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On the Basis Updating Rule of Adaptive-Subspace
Self-Organizing Map (ASSOM )*

Huicheng Zheng, Christophe Laurent, and Grégoire Lefebvr
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4, Rue du Clos Courtel
35512 Cesson Sévigné Cedex, France

Abstract. This paper gives other views on the basis updating rule ASBOM

proposed by Kohonen. We first show that the traditional basisor rotation rule
can be expressed as a correction to the basis vector whichgentional to com-
ponent vectors in the episode. With the latter form, somerinédiate compu-
tations can be reused, leading to a computational load amdad to the input
dimension and the subspace dimension, whereas naive iraptation of the tra-
ditional rotation rule has a computational load quadratithe input dimension.
We then proceed to propose a batch-mode updating of theumase's. We show
that the correction made to each basis vector is a linear ic@atidn of component
vectors in the input episode. Computations can be furthezdsaExperiments
show that the proposed methods preserve the ability to gentapologically or-
dered invariant-feature filters and that the learning pilace is largely boosted.

1 Introduction

Adaptive-subspace self-organizing map (ASSOM) [1] is teff a combination of the

competitive selection and cooperative learning as in tditional SOM [2] and a sub-
space method. The single weight vectors at map units in S@Veataced by modules
of basis vectors in ASSOM that span some linear subspac&ONHs an alternative to
the standard principal component analysis (PCA) methodatiife extraction. An ear-
lier neural approach for PCA can be found in [3]. The ASSOM ganerate spatially
ordered feature filters thanks to spatial interactions apocessing units [4]. Each
module in ASSOM can be realized as a neural network whichivesénput vectors

and outputs their orthogonal projections on the repregesubspaces.

The input to an ASSOM array is typically an episode, i.e. ausege of pattern
vectors supposed to approximately span some linear subsplaese vectors shall also
be referred to as component vectors of the episode in thirp@p learning the episode
as a whole, ASSOM is able to capture the transformation caudlde episode. The
simulation results in [1] and [4] have demonstrated that @8!Scan induce ordered
filter banks to account for translation, rotation and sealifhe relationship between the
neurons in the ASSOM architecture and their biological ¢erparts are reported [4].
ASSOM has been applied to speech processing [5], textureesggtion [6], image

* This work was carried out during the tenure of a MUSCLE In&brrfellowship
(http://www.muscle-noe.org).



retrieval [7] and image classification [7], [8], etc. in thietature. A supervised variant
of ASSOM, called supervised adaptive-subspace self-agmap (SASSOM), was
used by Ruiz del Solar in [6].

The basis vector rotation rule in the traditional ASSOM ierpkntation takes a
form of matrix multiplication. This rule is hard to undensthand more seriously, naive
implemenation of the basis vector rotation rule leads toraputtational load which is
gquadratic to the input dimension, not to mention large amofimemory required by
the usually high-dimensional matrix operations. This deficy renders naive imple-
mentation of the basic ASSOM learning very costly for preadtapplications.

There were efforts in the literature to reduce the compaonatiload associated with
the basic ASSOM learning. De Ridder et al. [7] dropped togiial ordering to re-
duce the computations involved in the cooperative learningthermore, they per-
formed a batch-mode updating of subspaces with PCA to ah@ditme-consuming
iterative updating. Similarly, Lépez-Rubio et al. [9] teCA with ASSOM to perform
PCA while retaining self-organization of generated feasuil he resulting algorithm is
named PCASOM. According to their report, under similar sifisation performance,
their algorithm runs about twice faster than the basic ASS®NIGIlinchey et al. [10]
replaced the traditional basis vector updating formuldnwite proposed by Oja [11].
According to their paper, the computational load is onlgéinto the input dimension,
but quadratic to the subspace dimension.

In this paper, we first show that with the traditional bastation rule, the correction
made to each basis vector is in fact a vector proportion&lda@dmponent vector of the
input episode. With this modified form, some intermediatepatations can be reused,
leading to a computational load only linear to both the irfiontension and the subspace
dimension. We then proceed to propose a batch-mode updattithee basis vectors,
where the correction made to each basis vector is a lineabic@ation of component
vectors in the episode. This modified rule further acceéartiie learning procedure by
saving large amounts of computations.

