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Abstract. This paper presents a new robust method for inertial MEM
(MicroElectroMechanical systems) 3D gesture recognition. The linear ac-
celeration and the angular velocity, respectively provided by the accele-
rometer and the gyrometer, are sampled in time resulting in 6D values
at each time step which are used as inputs for the gesture recognition
system. We propose to build a system based on Bidirectional Long Short-
Term Memory Recurrent Neural Networks (BLSTM-RNN) for gesture
classification from raw MEM data. We also compare this system to a ge-
ometric approach using DTW (Dynamic Time Warping) and a statistical
method based on HMM (Hidden Markov Model) from filtered and de-
noised MEM data. Experimental results on 22 individuals producing 14
gestures in the air show that the proposed approach outperforms classi-
cal classification methods with a classification mean rate of 95.57% and
a standard deviation of 0.50 for 616 test gestures. Furthermore, these
experiments underline that combining accelerometer and gyrometer in-
formation gives better results that using a single inertial description.
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1 Introduction

Accelerometers and gyrometers are nowadays present in our everyday Smart-
phones. These sensors capture hand movements when users grasp their devices.
We can consider two main issues: posture recognition and symbolic gesture re-
cognition. In the first case, the user maintains a posture during a certain period
of time, describing for instance the fact that the device is upside down. In the
second situation, the user may produce a gesture to execute a system command,
like drawing a heart symbol in 3D space to call its favorite phone number. Dy-
namic gesture recognition based on inertial sensors is a very challenging task.
Algorithms are confronted to numerous factors causing errors in the recognition
process: dynamical differences (intensive versus phlegmatic gestures), temporal
differences (slow versus fast movements), physical constraints (device weight,
human body elasticity, left or right-handed, seated or standing up, on the move,
etc.), classification constraints (mono versus multi users, open or closed world
paradigm, etc.). Classically, several steps operate from signal data preprocessing
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to gesture classification with some intermediate steps like data clustering and
gesture model learning. The preprocessing steps aim at reducing the input si-
gnals that characterize the corresponding gestures. Different methods can then
be applied: calibration, filtering, normalization or vectorization. Data clustering
is often applied to reduce the input space dimension and find class referent ges-
ture vectors. A learning phase of a gesture model follows this clustering step and
finally a decision rule or a specific classifier is built to label the input data as a
recognized gesture or an unknown gesture. In this article, we propose to learn
an efficient gesture classifier without any preprocessing method (i.e. from raw
MEM data) using a BLSTM-RNN model.

This paper is organized as follows. In Section 2, sensor-based gesture reco-
gnition is described with a survey. Section 3 presents our recognition method.
Section 4 describes the experimental results. Finally, conclusions are drawn.

2 Accelerometer based 3D Gesture Recognition

3D gesture recognition using accelerometers has been studied in recent years,
and for gesture classification three main strategies stand out which are based on
statistics, on geometry or on boosting classifier approaches.

The first strategy has been deeply studied in the last decade with two main
approaches: discrete versus continuous HMM [6-8,11]. Hofmann et al. [6] pro-
posed to use discrete HMM (dHMM) for recognizing dynamic gestures thanks
to their velocity profile. This approach consists of two levels and stages of reco-
gnition: a low-level stage essentially dividing the input data space into different
regions and assigning each of them (i.e. creation of a vector codebook), and a
high-level stage taking the sequences of vector indexes from the first stage and
classifying them with discrete HMM. The experiments are built using a training
set with 10 samples per gesture, each sample representing hand orientation, ac-
celeration data and finger joint angle. A vector codebook is obtained by an input
space clustering method (i.e. K-means algorithm). Clustering essentially serves
as an unsupervised learning procedure to model the shape of the feature vector
distribution in the input data space. Here, the number of HMM states vary from
1 to 10 and the observation alphabet size equals to 120. The comparison between
ergodic HMM and left-to-right HMM shows similar results with 95.6% correct
recognition rate for 100 gestures. Similar results are presented in [7, 8]. Kallio et
al. [7] use 5 HMM states and a codebook size of 8 for 16 gestures. The authors
highlight that the performances decrease when using 4 sequences for training the
system compared to 20 sequences. The recognition rate falls from 95% to 75%
even for this mono-user case study. In [8], a 37 multi-user case is studied with
8 gestures, evaluating the effect of vector quantization and sampling. A rate of
96.1% of correct classification is obtained with 5 HMM states and a codebook
size of 8. However, this study can be seen as biased since the K-means clustering
is performed from all the available data set and not only the training database.
In opposition to the previous studies, and to take into consideration that gesture
data are correlated in time, Pylvanéinen proposes in [11] to build a system based
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on continuous HMM (cHMM). Again, the results are convincing, with 96.76%
on a dataset providing 20 samples for 10 gestures realized by 7 persons.

