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ABSTRACT. We present the characterization of Mg-Co-Zr tri-layer stacks by using x-ray 

fluorescence induced by x-ray standing waves, both in the grazing incidence (GI) and grazing 

exit (GE) modes. The introduction of a slit in the direction of the detector improves the angular 

resolution by a factor 2 and significantly the sensitivity of the technique for the chemical 

characterization of the buried interfaces. By observing the intensity variations of the Mg K and 

Co L characteristic emissions as a function of the incident (GI mode) or detection (GE mode) 

angle, we show that the interfaces of the Si/[Mg/Co/Zr]x30 multilayer are abrupt, whereas in the 

Si/[Mg/Zr/Co]x30 multilayer a strong intermixing occurs at the Co-on-Zr interfaces. The 

explanation of this opposite behaviour of the Co-on-Zr and Zr-on-Co interfacesis given by the 

calculation of the mixing enthalpies of the Co-Mg, Co-Zr and Mg-Zr systems, which shows that 

the Co-Zr system presents anegative value and the two others positive values. Together with the 

difference of the surface free energies of Zr and Co, this leads us to consider the Mg/Zr/Co 

system as aMg/CoxZrybi-layer stack, with x/y estimated around 3.5. 

1. INTRODUCTION 

mailto:philippe.jonnard@upmc.fr
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Periodic multilayers alternating two or more layers of nanometer thickness can be used to 

diffract radiation in the x-ray and extreme ultra-violet ranges(Attwood, 2000). Thus, they are 

used as optical components for numerous applications in photolithography, x-ray microscopy, x-

ray spectroscopy, in space telescopes or on synchrotron beamlines. However, the optical 

performance of such multilayer stacks greatly depends on the quality of their interfaces. So it is 

important to characterize them, which is often done by x-ray reflectivity in the hard x-ray range 

or at the application wavelength or by transmission electron microscopy. 

Recently we have demonstrated(Jonnard et al., 2014)that x-ray fluorescence (XRF) generated 

by x-ray standing waves (XSW), combining both grazing incidence (GI) and grazing exit (GE) 

modes, is an efficient meansfor the characterization of such stacks. Indeed, the standing wave 

generated by the incident radiation (GI mode) or characteristic emission (GE mode) has the same 

period as the multilayer. Then, by rotating the sample in an angular range centered around the 

Bragg angle of the incident or emitted radiation, it is possible to move the nodes and anti-nodes 

of the electric field at specific positions within the stack, an interface or the center of a layer, and 

thusto locate the origin of the generated x-ray signal with great depth sensitivity(Bedzyk & 

Libera, 2013). This technique is related to the technique of x-ray standing wave at grazing 

incidence and exit(Yang et al., 2008; Hönicke et al., 2012;Sakata & Jach, 2013). 

We apply GI- and GE-XRF to the Mg-Co-Zr tri-layer system whose period thickness, around 

9.5 nm, was designed to have constructive interferences and Bragg peak at not extreme grazing 

incidence. Two tri-layers, Si/[Mg/Co/Zr]x30and Si/[Mg/Zr/Co]x30, weredeposited by magnetron 

sputtering, where the order of the layers in the stack is different. This kind of multilayers had 

already been studied for optical applications around the 25 nm spectral range(Le Guen et al., 

2011a; b). With respect to the present multilayers, the Co and Zr thicknesses were the same 
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whereas Mg layers were much thicker. They have been thoroughly characterized by x-ray 

reflectivity in the hard and soft x-ray ranges, x-ray emission spectroscopy, nuclear magnetic 

resonance spectroscopy, secondary ion mass spectrometry and also transmission electron 

microscopy(Le Guen et al., 2011a; b; Zhu et al., 2011; Jonnard et al., 2013). 