This paper will be organized as follows: In Sect. 2, we reviaefly the basic
ASSOM learning procedure. The proposed alternative upgatiles will be presented
in Sect. 3. Section 4 is dedicated to experiments which detrate the performance of
the proposed methods. This paper will be concluded by Sect. 5

2 TheBasic ASSOM Learning

An ASSOM is composed of an array of modules. Each module inrAB8OM can

be realized by a two-layered neural network [4], as shownign E It calculates the
projection of an input vectot on the subspacé of the module. Supposingis spanned

by a set of basis vectofd,, bs, ..., by}, whereH is the dimension of, the neurons

in the first layer take the orthogonal projectian§b;, of the input vectorx on the
individual basis vectorb;,. The basis vectors are supposed to be orthonormalized. The
only quadratic neuron of the second layer sums up the sqoaitpdts of the first-layer
neurons. The output of the module is tHgty ||, the squared norm of the projection of

x on the subspacé. It can be regarded as a measure of the matching betweerpilite in
vectorx and the subspad@ For an input episode(s), s € S, whereS is the index set



of vectors in the episode, Kohonen proposed to usertayy > [|x2(s)? i.e. the
sum of squared norms of the projections of the individuatwes; as the measure [4].

Fig. 1. Amodule of ASSOM realized as a neural netwotks an input vector{b, bs,...,bx}
is an orthonormal basis of the linear subspAa# the module is a quadratic neuron that sums

up squares of its inputs

The learning process of ASSOM approximately minimizes aardunction in an
iterative way [4]. The iteration at stepof the basic ASSOM learning procedure pro-
ceeds as follows:

1. Forthe episodeg(s), s € S, locate the winning module indexed by
¢ = argmax;er y .. g ||Xc,(s)]|?, where[ is the index set of modules in the AS-

SOM.
2. For each modulgin the neighborhood af, includingc itself, update the subspace

L, for each component vectat(s), s € S, that is, update the basis vectcbrg),

according to the following rules:
(a) Rotate each basis vector according to:

bi) = PO (x, )b, | (1)

whereb!” is the new basis vector arg]”’ the old one. The matri®(” (x, t)
is a rotation operator defined by:
x(s)x" (s)
1%, ()= ()]
wherel is the identity matrix \(¢) a learning-rate factor that diminishes with
t. Y (t) is a neighborhood function defined on the ASSOM lattice.
(b) Dissipate the basis vectdnéf) to improve stability of the results [4] and then
orthonormalize these basis vectors.
Through this competitive and cooperative learning procegdine ASSOM will fi-
nally arrive at a topologically organized status, wherebgaodules represent similar
feature subspaces. Naive implementation of (1) requireataximultiplication which

needs not only a large amount of memory, but also a compuatdtioad quadratic to
the input dimension. It would be costly for practical apations of ASSOM.

P (x,t) = T+ A(t)A (1) ()
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3 OntheBasisUpdating Rule of ASSOM

3.1 Insight on the Basis Vector Rotation

In the first place we propose to replace the formulae (1) apth(@ugh a little math-

ematical deduction. The terﬂn/h(i) in (1) can be distributed to the right side of (2),
leading to the current basis vector and a correction to it:

by = b, 4+ Ab{) | 3)
where @
) ) T(\b, "
AbD = A0 () X)X (5)by ~ 4
N P ETIETE] @
xT(s)b;fi) is in fact a scalar value. The equation can be rewritten as:
Aby) = afl) (s, t)x(s) . (5)
Hereafj%(s, t) is a scalar value defined by:
) o X (s)b”
(s, t) = AMt)he” (t) : (6)

’ [%e ($)Ix(s)l

This shows that the correctiaﬁbg) is in fact proportional to the component vector
x(s), as illustrated in Fig. 2, which seems to have been ignorethagy practition-
ers. Equation (5) gives a clearer way to understand the basier rotation in ASSOM

learning than the traditional rotation matrix (2). Notetthma(6), xT(s)b;fi) is the pro-
jection of the component vector on the basis vectors repteddy the neurons of the
first layer, which we have already when computing the pr@edtx ., (s)|| (cf. Fig. 1).