The second strategy for recognizing 3D gestures is based on geometric models
with distance computation. The goal is to provide a gallery of some gesture re-
ferences to model each gesture class and design a decision rule for a test gesture
regarding the respective distance to these referent instances. On the contrary to
the HMM strategy, no learning phase is needed but computational time is re-
quired for a test gesture to be compared to all referent instances. Consequently,
the main drawback of this approach is the necessity to find the most relevant
samples to represent a gesture class while keeping the number of these referents
low in order to minimize the final evaluation processing time. Wilson et al. in
[13] compare Linear Time Warping (LTW) and Dynamic Time Warping (DTW)
to the HMM based strategy. Their experiment with 7 types of gesture from 6
users shows an advantage for HMM with 90% in opposition to the score of LTW
and DTW of respectively 40% and 71%. Liu et al. experiment with more success
the DTW strategy in [9]. Gesture recognition and user identification are per-
formed with good recognition rates of respectively 93.5% and 88%. The authors
introduce an averaging window of 50 ms for reducing noise and erratic moves.
The gesture data, performed over multiple days, consists of 30 samples of 8
gestures for 8 individuals and the user recognition results are obtained from 25
participants. Likewise, in [2], Akl et al. use DTW and affinity propagation for di-
mension reduction for recognizing 3D gestures. 7 subjects participated producing
3700 gesture traces for a good classification rate of 90%.

The third strategy for recognizing 3D gestures is to learn a specific classifier.
Hoffman et al. (see [5]) improve 3D gesture recognition with a linear classifier
and Adaboost, inspired by the method proposed in [1] for 2D symbol writer
recognition. The experiments show an accuracy of 98% for 13 gestures made by
17 participants. Other studies focus on SVM (i.e. Support Vector Machine) like
n [14]. This study uses frame-based descriptors. Each gesture is divided into
segments where are computed to form descriptors: mean, energy, entropy, stan-
dard deviation and correlation. These descriptors constitute the feature vector
to be classified by a multi-class SVM. The obtained results are 95.21% of good
recognition for 12 gestures made by 10 individuals.

Consequently, many strategies are explored with different paradigms and
specific data processing methods on different databases. Nevertheless, theses
approaches suffer from finding automatically the relevant parameters (e.g. signal
processing, etc.) to deal with gesture variabilities. We develop hereafter our 3D
gesture recognition method based on BLSTM-RNN from raw input data and
compare it with classical methods on a common database.

3 The proposed 3D Gesture Recognition Method

3.1 Bidirectional Long Short-Term Memory RNNs

Classical RNNs are a common learning technique for temporal analysis of data
since they are able to take into consideration the temporal context. This is
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achieved by using recurrent connections within the hidden layer which allow the
network to remember a state representing the previous input values. However,
Hochreiter and Schmidhuber in [12] have shown that if RNNs can handle short-
time lags between inputs, the problem of exponential error decay prevent them
from tackling real-life long-term dependencies. They introduced thus the Long
Short Term Memory RNNs, that allows a constant error signal propagation
through time using a special node called constant error carousel (CEC) and
multiplicative gates (Fig 1.a). These gates are neurons that can set (input gate),
reset (forget gate) or hide (output gate) the internal value of the CEC according
to neuron input values and context.

LSTM-RNNs have proven their great ability to deal with temporal data in
many applications (e.g. phoneme classification [4], action classification [3]). In
this paper we consider gesture data using 6D input vectors through sampling
timestep. These data are correlated during the user gestural production, and time
lags between the beginning and the end of gesture can be long. For these reasons,
LSTM-RNN is chosen to classify the input MEM data sequence. Furthermore,
since gesture recognition, at a given timestep, may depend on past and future
context, we use Bidirectional LSTM-RNN (BLSTM-RNN), introduced in [4],
that consists in two separate hidden layers, the forward (resp. backward) layer
able to deal with past (resp. future) context. The output layer is connected to
both hidden layers in order to fuse past and future contexts.
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3.2 BLSTM-RNN Architecture, Training and Decision Rule

