Effect of water saturation on seismoe- lectric coupling : A laboratory study

Clarisse Bordes, Pascale Sénéchal, Julien Barrière, Daniel Brito, Eric Normandin

and Damien Jougnot

Réunion des Sciences de la Terre, 2014

Seismic waves propagating in a porous medium, under favorable condi- tions, generate measurable electromagnetic fields due to electrokinetic effects. It has been proposed, following experimental and numerical stu- dies, that these so-called ?seismoelectromagnetic ? couplings depend on pore fluid properties. The theoretical frame describing these phenomena are based on the original Biot's theory, assuming that pores are fluid- filled. We study here the impact of a partially saturated medium on amplitudes of those seismoelectric couplings by comparing experimen- tal data to an effective fluid model. We have built a 1 m -length-scale experiment designed for imbibition and drainage of an homogeneous silica sand ; the experimental set-up includes a seismic source, acce- lerometers, electric dipoles and capacitance probes in order to moni- tor the seismic and seismoelectric fields during water saturation. Appa- rent velocities and frequency spectra are derived from seismic and elec- tric measurements during experiments in varying saturation conditions. Amplitudes of the seismic and seismoelectric waves and their ratios (i.e. transfer functions) are discussed using a spectral analysis performed by Continuous Wavelet Transform (CWT). The experiment results reveal that the amplitude ratiosof seismic to co-seismic electric signals remain rather constant as a function of the water saturation. This result show good agreement with theoretically predicted transfer functions inclu- ding effective fluid properties and some recent electrokinetic models. This experiment also show the evidence of the dynamic effect in seismoelectric coupling.