If we calculate the scaling factcuﬁ’f%(s,t) first, and then scale the component vec-
tor x(s) with this factor, the computations associated with the soasttor updating
will be dramatically reduced. This implementation will keferred to as FL-ASSOM
for fast-learning ASSOM. It is completely equivalent to thessic ASSOM in terms of
generating topologically ordered invariant-feature fdte

Let us compare the computational loads of the basis vectdating in the basic
ASSOM and FL-ASSOM by analyzing the respective updatinghidae. We assume
the input dimension to b#, and the subspace dimension toMe We first evaluate the
computations required by naive implementation of the trawlal basis vector updating
rule (1). For each component vectofs), x(s)x" (s) in (2) needsV? multiplications,
the matrix multiplication in (1) amounts td/ N? multiplications. There are totally
aboutM N? + N2 multiplications. Similarly, the number of additions recpd by (1)
can be shown to be aroudd N2 + N2. Finally, the computational load of naive imple-
mentation of the traditional updating rule is approximate( M N?), i.e. quadratic to
the input dimension and linear to the subspace dimensioar@placement proposed
by McGlinchey et al. [10] leads to a computational loadXgf\/2 V), as shown in their
paper, i.e. linear to the input dimension but quadratic éoghbspace dimension. Now



AbY =all(s,H)x(s)

Fig. 2. An alternative view of the basis vector updating rule of A3&Q0he correctionAb,(f) is

proportional to the component vecte(s). After updating,bﬁf) represents better the component
vectorx(s)

with the proposed updating rule (5), for each componenbredts), the computations
of ||x.,(s)|| and||x(s)|| in (6) need about! N +2N multiplications, andx%(s, t)x(s)

in (5) aboutM N multiplications. In all (5) needs abo2iM N + 2N muliiplications.
Similarly, the number of additions can be shown to be aBaduitV + 2. So with (5),
the computational load is approximatély{ M/ N), i.e. linear to both the input dimen-
sion and the subspace dimension. So there is an obvioustianeding (5) other than
naive implementation of (1).

3.2 Further Boosting: Batch-mode Basis Vector Updating

Basis vector updating can be further boosted by working iraglbmode. We can
avoid computing the value dffk., (s)|| in (6) by using the value computed previously
during module competition. However this could not be dorsidie the framework of
FL-ASSOM since the subspaces are continuously changingcigiving each compo-
nent vector of the episode. To save computatiojfsof, (s)||, the following batch-mode
rotation operator [4] will be useful:

Gen _ ) 5 3 X)X (6)
B (t) =1+ A(t)he (t)z x(s)]12
seS

With this rotation operator, each basis vector in the sutespall be rotated only once
for the whole input episode.

For stability of the solution, we expect the magnitude of¢berection made to the
basis vectors to be monotonically decreasing with respeftt, (s)||. We borrow the
idea from the basic rotation operalbf) (x,t) [4] to divide the learning-rate factou(t)
by the scalar valudx .. (s)||/]1x(s)||, which only changes the effective learning rate.
The batch-mode rotation operator then becomes:

(7)

B (t) = I+ AOAD (1) Y e _x(5x'(s) (8)

= 1%c.(s) ||||X s



As for FL-ASSOM, we distributeblh(i) to terms in this operator. With similar de-
duction as in FL-ASSOM, the basis vector updating rule bexsam

b = b, + Aby ©)
where ‘ ‘
Ay =3 (all (s, x(5)) - (10)
seS

The correction made to each basis vector is thus a linear ioatitn of the component
vectors in the episode. The difference between the updatled9) here and (3) is that
the former updates the basis vectors in a batch mode for tloéevepisode while the
latter updates the basis vectors for each component vetoopone.

