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Automatic sensor-based detection and
classification of climbing activities

Jérémie Boulanger, Ludovic Seifert, Romain Hérault, Jean-Francois Coeurjolly

Abstract—This article presents a method to automati-
cally detect and classify climbing activities using inertial
measurement units (IMUs) attached to the wrists, feet and
pelvis of the climber. The IMUs record limb acceleration
and angular velocity. Detection requires a learning phase
with manual annotation to construct the statistical models
used in the cusum algorithm. Full-body activity is then
classified based on the detection of each IMU.

I. INTRODUCTION

The sport of rock climbing requires the use of both
upper and lower limbs, as climbers reach and grasp holds
and use their feet to climb the rock surface. Yet rock
climbing encompasses more than continuous upward
body movement, because more or less static positions
are also crucial for exploring and grasping surface holds
[1][2][3], posture regulation [4][5][6][7], arm release and
resting [8], and finding routes [9][10].

The time spent in exploration and posture regulation
as opposed to ascending, or more broadly the time spent
immobile as opposed to in motion, can be analysed by
quantifying the durations when the pelvis is and is not
in motion [11][8][12][13]. In [11], it was noted that
advanced climbers spent 63% of a climb immobile and
37% in actual ascending.

As previously noted, periods of immobility may not
represent only inappropriate stops, but rather could re-
flect active resting [8]. For example, in [14], expert
climbers were shown to spend a greater proportion of
their climbing time in static states and more of the static
time actively resting (i.e. limb shaking), compared with
climbers of intermediate skill.
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However, a point of difference with [12][13] is that
in [14] the variability in limb behaviour was associated
with exploration or a more functional use of climbing
wall properties. This suggests that during stops climbers
may exhibit behaviours that are dedicated to more than
managing fatigue.

Ascending requires skills in route finding, which
reveals the ability of climbers to interpret the ever-
changing structure of the climbing wall design [9][10].
Route finding is a critical climbing skill that can be
identified by differentiating exploratory movements and
performatory movements [2]. In [2], a distinction be-
tween exploratory and performatory movements was
made according to whether a potential hold on a climb-
ing wall was touched, irregardless of whether it was used
as a support. For example, the authors of [3] reported that
skilled climbers tended to touch fewer than three surface
holds before grasping the functional one.

Clearly, an excessive duration spent immobile for
route finding, hold exploration or posture regulation is
likely to compromise climbing fluency and lead to the
onset of fatigue. The aim of this article is to propose
a method to automatically detect and quantify some
of the major climbing activities: immobility, postural
regulation, hold exploration, hold change and traction.
As stated in [12][13], these activities can only be defined
by taking into account the activities of both the limbs and
the pelvis.

II. DATA AND PROTOCOL

A. State of the art

Previous studies like those of [11] and [15] focused on
rock climbing and analysed the climbers behaviour. This
was accomplished by making video recordings of the
climb and having experts manually perform the analysis.
This method has several drawbacks, as the possibilities
for analysis are limited, the results are of relatively low
accuracy, and the process itself is long and tedious.
Moreover, a full view of the climbing wall might not be
available for video recording in outdoor studies without
the use of drones or similar devices.



Automatic measures were reported in [16] and [1],
with force sensors placed inside the holds on the climb-
ing walls. Despite the high cost of the experimental de-
vices for long routes, this method is not usable outdoors
and requires a long set-up for indoor walls that are not
yet equipped.

Given the disadvantages of these methods, wireless
sensors placed on the climber might be a good solution,
offering easy measurement set-up and quick adapta-
tion to the route environment (indoors or outdoors). In
[17], for example, the climber carried a single minia-
ture accelerometer that was used to evaluate different
performance coefficients. However, this article did not
present an analysis of behaviour or a procedure for
distinguishing activities and their distribution along the
climb. It also did not assess the activities of the different
limbs, which is needed to determine the climber state
on the climbing wall. This article presents a method
using multiple inertial measurement units (IMUs) placed
on several body sites, with each IMU containing an
accelerometer, a gyroscope and a magnetometer to detect
limb and pelvic activities based on their acceleration
or angular velocity. This step, presented in Section III,
requires learning statistical modelling with a labelled set
of climbs, which is accomplished by manual annotation
on video recordings of climbing experts. However, these
videos are no longer needed once the learning protocol
is completed, and Section IV presents a procedure for
determining full-body activity by combining the inde-
pendent detections of limb activity.