The proposed gesture classification scheme based on BLSTM-RNN is described
in Figure 1.b. First, the input layer consists in the concatenation of accelero-
meter and gyrometer information synchronized in time (i.e. 6 input values per
timestep). Notice that our system relies only on the raw MEMs data, without
any preprocessing in opposition to most of state-of-the-art methods. These data
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are linearly normalized between -1 and 41 according to the maximum value
that sensors can provide. The forward and backward LSTM hidden layers are
fully connected to the input layer and consist in 100 LSTM neurons each with
full recurrent connections. The output layer has a size equals to the number of
gesture to classify. The SoftMax activation function is used for this layer to give
network responses between 0 and 1 at every timestep. Classically, these outputs
can be considered as posterior probabilities of the input sequence to belong to
a specific category at a given timestep. This network is learned using classical
on-line backpropagation through time with momentum (i.e. learning rate 5e—4,
momentum 0.2), as described in [12], on a training set, by targeting the same
corresponding gesture class at each time step for each input example. For evalu-
ation of a new gesture sequence, we use a majority voting rule over the outputs
along the sequence (i.e. keeping only the most probable class at each time step)
to determine the final gesture class.

4 Experimental Results

There is no public dataset for comparison of 3D gesture recognition. Therefore,
we have collected our 3D gesture dataset to compare classification methods.
Our dataset has been captured on an Android Nexus S Samsung device. 22
participants, from 20 to 55 years old, all right-handed, performed 5 times each of
the 14 symbolic gestures. This corresponds to 1540 temporal segmented gestures.
The sampling time for accelerometer and gyroscope capture is 40 ms. The 14
symbolic gestures are divided into 2 families: linear gestures (e.g. north, south,
east and west flicks, and up, down, pick and throw gestures) and curvilinear
gestures (e.g. alpha, heart, letter N, letter Z, clockwise and counter-clockwise).
These choices make the dataset difficult. There are classically confusions between
flick gestures and letter N and Z. Likewise, the clockwise movement is often
confused with alpha or heart symbols. Hereafter, we use temporal segmented
gestures where only useful data are efficient to classify the inputs.

We use 3 different configurations to compare our solution based on BLSTM-
RNN to 3 state-of-the-art solutions: DTW, dHMM and cHMM based methods.
The DTW solution uses a 5 nearest neighbor classification [10] and the HMM
solution uses the maximum of likelihood as a decision rule . In all experiments,
we use a filtered and vectorized gestural information for these methods and raw
MEM information for LSTM solution. In the following, we use a 3-fold cross
validation.

The first configuration (DB1) corresponds to the personalization paradigm,
where only one user is considered with few learning examples. For this configu-
ration we have used the 70 gestures of a single participant in the learning phase,
and ask him to process 16 more instances of each gesture for test (i.e. 224 ges-
tures). The second configuration (DB2) uses 3 instances of each gesture per user
for the learning phase: 924 gestures (i.e. 60% of all data) are used for the learn-
ing phase and 616 gestures (i.e. 40%) for the test phase. This case corresponds
to a multi-user system and a closed world paradigm. The third configuration
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(DB3) is composed of all samples from 17 users (i.e. 1190 gestures) and the test
data uses the other available gestures (i.e. 350 gestures from unknown users).
This case is close to a real system trained with a few examples and having to
generalize to new users who want to use it without any personalization phase.
Here, the configuration represents the open world paradigm.

Table 1. Good classification rates on DB1, DB2 and DBS3.

Databases DB1 | DB2 | DB3
Methods Mean & Standard Deviation

DTW acc 99.40% + 0.21% 92.59% + 0.20% 90.29% + 2.07%
DTW gyro 95.39% + 0.56% 80.63% + 2.39% 79.81% + 1.72%
DTW acc+gyro 99.70% =+ 0.42% || 94.04% + 0.15% || 91.71% + 1.46%
dHMM acc 77.14% + 5.18% 64.09% + 1.60% 63.81% + 0.58%
dHMM gyro 57.50% =+ 3.24% 43.13% + 2.35% 49.05% + 1.15%
dHMM acc+gyro 81.02% =+ 3.72% || 69.46% + 2.11% || 66.95% + 1.87%
cHMM acc 99.02% =+ 0.81% 83.99% + 1.09% 80.09% =+ 2.82%
cHMM gyro 95.05% =+ 2.62% 70.92% =+ 0.74% 70.76% =+ 0.58%
cHMM acc+gyro 99.86% + 0.02%|| 85.79% =+ 0.67% 82.76% + 1.41%
BLSTM-RNN acc 84.15% + 0.67% 94.86% + 1.23% 89.42% + 2.45%
BLSTM-RNN gyro 68.90% + 4.85% 83.39% + 0.65% 74.19% + 1.55%
BLSTM-RNN acc+gyro|| 86.75% + 0.75% ||95.57% =+ 0.50%](92.57% + 2.85%

Classification Results Table 1 outlines the global performances of each clas-
sifier for configurations DB1, DB2 and DB3 coupling or not accelerometer and
gyrometer data. Considering coupled input data (accelerometer+gyroscope), this
table shows that our BLSTM-RNN based classifier gives the best results on DB2
and DB3, with respectively 95.57 4= 0.50% and 92.57 4 2.85%.