The scalar parameteaﬁf%(sy t) has the same form as (6) in FL-ASSOM:

) "(4)
o) (5,1) = AR (5 )0 (1)

’ 1%z, ()IIx(s)]l
The meaning of this equation is a little different from th&{®), where the subspace
L;(s) of the module should be updated for each component vegf{@)) in the episode
and thus we could not reuse the computational results of reathmpetition. Here
in (11) the basis vector updating works in a batch mode, pdating is performed only

after the whole episode has been received. Therefotg,(s)|| and xT(s)b;l(z) can
reuse the results previously calculated during module @&titign. What we need to do
is only store the calculated values in registers and fetemtiwhen needed. The compu-
tational load of (11) is thus trivial. Furthermore, the dgission as well as orthonormal-
ization of basis vectors can be performed only once for epidode without loosing
accuracy since the basis vectors are not updated duringitbede. The computational
load can thus be further reduced. This method will be refetoeas BFL-ASSOM for
batch-mode fast-learning ASSOM.

Let us estimate the computational load of BFL-ASSOM. Forisasctor updat-
ing with (10), we estimate the computational load averagedarzh component vector
of the episode as we did for the basic ASSOM and FL-ASSOM. Aslieen men-
tioned, the calculation o@fji(s,t) according to (11) needs only trivial computation.
The majority of computation is in (10). Averaged on each oeat the episode, the
computational load required by basis vector updating with-B\SSOM is abouf\/ N
multiplications andM N additions. Furthermore, since the dissipation and orthono
malization of basis vectors can be performed only once foh egpisode, the whole
learning time can be further reduced.

4 Experiments

We first show that BFL-ASSOM can also generate the topoldlgioadered invariant-
feature filters as the basic ASSOM. The results of FL-ASSOM lvé shown as the
ground truth since FL-ASSOM is mathematically equivalerthie basic ASSOM. One
of the most common transformations occurred to images mshaton. We will show



that BFL-ASSOM permits to generate Gabor type filters froms@ges subject to trans-
lation.

The input episodes are constructed from a colored noisednvalgich is generated
by filtering a white noise image with a second-order Buttettvilter. The cut-off fre-
guency is set t0.6 times of the Nyquist frequency of the sampling lattice. Eepisode
is composed 06 vectors, each of which is formed on a circular receptive fagidhe
sampling lattice composed 8fl9 pixels. The vectors in the same episode have only
random translation of no more tha&rpixels in both the horizontal and the vertical di-
rections. The episodes are generated on random locatidhe ablored noise image.
The mean value of components of each input vector is subttdicim each component
of the vector. In order to symmetrize the filters with respethe center of the receptive
field, the input samples are weighted by a Gaussian functiomreetrically placed at
the center of the receptive field with a full width at half naxim (FWHM) that varies
linearly with respect to the learning stefrom 1 to 16 sampling lattice spacings. Each
vector is normalized before entering into the ASSOM arrdye ASSOM array is com-
posed of9 x 10 modules aligned in a hexagonal lattice with two basis vecabreach
module. The basis vectors of all the modules are initializaaiomly and orthonormal-
ized at the beginning of the learning process. The radiueetircular neighborhood
functionh’” (t) decreases linearly from73 (= 0.5 x (92 + 102)'/2) t0 0.9 ASSOM
array spacings with. The learning-rate factor has the forx(¢) = 0.1 - T/(T + 99¢),
whereT is the total number of learning steps and set@p000 for the current experi-
ment.

The translation-invariant filters generated by BFL-ASSOdinpared to those by
FL-ASSOM are shown in Fig. 3(a) with a gray scale. We can sahibth methods gen-
erated topologically ordered Gabor-like filters. For eitimethod, the two basis vectors
at the same array locations have the same frequencie¥)lggrees of phase differ-
ence. Figure 3(b) shows how the average projection erobranges with the learning
stept for FL-ASSOM and BFL-ASSOM. For each input episale= {x(s),s € S},
the projection error is calculated accordingtX) = > ¢ % wherex(s)
is the orthogonal projection of(s) on the subspace of the winning modulés the av-
erage ofe(X) over all the training episodes. We can see that the curves-#§SOM
and BFL-ASSOM match very well in Fig. 3(b), which reveal thiaeir difference in
terms of generating the filters is indeed very little.