B. Protocol

Two male climbers of ability 6a on the French Rating
Scale of Difficulty (F-RSD) [18], which corresponds to
an intermediate performance level [19], undertook an
easy, top-roped route (grade of 5c on F-RSD) composed
of 20 hand holds for a 10m height. The route was
identifiable by colour and set on an artificial indoor
climbing wall by two certified route setters who ensured
that it matched an intermediate level of climbing per-
formance. The participants were instructed to self-pace
their ascent and to climb fluently and without falling. The
ascents were preceded by 3 minutes of route preview,
as pre-ascent visual inspection is a key parameter of
climbing performance [8]. Procedures were explained to
the climbers, who then gave written informed consent to
participate1.1.

Each climber was considered to be in one the fol-
lowing states at any given time: immobility, postural

1The protocol was approved by the local University ethics committee
and followed the declaration of Helsinki.

regulation, hold exploration, hold change or traction. As
stated previously, a single detection of limb activity is
required to describe the full-body state.

Accelerations and angular velocities were collected
from the four limbs and pelvis using IMUs located on
the right and left wrists, right and left feet, and pelvis.
The IMUs combined a triaxial accelerometer (±8G), a
triaxial gyroscope (1600◦/s) and a triaxial magnetometer
(MotionPod, Movea c©, Grenoble, France) referenced to
magnetic North, sampled at 100Hz. Wireless transmis-
sions to a controller enabled recording with MotionDev-
Tool software (Movea c©, Grenoble, France). A wearable
device is required to measure climbing activities on a
10m-high climbing wall.

C. Recording and preprocessing

The acceleration of each sensor was determined from
the recorded signals. These data were used to synchro-
nise the video recording of the climb with the IMU
signals in the learning phase of the detection, as well
as to detect activity. Therefore, this method had to be
used even on unlabelled sets of climbing.

Although the sensors directly record the acceleration
in the sensor frame, the recording cannot be used directly
as proper acceleration because of the gravity component.
The norm of this component is well-known (9.81m/s2),
but it cannot be removed from the sensor frame without
knowing the orientation of the sensor in the ground
reference frame.

Let as be the recorded acceleration in the sensor
frame. By denoting R the rotation matrix describing
the sensor frame in the Earth reference frame (magnetic
North, West and vertical up direction), the acceleration
a in the Earth reference is then defined as a = Ras.
Once a is obtained, the gravity component can easily be
removed (see Figure 1).

To determine R, a complementary filter based al-
gorithm is used [20][21], based on the three sensor
information sources (i.e. accelerometer, gyroscope and
magnetometer). The gyroscope measures precise angular
changes over very short time durations but cannot be
used to track the angle changes by integration due to
drift. The accelerometer provides absolute, albeit noisy,
measurements of acceleration. By combining the two
sensor information sources it was possible to reduce the
drift of the gyroscope for sensor orientation tracking.
When magnetometer information was added, it was
possible to compute the sensor orientation respect to the
fixed frame of Earth reference.

Figure 2 provides an example of the recorded norm
of the processed acceleration signal.
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Fig. 1. Example of the frame difference between the ground frame
(red), where the gravity is known, i.e can be removed, and the sensor
(grey box) frame (blue), where the gravity components are unknown
and cannot be removed from the recorded acceleration (sum of the
green vectors).

Fig. 2. Example of the evolution in the norm of a recorded acceleration
after removing the gravity component. The sensor was attached to the
climbers right foot. The acceleration is measured in m/s2.

Based on the processed acceleration and the angular
velocity, we automatically detected the limb motion
using the cusum [22] method.

III. ACTIVITY DETECTION

Activity was detected from each sensor independently.
As this method requires a learning phase, this last is
also described in detail. Once the learning phase is
completed, the paragraph III-A can directly be used.

A. Cusum-based detection

The cusum algorithm is often used to determine a
change point in a time series of independent random
variables based on statistical models. In this case, we
assume that a limb is either immobile (state called H0) or
mobile (in motion) (state H1) at a given time. It is further

assumed that these states are exhaustive and exclusive,
i.e. for each sample, the limb is in one of these states
and only one. The idea is thus to estimate the state of
the limb based on the recorded signals. Let xt be the
considered signal. In our case, it will be the norm of
either the acceleration or the angular velocity.