This paper is organized as follows. Firstly, in the experimental section we indicate how the 

samples are prepared and recall some details of the GI- and GE-XRF experiments. We present 

the improvement of the angular resolution in the GE mode with respect to our previous study of 

the Co/Mg bi-layer system, The way simulations are obtained and handledfor comparison with 

the experimental curves is then described. Finally, we present and discuss comparatively the 

results for both tri-layer systems, obtained in the GI and GE modes giving the angular variations 

of the intensity of the Mg K(2p-1s transition) and Co L(3d-2p3/2 transition) characteristic 

emissions. 

2. EXPERIMENTAL METHODS 

2.1 Samples 

The deposition of the samples was done by magnetron sputtering ontosilicon wafers used as 

substrates. After deposition, a 3.5 nm-thick boron carbide (B4C) thin layer was added as a 

capping layer to prevent samples from oxidation. Different multilayers were deposited on the 

basis of the Si/[Mg(5.45 nm)/Co(2.45 nm)]30/B4C (3.5 nm) bi-layer system.The Mg/Co bi-layer 

system had already been studied by GI- and GE-XRF previously(Jonnard et al., 2014) and is 

used here with the purpose to demonstrate the improvement of the angular resolution and to 

reveal that the combination of both GI and GE modes is powerful for the characterization of 

buried interfaces of already very well studied systems. The two tri-layer samples are : 
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 Si / [Mg(5.45 nm) / Co(2.45 nm) / Zr(1.50 nm)]30 / B4C(3.5 nm), noted Mg/Co/Zr; 

 Si / [Mg(5.45 nm)/ Zr(1.50 nm) / Co(2.45 nm)]30 / B4C(3.5 nm), noted Mg/Zr/Co. 

With this notation the layers are written in the order of their deposition. 

Following deposition, all the samples were characterized by grazing incident x-ray reflectivity 

at the Cu K wavelength(0.154 nm). The thickness, roughness and density of the each layer 

were determined by fitting the reflectivity curves using the designed one as a model of the stack. 

The results are givenin Table 1 for the tri-layer systems.The stack parameters are close to the 

designed ones. The roughness, or interface width is limited to around 0.5 nm. 

 

Table 1. Parameters of the tri-layersystems as deduced from the fits of their reflectivity curves. 

For each layer, are indicated its thickness (nm), density(g.cm
-3

) and interface width (nm). 

Sample Period(nm) 

 

Mg Co Zr 

Mg/Co/Zr 9.45 5.22 / 1.6 / 0.5 2.61 / 8.8 / 0.5 1.62 / 6.5 / 0.6 

Mg/Zr/Co 9.57 5.49 / 1.6 / 0.5 2.35  /8.8 / 0.5 1.73 / 6.5 / 0.6 

 

2.2 Schemes of the experiments 

The experimental details had already been given(Jonnard et al., 2014) andhere we only recall 

the main characteristics of our two experimental procedures, both performed on the same 

samples. Experiments were performed at the BEAR beamline of the ELETTRA synchrotron 

radiation facility(Nannarone et al., 2004). Prior to the XSW experiments, we obtain an XRF 

spectrum of one sample with a silicon drift detector (SDD) to determine in which spectral region 

the fluorescence emission of an element, Co Lor Mg K in our case, should be integrated. The 
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incident photon energy to excite the Co L emission was 807.6 eV; it was 1332 eV to excite the 

Mg K emission. 

In the GI-XRF mode, the intensity of an emission is measured as a function of the glancing 

anglei, i.e. the angle between the synchrotron beam and the sample surface, for angles close to 

the Bragg angle calculated from the period of the sample and the wavelength of the incident 

radiation. In the GE-XRF mode, the intensity of an emission is measured as a function of the 

take-off angle of emissiond, i.e. the angle between the detector and the sample surface, for angles 

close to the Bragg angle calculated from the period of the sample and the wavelength of the 

characteristic emitted radiation. This is illustrated in Figure 1.In our case there is a fixed angle of 

60° between the directions of the incident andthe detected radiations. It results from this 

mechanical constraint that d = 120 – i (angles en degrees).In both modes, the SDD is located in 

the incidence plane, i.e. the plane defined by the incident beam and the normal to the sample 

surface. 
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Figure 1.Experimental configurations for the GI-XRF (a) and GE-XRF (b) experiments.i and d 

are the glancing angle and glancing take-off angle respectively. 