In the second experiment, we compare the computationatloathe basic AS-
SOM, FL-ASSOM and BFL-ASSOM. We designed the experimentdiggiC++ im-
plementations of all the methods. In this experiment, thriirdimension as well as
the subspace dimension vary. We count the elapsed CPU sefoymtifferent methods.
The number of iterations are fixed 19000. Each episode is composed ®¥ectors.
These vectors are generated randomly according to a ungoobability distribution.
The rectangular ASSOM array contaitfs x 10 modules.

The timing results are summarized in Table 1. As was antieghahe time of up-
dating basis vectors with the basic ASSOM increased shavitiythe input dimension
and moderately with the subspace dimension. Basis vectating is the bottleneck
of the basic learning procedure, especially when the inpogdsion is high. With FL-
ASSOM, it is clear that the time of updating basis vectorsaases much more mod-



\ \ N ~ .~ N ~ =~

LI AT A A A s s s
\ \ A - . " - -
LI R R L R R R R e
bl s s e - - - L R 6

(TR R = R v

- - - - FL-ASSOM
—— BFL-ASSOM

L R e T I I I P 5.8
[ Y A B R Y R B B

L (B TRV WV 56 I

54 r

52 r

NN N s s s NN ANV oy

NN N N s e N AR

4.8 t
NN NN AR T B Y
SO S R R ) AN A 0 5 10 15 20 25 3
(x10)

A L L N TR Y A e e B

(b)

Fig. 3. (a) The Gabor type filters generated by BFL-ASSOM comparetdse by FL-ASSOM
on episodes subject to translatidiop: Filters generated by FL-ASSONBottom: Filters gener-
ated by BFL-ASSOMLEft: First basis vectorsRight: Second basis vectors. (b) Change of the
projection error according to the learning stegor FL-ASSOM and BFL-ASSOM

erately with the input dimension. The response to the sutesganension is also quite
mild. Basis vector updating is no longer a bottleneck forldaning procedure. As a
result, the learning time drops dramatically compared &lthsic ASSOM. However
learning time outside basis vector updating is not reduded: with BFL-ASSOM, we
can observe that the basis vector updating time is furtttraed. Moreover, learning
time outside the basis vector updating is also reduced derabhly compared to the
basic ASSOM and FL-ASSOM.

The relationship between the basis vector updating timetl@dnput dimension
or the subspace dimension for the three implementationsSS@WM is visualized in
Fig. 4. The basis vector updating time increases approgimkmearly with respect to
the input dimension for FL-ASSOM and BFL-ASSOM, but appdsenonlinearly for
the basic ASSOM. In all the cases, the updating time inceeagproximately linearly
with respect to the subspace dimension.

5 Conclusions

The focus of this paper is on the basis updating rule of the@@3earning. We first
showed that the traditional basis rotation rule amountsdmreection made to the basis
vectors which is proportional to the component vectors efitiput episode. This gives
us a better understanding of the basis updating in ASSOMilegwrWith this modified
form of updating rule, some computations can be saved bymgssme intermediate
computations. The resulting method is referred to as FL-@MSNaive implemen-
tation of the traditional basis updating rule leads to a cotaonal load linear to the
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Table 1. The timing results for the basic ASSOM, FL-ASSOM and BFL-AB&. VU (vector
updating time) denotes the time for the basis vector upgati (whole learning time) denotes
the time for the whole learning procedure, including thasenfiodule competition, basis vector
dissipation and orthonormalization. All the times are giueseconds

The basic ASSOM

M=2 M=3 M=4

VU WL VU WL VU WL
N=50| 29.3§ 41.27 30.44 4753 32.45 54.77
N=100 134.92 154.95 145.95 172.85 149.91 188.04
N=200 742.34 786.63 769.56 828.471 814.80 895.08
N=4004529.694626.434956.645090.565200.785367.35
FL-ASSOM
M=2 M=3 M=4