The main idea is to assume that xt is a random
variable sampled from a distribution fixed by the state
of the limb. In other words, if the limb is in state H0

(respectively H1), then xt ∼ p(.|H0) (respectively xt ∼
p(.|H1)). If p(.|H0) and p(.|H1) are known, a likelihood
ratio can be computed for a given t (we directly consider
t as a discrete variable, due to the sampling process) to
estimate the distribution from which t was sampled

lxt = log (p(xt|H1))− log (p(xt|H0)) .

The sign of lxt provides an estimation of the state of the
limb at time t: H1 for positive and H0 for negative.

It is assumed that the state changing periods are much
longer than the sampling time and can therefore form a
cumulative sum to increase the detection performance.
Let Sx

t be the cumulative sum of the log likelihood ratio

Sx
t =

∑
k≤t

lxk . (1)

The propensity of Sx
t to be monotonous indicates the

state the limb should be assumed to be in. A change in
monotony implies a change in the state. An algorithm
looking directly at a change in monotony would be
subject to many false detections. Instead, the use of
positive thresholds λ0 and λ1 helps to reduce false
alarms.

For example, given state H0 at t = 0, state H1 is
detected when

Sx
t > min(Sx

s |s < t) + λ1.

Similarly, to detect H0 while being in state H1, a change
occurs when

Sx
t < max(Sx

s |s < t)− λ0.

When a change point is detected, the process starts again
by taking the detection time as the new time origin and
starting the cumulative sum again from this point.

Although thresholds can be chosen to be equal, we
consider a more general framework here by taking
different values. These thresholds can influence the false
positive detection rate and therefore should be chosen
according to a given performance measure or some prior
model of detection.

Thresholds as well as the distributions p(.|H0) and
p(.|H1) are not known in advance in this case, which
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is why a learning step is required. A labelled set is
used to estimate the distributions and thresholds based
on manual annotation, described in the next section.

B. Construction of the labelled set

The climbs were video recorded in their entirety, and
experienced climbers manually annotated three different
climbs by two different climbers. They indicated for each
frame of the video the state of each limb.

Because the camera and sensors were not synchro-
nised, the delay between the frame-based manual an-
notations and the acceleration had to be estimated. The
videos were recorded using a fixed camera facing the
wall, with a red light attached to the climbers pelvis. The
position of the red light on the image therefore gave the
position of the pelvis on the wall, up to some correction.
A classical Kalman filter was used to track the red
light in the frame, and an adaptive filter was required
to counterbalance similar colours in the surrounding
environment (in this case, the presence of televisions
in the recorded picture). Once the red-light position
on the image was obtained, lens distortion had to be
corrected, followed by parallax correction. An example
of automatic tracking after correction is presented in
Figure 3.

Based on the obtained trajectory, an approximate
acceleration of the pelvis was determined. Using a
maximum correlation measure with the sensor-based
lateral and vertical accelerations of the pelvis, the de-
lay between each signal was estimated. Therefore, the
manual annotation (based on the video) and the recorded
signals (based on the sensors) could be synchronised. An
example of correlation is presented in Figure 4.

An example of the synchronised annotation and signal
is presented in Figure 6. Based on these annotations, a
model was determined for each state. In this example,
it appears clearly that the high values of the accelera-
tions match the H1 hypothesis (mobility). These three
annotated climbs, along with the recorded IMU signals,
will be used as a labelled set for the learning phase of
activity detection.

C. Learning protocol

For now, we consider that xt ∈ R+ is either the norm
of the acceleration or the norm of the angular velocity.
Using the manual annotations, an example of the his-
togram of the acceleration norm for each hypothesis H0

and H1 is presented in Figure 5.
Instead of considering general distributions for

p(.|Hi), i = 0, 1, parametric distributions are considered.
A χ2 test is performed for each sensor and each climb

Fig. 3. Example of automatic tracking of the climber based on
video footage. The trajectory during the climb is shown in white.
The background image is the last image from the video, therefore
containing the last tracked position. It is also apparent that the red
light can be hidden, for example, due to substantial body rotation so
that the light no longer faces the camera. On this image, the lens
distortion and the parallax were corrected.
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Fig. 4. Example of the correlation between the sensor acceleration
and the video tracking-based acceleration. In this case, the delay
maximising the correlation is around 14.7s.

Fig. 5. Comparison between the histogram of the acceleration (solid
line) and the fitting Gamma distribution (dotted line). For each state,
only the corresponding (based on the annotations from Figure 6)
samples are considered. The fitting Gamma distribution is trying to fit
the histogram and is obtained via a maximum likelihood estimation.