In the three configurations, the dHMM solution provides lower performances
which is mainly due to the input data variability and the complexity to determine
an automatic discriminant codebook.

On two configurations (DB2 and DB3), the DTW solution achieves the sec-
ond best performance in mean recognition rate before the cHMM based one.

On DBI1 configuration, DTW and cHMM achieve equivalent performances
while our BLSTM-RNN approach is less efficient. This is mainly due to the lack
of learning data which leads to the classical over-fitting issue. The attempts made
with smaller LSTM networks did not allow any improvement on generalization.

When comparing these methods using a single input MEM sensor (accelero-
meter or gyroscope), we can see that using only gyroscope data is less efficient
than using single accelerometer data. Moreover, when these two information are
combined, the performances increase with respectively 99.70 + 0.42%,94.04 +
0.15% and 91.71 + 1.46%, for instance, for the DTW based method on DBI,
DB2 and DB3 configurations.

Main conclusions of a deep analysis of confusion matrices (not provided here
due to lack of space) are the following. The main drawback for the cHMM based
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method in this context is the incorrect classification of the N gestures with only
0.95% of correct classification. 62.86% of the N gestures are confused with the
pick gestures. A strong confusion appears with opposite gestures as pick and
throw or down and up gestures. Opposite gestures may be mis-classified when
some user anticipate a north flick gesture by slightly moving back the device
in the beginning of the production. On the contrary, the DTW based method
provide a good solution to classify linear gestures except for the throw gesture
which is often recognized as east and north flicks, which can be explained by
the similar nature of production of these three gesture types. Our BLSTM-RNN
approach have some issue to distinguish the east flick gesture from the letter Z
and the up gesture from the letter N, both sharing the same initial movement.
This may be due to the uniform learning target chosen (same class at each time
step), or the majority voting scheme in recognition phase.

Table 2. Computing time (in ms) to classify one unknown gesture.

Databases DB1 DB2 DB3
Leaning samples 70 924 1190
Test samples 224 616 350

DTW accgyro 11.93 £0.02|34.57 +0.47(44.584+0.38
dHMM accgyro 18.31 £0.17(24.84 £0.32{16.18+0.32
cHMM accgyro 42.53 +£1.97|23.89+£2.74 |30.19£1.65
BLSTM-RNN accgyro|30.47+ 0.23|31.124+0.57 |29.56+£0.48

Computing Times Table 2 presents the computing times for all methods for
the 3 configurations in recognition phase executed on an Intel Core i5 CPU at
2.67 GHz with 3.42 Go of RAM. These experimental results show that the com-
puting time for the BLSTM-RNN and HMM based solutions is quite constant
regarding the tasks on the different database (i.e. around 30 ms for BLSTM-
RNN and 18 ms for dHMM to classify one input gesture for DB1). The learn-
ing process is built indeed off-line and consequently the recognition process is
fast. On the contrary, the DTW solution requires to compare the input gesture
with all learning reference samples. That is why the computing time increases
in mean from 11.93 ms for 70 learning samples to 44.58 ms for 1190 learning
samples. The DTW solution requires a small number of reference gestures and
which makes it hard to cover all user gesture variations. Consequently, the pro-
posed system, based on BLSTM-RNN, achieving the best result performances
in multi-user configuration with a recognition computing time independent of
training dataset size is a very challenging solution.

5 Conclusion and Perspectives

In this paper, we have presented a contribution based on BLSTM-RNN and a
comparison for inertial MEM based gesture recognition. This study about sym-
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bolic gesture recognition compares our contribution to 3 classical pattern reco-
gnition methods: the geometric approach using DTW and the statistical method
based on dHMM and cHMM. We have shown that on multi-user configuration
our approach achieves the best mean classification rates, up to 95.57%, in a
closed world configuration. Main remaining confusions with the proposed solu-
tion are when two 3D trajectories are similar or share some initial movements,
as an east flick and a Z letter. New approach using a modified objective function,
such as Connectionist Temporal Classification [4], that permits to jointly learn
to localize and classify events in input sequences, might be used to overcome
this issue or to classify non segmented gestures.
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