2.3 Angular resolution in GE-XRF mode 

In the GI-XRF the angular resolution is governed by the divergence of the incident beam, that 

is to say of the synchrotron radiation beam. It is quite small, 0.2°in our experimental conditions. 

In the GE-XRF the angular resolution is governed by the aperture of the detector. Taking into 

account the aperture of the SDD, 5 mm, and its distance from the sample, 300 mm, leads to a 

0.9° angular aperture. As shown in Figure 2, to improve the angular resolution, we can insert two 

slits with width respectively of 1.0 or 0.5 mm, at 140 mm from the sample and 160 mm from the 

SDD. These configurations correspond to angular acceptances of 0.4 and 0.2°, respectively.The 

rotation of the slit-holder around the azimuthal axis allows putting the desiredslit in the incidence 

plane. 
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Figure 2. Experimental setup: the slit holder can be rotated to put one of the two narrow slits in 

the axis going from the sample to the detector. 

We present in Figure 3, the GE-XRF curves showing the variations of the Mg Kα intensity of 

the Co/Mg sample with the three possible configurations to check the angular resolution: without 

slit, and slit of 1.0 mm or 0.5 mm. In all three cases, the main feature around 3°, relative to the 

first order diffraction of the emitted radiation, is clearly observed. However, the feature 

regarding the second order diffraction of the emitted radiation, located around 6°, is hardly seen 

without a slit and is better distinguished when the slit width decreases. This is due to the 

improvement of the angular resolution, as can be seen on the normalized curves (Fig. 3b). We 

estimate to have gained a factor 2 on the resolution when going from the configuration with no 

slit to the one with the 0.5 mm slit. This was estimated from the angular distance between the 

maximum and the dip of the first order feature. Let us note that the improvement of the 

resolution is detrimental the collected intensity, which decreases by a factor 3, as can be seen in 

the raw data (Fig. 3a). However, owing to the large incident flux delivered by the synchrotron, 

we choose in the following to work in the configuration with the narrowest slit. 
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Figure 3. GE-XRF of the Mg Kα emission of the Co/Mg sample: (a) raw data; (b) data 

normalized to the maximum of the first diffraction order feature.Measurement with no detection 

slit (solid line), with a 1.0 mm slit (dotted line) and with a 0.5 mm slit (dashed line). 

 

2.4 Fit of the experimental curves 

The fit of the experiment relies on simulations of the intensity of the characteristic 

fluorescence radiation. The model having been already presented(Chauvineau & Bridou, 1996; 

Jonnard et al., 2014), we recall only its main points. First, the intensity of the exciting 

electromagnetic field at a given depth in the stack and below a given glancing anglei, is 

calculated. This is done from the recurrent formalism used to calculate the optical properties of 

stacks from the optical constants and thicknesses of its various layers. The intensity generated at 

the same depth from an element of a given concentration is proportional to the square of the 

electric field and to the concentration. Then, the fluorescence intensity arriving below thetake-off 

angledfrom the source to be located is calculated by applying the reciprocity theorem(von Laue, 

1935; James, 1962). Let us note that the chosen formalism can be applied to both GI and GE 

modes. Thus, the fits are performed so that a best agreement is obtained for both GI and GE 

curves at the same time. This imposes a strict constraint on the fitted parameters. They are the 

same as the ones determined from the reflectivity measurements (thickness, roughness and 

density of the layers), which are generally used as input values. The roughness of the various 

layers is introduced and considered fixed at the value given by the reflectivity measurement. The 

boron carbide capping layer is also considered with its nominal thickness. 