Acceleration Ang. velocity
norm squared norm squared

Gamma H0 1.0 0.68 1.0 0.93
Expone H0 1.0 0.16 1.0 0.53
Gamma H1 0.59 0 0.93 0.32
χ2 H1 0 0.13 0.28 0.59

Table I
p-values of χ2 goodness-of-fit tests for the norm and squared norms

of the acceleration and angular velocity signals. The Gamma and
exponential models are tested for state H0, while Gamma and with 3

degrees of freedom models are tested for state H1.

and the results are presented in Table I. The values
presented in Table I are averages of the p-values for the
three annotated climbs. Table I compares the fit between
the norm of the acceleration and its squared value to the
Gamma distribution, the exponential distribution (which
seems to fit the samples in the H0 hypothesis), and the
χ2 distribution with three degrees of freedom (corre-
sponding, for the squared norm, to a model where each
component of the signal is sampled from a Gaussian).
It indicates that the Gamma distribution-based model
seems a good choice to describe the signals.

To be more specific, we consider the Gamma distri-
butions p(.|Hi) for i = 0, 1 for both states given by

p(x|Hi) =
1

Γ(ki)θi
ki
xki−1 exp

(
−x
θi

)
, (2)

where θi and ki are positive real number and i = 0, 1
represents the state.

The coefficients θi and ki are determined by maximum
likelihood. By considering a second order approximation
of the digamma function Γ′(k)/Γ(k) [23], they are given
by

k̂i ≈
3− si +

√
(si − 3)2 + 24si
12si

(3)

and
θ̂i = Ei[x]/ki, (4)

with
si = log (Ei[x])− [Ei[log(x)] .

The term Ei[x] represents the empirical average of the
values of x when the annotation indicates it is in state
i. These empirical means are determined by considering
the concatenation of the signals from the labeled set.

Clearly, these parameters change with the nature of
the signal xt (norm of the acceleration or norm of the
angular velocity).

Based on the signal xt, using these Gamma
distributions with parameters determined via Equations
(3) and (4), the cumulated log likelihood ratio Sx

t can
be determined. An example is presented, along with the
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Fig. 6. (Top) Example of the norm of the acceleration for one sensor.
(Middle) Manual annotation synchronized with the acceleration signal.
(Bottom) Cumulated loglikelihood Sacc

t defined in Equation (1) of the
acceleration signal using the models constructed from the annotation.

annotations, in Figure 6.

The method presented in Paragraph III-A leads to the
determination of a cumulated log likelihood ratio (see
Equation (1)), depending on the given signal. Let Sacc

t

be based on the norm of the acceleration and Sang
t be

based on the norm of the angular velocity.
This is due to a lack of proper multivariate Gamma

model, preventing the use of both signals directly. In-
stead, a basic solution is used here where the cusum
algorithm is run on St, obtained as a weighted sum of
Sacc
t and Sang

t :

St = αSacc
t + (1− α)Sang

t (5)

where α ∈ [0, 1]. For example, if α = 0 (respectively

Fig. 7. Example of a ROC figure, representing the true positive rate
with respect to the false positive rate. Each dot represents an estimation
for a given set of thresholds. The best set of thresholds maximising (6)
is the one maximising the distance to the diagonal. In this example,
the norm of the angular velocity was the signal used for detection and
the sensor was attached to the left foot.

1), then only the angular velocity (respectively acceler-
ation) is considered for detection. A comparaison of the
performances depending on α is presented in Section
III-D. It should be noted that although Sacc

t and Sang
t

are cumulated log likelihood ratios, St is no longer one
as the only possible distribution associated with such a
likelihood would not be unitary. Therefore, maximising
(5) does not correspond to maximising a likelihood. The
minimisation of St should be regarded as a minimum
contrast estimation method.

Running the cusum algorithm with different thresholds
λi will clearly lead to different estimates. To measure the
performance of the detection, the coefficient

c =
TP

P
− FP

N
(6)

is used, where TP is the number of true positives
(detecting H1 when it is H1), P (respectively N ) the
number of elements in H1 (respectively H0) in the
manual annotation, and FP the number of false positives
(detecting H1 when it is H0). This coefficient corre-
sponds to the performance measure used in the learning
protocol as it represents, in a ROC curve, twice the
distance to the diagonal, indicating a random decision
(Figure 7). The thresholds are then determined as the
ones maximising c.

A comparison of the recorded signal, the annotation
and the (optimal) detection is presented in Figure 8. This
figure also illustrates the difference between the detec-
tion based on other annotations where all the parameters

6



Fig. 8. (Top) Norm of the angular velocity. (Middle top) Manual
annotation. (Middle bottom) Detection. (Bottom) Optimal estimation.
In this case, the sensor was attached to the right hand. For better
readability, the weighted coefficient α = 0 was chosen; therefore,
only the angular velocity was used in the determination of St. It is
notable that the optimal estimation still differs from the annotation.

are learnt from a distinct labelled set and the optimal
detection based on the signal using the annotation of
the signal itself to perform the detection. This optimal
detection is not achiveable in practice as it requires the
annotation of the considered climb.

The next section presents the performance of this
detection via a cross-validation method.

D. Performance and limitations

A cross-validation method was used to evaluate the
performances of the learning algorithm. The method
consists of learning the different parameters (ki, θi,
λi for i = 0, 1), concatenating two out of the three
annotated climbs, and applying these parameters on the
third one. The annotation for the third climb makes it
possible to determine a performance measure via the
coefficient from (6). An optimal coefficient c can also
be determined by directly learning all the parameters
only using the third climb. This gives an idea of the best
achievable performance. Then, permutations between the
learning and testing climbs are made and the average
coefficient c is considered as the final performance of
the algorithm. Table II presents the results from the
cross-validation for all the sensors for α = 0, 1 and
the value maximising the score (and therefore, better
than the extrema value). It appears that the score is
roughly similar for the different values of α. However,
the optimal value of α (different for each sensor) will
be used from now on. For further applications with

Acceleration Ang. velocity (Accel, Ang vel)
score optimal score optimal score optimal

L Foot 0.79 0.80 0.80 0.81 0.67 0.82
R Foot 0.74 0.80 0.75 0.83 0.64 0.84
L Hand 0.47 0.62 0.53 0.64 0.48 0.68
R Hand 0.42 0.53 0.43 0.60 0.37 0.59
Pelvis 0.31 0.38 0.34 0.48 0.11 0.49

Table II
Score and optimal score of the cross-validation for α = 0 (Ang.

velocity), α = 1 (Accel) or the optimal α. The score is only slightly
increased for the optimal value.x

non-annotated climbs (see Paragraph IV-C), the learning
phase is carried out on all three annotated climbs.

The optimal detection did not provide a very high
performance measure in all cases. This may have had
several causes:

• Missing a movement during manual annotation:
Due to the lack of visibility of the concerned limb.

• Delay or different movement period: As the anno-
tation is manual, a delay might occur between a
movement and its detection by the person annotat-
ing the video.

• Sensor is hit during the climb: For example, this
occurs when the climber claps his hands together,
creating an acceleration peak of both wrist sensors.

• Defective orientation estimation: As the accelera-
tion signal requires the sensor orientation, a wrong
orientation estimation will directly add bias to the
acceleration because the gravity component will no
longer be aligned with the vertical (according to the
sensor).

The next section presents how these binary detections
(state H1 or H0) from each sensor can be classified to
describe a full-body state and how this is used to measure
exploration during a climb.

IV. ACTIVITY CLASSIFICATION

A. Full-body activity

Based on state detection of the four limbs and pelvis,
we defined four exclusive states matching the different
activities of the climber:

• Immobility: All limbs are immobile and the pelvis
is immobile.

• Postural Regulation: All limbs are immobile and
the pelvis is moving.

• Hold interaction: At least one limb is moving and
the pelvis is immobile.

• Traction: At least one limb is moving and the pelvis
is moving.
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Immobility is the state when the climber is not moving
at all. He might be resting due to fatigue or looking at
the route to determine its climbing path, while his limbs
remain immobile.

Postural regulation is the adjustment of the climbers
centre of mass while his limbs stay on the same holds.
This might consist of a body rotation to be able to catch
a hold that would not be reachable with the previous
body configuration.

Hold interaction is the movement of a limb while
maintaining the pelvis (and therefore the global position
of the climber on the wall) immobile. This is a change
in the hold in use before the next traction, a change in
the position and orientation of the hand/foot on an hold
for better adapted use of the hold, or successive limb
movement to determine which hold is most appropriate
for the next traction. In the next section, we present a
more detailed classification to differentiate actual use of
a hold from hold exploration.

Traction is the state when the climber is moving
(generally upward) using at least one limb. Although
the limb might not be moving as substantially as during
a hold change, this state is still easily detected and its
definition seems to fit the climbers actual traction phases
on the video.