VU WL VU WL VU WL
N=50 1.53 13.31 2.31 18.92 3.18§ 25.03
N=100 2.39 21.09 3.15 3041 3.8 40.8C
N=200 3.30 37.8§ 4.81] 5544 593 73.98
N=400 5.68 70.8§ 7.51 105.01 9.92 139.25
BFL-ASSOM
M=2 M=3 M=4

VU WL VU WL VU WL
N=50 058 483 124 6.74 133 8.75
N=100 0.87 6.8 150 10.01 1.58 13.37
N=200 1.03 1161 1.67 17.37 2.10 22.86
N=400 1.4 21.02 2.0§ 31.01 2.99 41.5]

subspace dimension but quadratic to the input dimensiars.cBbmputational load is re-
duced by FL-ASSOM to be linear to both the subspace dimersidrthe input dimen-

sion. The ability of FL-ASSOM in generating topologicallydered invariant-feature
filters is altogether preserved since FL-ASSOM is matheralyi equivalent to the ba-
sic ASSOM. We then proceeded to present BFL-ASSOM, wheréalses vectors are
updated in a batch mode. We showed that the correction magictobasis vector is a
linear combination of the component vectors in the inpusegé.What's more, large

amount of computations can be further saved by reusing nigmeeious computations
and performing only one dissipation and orthonormalizetay each episode.

Our experiments showed that BFL-ASSOM can also generatddgieally ordered
Gabor-like translation-invariant filters and that the lesteck of the basis vector updat-
ing in the learning procedure is totally removed by FL-ASS@hdl BFL-ASSOM. The
proposed methods can be easily adapted to the supervis€dM$Sed in [6]. There
is an obvious benefit in using the proposed rules insteadieé imaplementation of the
basic learning rule.

References

1. Kohonen, T.: The adaptive-subspace som (assom) andetfoushe implementation of
invariant feature detection. In Fogelman-Soulié, F. iGafi, P., eds.: ProdCANN’95, Int.



10

VU(s) VU(s)
1200 1200
-~ ASSOM - ASSOM
1000 | = FL-ASSOM 1000 ™ FL-ASSOM
-+ BFL-ASSOM —~ BFL-ASSOM
800 - 800 //
600 - 600
400 + 400 r
200 - 200
[
0 E —t—— 0 e e S—
50 100 200 40N 2 3 4 M

Fig. 4. Left: Relationship between the basis vector updating time (\Ad)tae input dimensioiv

at the subspace dimensidii = 2. Right: Relationship between VU and the subspace dimension
M at the input dimensiodv = 200. For sake of clarity, the updating times of FL-ASSOM and
BFL-ASSOM are magnified by a factor of 10

Conf. on Artificial Neural Networks. Volume 1., Paris (19%)10

2. Kohonen, T.: Self-Organizing Maps. 3rd edn. Springettiage Berlin Heidelberg New York
(2001)

3. Oja, E.: Principal components, minor components, arehlimeural networks. Neural Net-
works5 (1992) 927-935

4. Kohonen, T., Kaski, S., Lappalainen, H.: Self-organitesination of various invariant-
feature filters in the adaptive-subspace som. Neural Caatipn®9(6) (1997) 1321-1344

5. Hase, H., Matsuyama, H., Tokutaka, H., Kishida, S.: Sps@gmal processing using adaptive
subspace som (assom). Technical Report NC95-140, Theoln&tectronics, Information
and Communication Engineers, Tottori University, Koyadapan (1996)

6. Ruiz del Solar, J.: Texsom: texture segmentation usiligpsganizing maps. Neurocomput-
ing 21(1-3) (1998) 7-18

7. De Ridder, D., Lemmers, O., Duin, R.P., Kittler, J.: Thaptilye subspace map for image
description and image database retrieval. In Ferri, Fl, etds.: SSPR&SPR 2000. Volume
1876 of LNCS., Berlin Heidelberg, Springer-Verlag (2008203

8. Zhang, B., Fu, M., Yan, H., Jabri, M.: Handwritten digitognition by adaptive-subspace
self-organizing map (assom). IEEE Transactions on Neueaiirks10(4) (1999) 939-945

9. Lopez-Rubio, E., