, print(a, ””, b, ””, p, ””, k); k = p− 1)))))))}

For small primes p we obtain the following solutions (there are solutions op(η) | p−1
or op(η) | p+ 1 since p is small regarding η):

(a, b, p, op(η)) = (1,−9, 41, 15), (1,−9, 1301, 403), (1,−8, 5, 3), (1,−7, 29, 24), (1,−7, 103, 39),

(1,−7, 727, 143), (1,−4, 701, 675), (1, 3, 43, 33), (1, 6, 1123, 843), (1, 7, 29, 24), (1, 7, 103, 78),

(1, 7, 727, 286), (1, 9, 41, 30), (1, 9, 89, 55), (1, 9, 1301, 806), (1, 9, 6163, 4623),(1, 10, 79, 65),

(1, 10, 101, 75), (1, 10, 967, 847).

For 104 ≤ p ≤ 105 we get the following solutions:

(a, b, p, op(η)) = (1,−10, 20359, 13234), (1,−10, 90149, 72700), (1,−9, 29501, 6705),

(1,−8, 10711, 2210), (1,−5, 86969, 81172), (1,−4, 30941, 25785), (1, 5, 86969, 81172),

(1, 8, 10711, 1105), (1, 9, 29501, 13410), (1, 10, 20359, 6617), (1, 10, 90149, 72700).

It is clear that the Conjecture 6.3 is likely for degrees n > 2. The question arises
for quadratic fields with np = 2. We give here some supplementary computations.

(i) For instance, if we fix η = 5
√
3+2 and take large primes, inert in Q(

√
3), the

following simplified program:
{m = 3; a = 5; b = 2; p = 1;while(p < 5 ∗ 107, p = nextprime(p+ 2); T = Mod(p, 12);
if(T ! = 1&T ! = 11, A = Mod(a, p);B = Mod(b, p); Y 1 = 0;Y 2 = 1;
for(k = 1, p− 1, Z = B ∗ Y 1 + A ∗ Y 2; Y 2 = B ∗ Y 2 +m ∗A ∗ Y 1; Y 1 = Z;
if(Y 1 == 0&Y 2 == 1, print(p, ””, k); k = p− 1))))}

gives the few solutions (up to p ≤ 5× 107):

(p, op(η)) = (5, 4), (29, 21), (1063, 944), (32707, 23384), (90401, 68930).

(ii) For η = 7
√
3 + 3 we obtain the solutions (up to p ≤ 5× 107):

(p, op(η)) = (7, 6), (29, 21), (137, 92), (7498769, 5927335), (39208553, 31070928).

The presence of the common solution (29, 21) shows that the pairs (op(η), p) such
that op(η) | p2 − 1 & op(η) < p give many solutions when η varies. Moreover, the
presence of large solutions as (39208553, 31070928) is a bad indication for finiteness.

(iii) Consider K = Q(
√
−1) with p ≡ 3 (mod 4) up to p ≤ 5× 107.

For a = 1, b = 4 (N(η) = 17), we obtain the solution (p, op(η)) = (49139, 19593).

For a = 1, b = 2 (N(η) = 5), we obtain no solutions up to p ≤ 5× 107.

For a = 3, b = 11 (N(η) = 130), we obtain the solutions (p, op(η)) = (3, 2),
(43, 11), (131, 24), (811, 174), (911, 133), (5743, 3168), (2378711, 1486695).

Although this looks like the case of Fermat quotients for wich a specific heuristic
is used in [Gr2], it seems that we observe more systematic large solutions in the
quadratic case with p inert, and, contrary to the Fermat case, we have possibly
infinitely many solutions. This should be because the problem is of a different
nature and is connected with primitive roots problem in number fields (see [Mo]).
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So we shall try in the next subsection to give some insights in the opposite direction
for quadratic fields (infiniteness of inert primes p such that op(η) < p).

8.4. Analysis of the quadratic case. From the formula Prob
(

op(η) < p
)

<
1

p2 − 1

∑

D∈Dp

φ(D) of Remark 6.2 (ii), we study the right member of the inequality

(p+ 1)× Prob(op(η) < p) <
1

p− 1

∑

D∈Dp

φ(D);

from numerical experimentations, we can state, independently of any quadratic
field K and η ∈ K×:

Conjecture 8.1. Let Dp be the set of divisors D of p2 − 1 such that D < p,
D ∤ p− 1, D ∤ p+ 1 (see Theorem 2.1). We have the inequalities:

1

3
≤ 1

p− 1

∑

D∈Dp

φ(D) < O(1) plog2(p)/log(p), p → ∞.

The majoration
1

p2 − 1

∑

D∈Dp

φ(D) <
O(1)

p1−log2(p)/log(p)
(if exact) is an improvement

of the upper bound
1

p1−ε
(for ε = O

( 1

log2(p)

)

) of the Theorem 6.1, but the sets of

divisors are not the same and this information is only experimental.

On the contrary, the lower bound seems exact, except very few cases, and (if so)
proves the infiniteness of inert primes p such that op(η) < p (with op(η) ∤ p− 1 and
op(η) ∤ p+ 1) for fixed η ∈ K× (such that η1+s and η1−s are distinct from roots of
unity), for any quadratic field K.

For p ∈ {2, 3, 5, 7, 17}, we get the strict inequality 1
p−1

∑

D∈Dp

φ(D) <
1

3
and we

have no other examples up to 108. Then for p ∈ {13, 37, 73, 193, 1153, 2593, 2917,
1492993, 1990657, 5308417, 28311553}, we have the equality 1

p−1

∑

D∈Dp

φ(D) =
1

3
;

in all these examples we have p = 1 + 2u × 3v, u ≥ 0, v ≥ 0, but the reciprocal is
not exact (e.g., p = 19 and Dp = {8, 12, 15}).

It is not difficult to see that
1

p− 1

∑

D∈Dp

φ(D) ≈ 1

3
as soon as p is a “quasi Sophie

Germain prime”. We call quasi Sophie Germain a prime p such that p2−1 = 2e×q ℓ,
e ≥ 3, where q and ℓ are odd prime numbers.

Up to 107, we find only the quasi Sophie Germain primes p = 11, 13, 17, 23,
31, 47, 193, 257, 383. Indeed, if for instance p − 1 = 2q and p + 1 = 2e−1ℓ, this
yields q = −1 + 2e−2ℓ and p = 1 + 2q; if p− 1 = 2e−1q and p+ 1 = 2ℓ, this yields
ℓ = 2e−2q + 1 and p = −1 + 2ℓ. Perhaps there are no other solutions.

With the following program

{b = 1036 + 12345678910111213141516171819; B = b+ 103; p = b;
while(p < B, p = nextprime(p+ 2); S = 0.0;M = p2 − 1;L = 1− log(log(p))/log(p);
D = divisors(p2 − 1); d = 0; k = 0;while(d < p− 1, k = k + 1; d = component(D, k);
if(Mod(p − 1, d)! = 0&Mod(p + 1, d)! = 0, S = S + eulerphi(d)));

Pr = S/M ;V 1 = S/(p− 1)− 1/3; V 2 = Pr ∗ pL; print(p, ””, V 1, ””, P r,””, V 2))}

we obtain, for the inequalities 1
3 ≤ 1

p−1

∑

D∈Dp

φ(D) < O(1) plog2(p)/log(p), the follow-

ing numerical data, first for small prime numbers, then for larger ones, where

• Proba :=
1

p2 − 1

∑

D∈Dp

φ(D),

• V1 := (p+ 1)× Proba− 1

3
=

1

p− 1

∑

D∈Dp

φ(D) − 1

3
,

• V2 := (p + 1) × Proba × p1−log2(p)/log(p) giving a minoration of the possible
O(1) of the right member:
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prime number p V1 Proba V2

112757 1.1437 1.31× 10−5 0.1269
112759 1.6679 1.77× 10−5 0.1720
112771 14.9499 1.35× 10−4 1.3137
112787 0.0538 3.43× 10−6 0.0332
112799 11.2873 1.03× 10−4 0.9989
112807 2.2715 2.31× 10−5 0.2239

112831 3.5941 3.48× 10−5 0.3376
112843 0.7225 9.35× 10−6 0.0907
112859 12.7989 1.16× 10−4 1.1288

prime number p V1 Proba V2

1000000012345678910111213141516172323 10.4454 1.08 × 10−35 0.1300
1000000012345678910111213141516172439 110.0698 1.10 × 10−34 1.3318
1000000012345678910111213141516172457 0.0054 3.39 × 10−37 0.0040
1000000012345678910111213141516172551 112.7791 1.13 × 10−34 1.3645
1000000012345678910111213141516172631 19.9470 2.02 × 10−35 0.2446
1000000012345678910111213141516172643 0.6552 9.88 × 10−37 0.0119
1000000012345678910111213141516172661 16.5501 1.69 × 10−35 0.2036
1000000012345678910111213141516172719 67.9646 6.83 × 10−35 0.8239
1000000012345678910111213141516172761 185.5954 1.86 × 10−34 2.2430

(i) For p = 1000000012345678910111213141516172457, we have:

p− 1 = 23 × 32 × 389× 62528362319× 571006238831466292903,

p+ 1 = 2× 8131511× 61489187701134445376216864339.

(ii) We get the most spectacular case p = 10123456789123456789125887, where

the difference between
1

3 (p + 1)
and the probability is 5.064... × 10−23; then the

upper bound is V2 = 0.00579. For this prime we have the factorizations:

p−1 = 2×5061728394561728394562943, p+1 = 28×3×13181584360837834360841.

(iii) For p = 504202701918008951235073, where V1 = 0, we have the factoriza-
tions p− 1 = 1 + 29 × 344, p+ 1 = 2× 252101350959004475617537.
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