Comparing properly experimental and simulated curves requiresto take into account the effect 

of the beam imprint on the sample. Indeed, contrary to the case of reflectivity measurements 
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where the specular geometry ensures that the imprint of the incident and reflected beams is the 

same, this is not the case for GE and GI measurements owing to the asymmetric geometry. Thus 

in the GI case, a 1/sin(i) factor(Li et al., 2012) is introduced. For the GE mode, no geometrical 

factor was taken into account since this correction is significant only for the small glancing 

angles. The simulated curves are then normalized on one point of the experimental curve. 

 

3. RESULTS AND DISCUSSION 

For both Mg K and Co L emissions, we show in Figures 4 and 5the GI- and GE-XRF 

curves of the Mg/Co/Zr and Mg/Zr/Co multilayers, respectively. The modulationof the intensity 

is clearly observed on each curve at an angleclose to the one calculated from the Bragg law at the 

first and seconddiffraction orders.It can be seen that the amplitude of the observed features are 

quite similar in the case of the Mg K emission of both samples, whereas for the Co L 

emission, the featuresexhibit a higher contrast for Mg/Co/Zr (Fig. 4c and 4d) with respect to the 

ones of Mg/Zr/Co (Fig. 5c and 5d). This is valid for both GI and GEmodes and can be seen in 

Figures 6(a) and 6(b) where the experimental XSW curves of the Mg/Co/Zr and Mg/Zr/Co 

multilayers are compared. 

The simulation of the Mg Kα emission of Mg/Co/Zr and Mg/Zr/Co multilayers is done with 

the parameters deduced from the reflectivity measurements, thus considering a tri-layer stack. 

We can deduce that in these multilayers, the interfaces involving the Mg layers, Mg-Co and Mg-

Zr, are abrupt. This is in agreement with previous results(Le Guen et al., 2011a; b; Zhu et al., 

2011) of nuclear magnetic resonance and x-ray emission spectroscopies giving the chemical state 

of the Co and Mg atoms in the stack, respectively. 
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Figure 4.GI-XRF (a) and (c) and GE-XRF (b) and (d) curves for the Mg K (a) and (b) and 

Co L (c) and (d) emissions of the Mg/Co/Zr multilayer: dots, experiment; solid line: fit. 
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Figure 5. GI-XRF (a) and (c) and GE-XRF (b) and (d) curves for the Mg K (a) and (b) and 

Co L (c) and (d) emissions of the Mg/Zr/Co multilayer: dots, experiment; solid line: fit with a 

tri-layer stack; dashed line: fit with a bi-layer stack. 

0

5 10
-10

1 10
-9

1.5 10
-9

0 2 4 6 8

M
g

 K
a

 i
n

te
n

s
it
y
 (

c
o

u
n

ts
/A

m
p

)

Glancing angle (°)

(a)

0.0

5.0 10
9

1.0 10
10

1.5 10
10

2.0 10
10

2.5 10
10

0 2 4 6 8

M
g

 K
a

 i
n

te
n

s
it
y
 (

c
o

u
n

ts
/A

m
p

)

Take-off angle (°)

(b)

0.0

5.0 10
12

1.0 10
13

1.5 10
13

2.0 10
13

2.5 10
13

0 2 4 6 8 10 12

C
o

 L
a

 i
n

te
n
s
it
y
 (

c
o

u
n
ts

/A
m

p
)

Glancing angle (°)

(c)

0.0

4.0 10
9

8.0 10
9

1.2 10
10

1.6 10
10

0 2 4 6 8 10 12

C
o

 L
a

 i
n

te
n
s
it
y
 (

c
o

u
n
ts

/A
m

p
)

Take-off angle (°)

(d)



 13 

 