An example of the successive states for a climb is
presented in the last panel of Figure 10.

B. Limb state

It quickly appears that the state of hold interaction
covers a wide spectrum of activities. It is not directly
possible to determine whether the climber is actually
using a hold or moving a limb towards different holds
to check whether they are reachable and, if so, how to
use them (in this case, the limb can remain on the same
hold but change its orientation). Consequently, new states
for each limb are considered as sub-states of the Hold
interaction defined in Section IV-A. These sub-states are
the following:
• Immobility: When a limb is detected as being

immobile.
• Use: When a limb is moving during traction.
• Change: The last movement before traction, or the

final change in hold (or change in limb orientation
on the same hold) before being used.

• Exploration: All movements except the last one
before traction. An example is the case when the
climber is trying several holds before choosing the
one he will be using for traction.

A summary of the different states is presented in Figure
9 and an example of the full state analysis of a climb is

Hip signal

Immobile

Immobile

Hold interaction

Mobile

Postural regulation

Traction

Limb signal

Immobile

Immobile

Postural regulation

Mobile

Traction

Use

Hold interaction

Exploration

Change

Fig. 9. Decision tree from the signals. White rectangles are decisions
from single sensors and red rectangles are multiple sensor decisions.
Each decision depends on the decisions from other senors. The last
layer for the limb detection tree depends on the next traction detection.

presented in Figure 10.

C. Example of application

This section presents a simple example of application
based on the previous algorithm: measuring the ratio
between exploratory and performatory movements.

As previously noted, this ratio can be used to differ-
entiate skilled and unskilled climbers [3], which makes
automatic detection of the ratio very useful. Based on the
present algorithm, Exploration and Change encompass
all the exploratory movements for each limb, whereas
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Fig. 10. Example of classification from a non annoted climb. From
top to bottom: full state evolution for each limb: right hand, left hand,
right foot, left foot and full body state evolution during the climb.

Use reflects only the performatory movements. The
results based on a total of 94 climbs by three experts
and three beginners on a 10m-high climbing route are
presented in Figure 11. A distinction between experts
and beginners clearly emerges based on the ratio between
these quantities.

Like previously stated, it has been shown [3] that this
ratio can be used to differentiate skilled and unskilled
climbers. There is therefore an interest in automatically
detecting this ratio. Based on the present algorithm,
the number of exploratory movements will gather, for
each limb, the number of Exploration and Change while
the number of performatory movement only counts the
Use activity periods. Results based on a total of 94
climbs realized by 3 experts and 3 beginners on a
10 meters high climbing route are presented in Figure
11. A distinction between experts and beginners clearly
appears considering the ratio between these quantities

It should be noted that some of the values from this
figure seem rather high for a 10m-high climbing route.
This is partly due to the computation of the sensor orien-
tation, which is still somewhat inexact. If the orientation
is not properly determined, the computed acceleration
contains residuals from the gravity component, inducing
a mobile phase detection further on and misleading the
counting process. One possibility to eliminate this issue
might be to only consider the angular velocity value,
as the performances do not differ significantly between
angular velocity and acceleration use. Another factor
might be individual differences between the climbers
from the labelled set used for the learning protocol and
the climbers used in this application. To prevent this

Fig. 11. Comparison between the number of holds touched by
the hands (exploratory movement) and the number of holds used
(performatory movement) during a climb. Results for the feet are quite
similar. A classification clearly appears based on the ratio between
these quantities.

individual dependent measure, the learning phase can be
accomplished using a dedicated climber recording and
the learnt parameters only for this specific climber.

V. CONCLUSION

This article presents a method for the automatic de-
tection and classification of climbers activities based on
multiple IMUs. From a learning phase requiring manual
annotations, a statistical model is built for the norms of
acceleration and angular velocity. This model is used in
a cusum algorithm to detect a binary movement state for
each limb with an attached sensor. The concatenation of
the states of each sensor is used to determine and classify
full-body activity. A more detailed classification is then
used to measure exploration during the climb.

Determining exploratory activity during climbing is
useful as it provides a measure of skill and learning
performances. Future works will focus on the use of
this method in a learning protocol for indoor climbing,
measuring the occurrence and distribution of exploration
and immobility in the participants. Another study on
immobility is planned to determine which body con-
figurations are mainly used during learning and how
these configurations evolve from climb to climb during
a learning protocol
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