Figure 6. GI-XRF (a) and GE-XRF (b) curves for the Co L emission ofthe Mg/Co/Zr (full 

dots) and Mg/Zr/Co (empty dots) multilayers. 
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constants used in the simulations have to be chosen in a range where they are strongly varying 
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curves. This is in contrast to the case of the Mg Kα emission, where the emission energy, 
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1303.4 eV(Jonnard & Bonnelle, 2011). 
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even to reproduce the contrast of the features, see Fig. 5c and 5d. Keeping a tri-layer structure 

but allowing the variation of the Co optical constants, the agreement between experimental and 

calculated emission curves is still not satisfying. In consequence, we modify Mg/Zr/Co as a 

Mg/CoxZrybi-layer stack where x and y are the relative numbers of Co and Zr atoms, 

respectively. The values of x and y, estimated from the number of Co and Zr atoms introduced 

within the Co and Zr layers in Mg/Zr/Co during its deposition, are found equal to 0.78 and 0.22, 

respectively, so that x/y is equal to 3.5. Such values are close to the ones of the 

Co23Zr6compound present in the Zr–Co binary phase diagram(Predel, 1991). The simulations 

performed by modelling the stack as a Mg/CoxZrybi-layer stack greatly improve the agreement 

with the experiment, see Fig. 5c and 5d. A bi-layer stack of the same composition was already 

used to fit the extreme UV reflectivity curves of a similar system, however with much thicker 

Mg layers (13 nm), designed to work around 25 nm(Le Guen et al., 2011a). Let us note that 

regarding the Mg Kcurve, there is no significant difference between the simulations with a tri- 

or bi-layer system, as the Mg atoms are not involved in interfacial diffusion. 

Thus, the drastic differences between the curves of Mg/Co/Zr and Mg/Zr/Co, allow us to 

deduce that the Zr-on-Co interfaces in the Mg/Co/Zr multilayer areabrupt, whereas the Co-on-Zr 

interfaces in the Mg/Zr/Co multilayer are wide enough to consider the two Co and Zr layers as a 

single layer. Generally, alternate interfaces in multilayer structure are asymmetric due to the 

difference in the surface free energy of the constituents of the multilayer. This is analogous to 

what happens in the particularly well documented for the Mo/Si system(Yulin et al., 2002). 

In order to understand the interfacial behaviour of the Mg/Zr/Co system, we calculated the 

mixing enthalpies of the Co-Mg, Co-Zr and Mg-Zr systems by using the Miedema’s 

“macroscopic atom” model, whose details are given elsewhere(Miedema et al., 1980; Das et al., 
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2013). This approach already proved useful to explain the interfacial phenomena taking place in 

annealed Co/Mo2C nanometer multilayers(Yuan et al., 2015). The parameters used for the 

calculations, the electronegativities∅∗, the electron densities at the first Wigner-Seitz boundary 

𝑛𝑤𝑠  and the atomic volumes V, are collected in Table 2. 

 

Table 2.Elemental values of ∅∗, 𝑛𝑤𝑠and V for calculating the mixing enthalpies of the Co-Mg, 

Co-Zr, Zr-Mg systems. 

Element ∅∗(V) 𝑛𝑤𝑠
1/3(d.u.)

1/3
 V(𝑐𝑚3/𝑚𝑜𝑙) 

Mg 3.42 1.20 13.97 

Co 5.10 1.77 6.70 

Zr 3.62 1.38 14.10 

 

We show in Figure 7 the calculated mixing enthalpies as a function of the mole fraction.The 

Co-Zr system shows anegative mixing enthalpy over the whole composition range, whereas the 

Co-Mg and Mg-Zr systems both show only positive values. This indicates that a compound is 

easy to form at the interfaces between the Co and Zr layers, whichis not possible at the interfaces 

involving the Mg layers. Moreover, there is a large difference in the surface free energies of Co 

and Zr, 2.0 J.m
−2

 and 1.6 J.m
−2

 respectively(Vitos et al., 1998). Thus, during the deposition of the 

Co atoms on the Zr layers, since the surface free energy of Zr is lower, Co atoms can move on 

the surface guided by the chemical driving force. This leads to a strong mixing at the interfaces 

and to the formation of the CoxZry compound in the Mg/Zr/Co multilayer. On the other hand, in 

the Mg/Co/Zr multilayer, during the deposition of the Zr atoms onto the Co layers, no such 

chemical driving force exists. Therefore the intermixing at Zr-on-Co interface takes place as the 

result of random thermal motions only and hence the concentration profile is expected to be 
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anabrupt error function.This is consistent with previous results(Le Guen et al., 2011a; b; Zhu et 

al., 2011) on large period samples, demonstrating the good optical performances of Mg/Co/Zr 

owing to abrupt interfaces, whereas it was shown that Mg/Zr/Co has to be considered as a bi-

layer system Mg/CoxZry. 

 

 

Figure 7. Calculated mixing enthalpies of the Co-Mg (a), Co-Zr (b) and Zr-Mg (c) systems. 

 

4. CONCLUSION 

Whereas the reflectivity measurement in the hard x-ray range was not enough sensitive to 

detect the asymmetric behaviour of interfaces in periodic multilayers, XRF generated by soft x-
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rayXSW, in particular after the improvement of the angular resolution,prove useful to study the 

structure of periodic multilayer stacks and to characterize their buried interfaces in a non-

destructive way.The combination of both GI and GE modes enables to put higher constraints on 

the fitting parameters of the XSW curves. Working in the soft x-ray range gives sensitivity to the 

chemical state of the atoms owing to the large variation of the absorption coefficient in the 

vicinity of an absorption edge. Thus the contrast of the XSW curves depends on the chemical 

bound of the emitting element. This enables to couple the depth sensitivity of the XSW technique 

to the elemental and chemical sensitivity of XRF. Also, let us remark, that photon excitation is 

not mandatory in the GE mode. In this case, XSW intensity measurements can be also made 

upon electron or ion irradiation, thus do not require a synchrotron facility. 

The combination of GI- and GE-XRF generated by XSW allows us to determine that 

Mg/Co/Zr and Mg/Zr/Co multilayers have to be considered as tri-layer and bi-layer stacks 

respectively, owing to the asymmetric behaviour of the Zr-on-Co and Co-on-Zr interfaces 

following the positive mixing enthalpy of the Co-Zr system and the different values of the 

surface free energies of Co and Zr. Thus the Mg/Zr/Co multilayer can be described as Mg/CoxZry 

with x/y around 3.5. 

 

ACKNOWLEDGMENT 

Parts of this work were done in the framework of the international ANR-NSFC COBMUL 

project (ANR #10-INTB-902-01 and NSFC #11061130549) and of the Cai Yuanpei Project 

(EGIDE PHC No. 30248NF), 973 program (No. 2011CB922203), and National Natural Science 

Foundation of China (Nos. 11375131 and 11305104). A part of the research leading to these 



 18 

results has received funding from the European Community’s Seventh Framework Programme 

(FP7/2007-2013) CALIPSO under grant agreement n°312284. 

REFERENCES 

Attwood, D. (2000). Soft X-Rays and Extreme Ultraviolet Radiation Cambridge University 

Press. 

Bedzyk, M. J. & Libera, J. A. (2013). The X-Ray Standing Wave Technique, pp. 122–131. World 

Scientific. 

Chauvineau, J.-P. & Bridou, F. (1996). J. Phys. IV. 06, C7–C53 – C7–C64. 

Das, N., Mittra, J., Murty, B. S., Pabi, S. K., Kulkarni, U. D., & Dey, G. K. (2013). J. All. 

Comp.550, 483–495. 

Le Guen, K., Hu, M.-H., André, J.-M., Jonnard, P., Zhou, S. K., Li, H. C., Zhu, J. T., Wang, Z. 

S., Mahne, N., Giglia, A., et al. (2011a). Appl. Phys. A. 102, 69–77. 
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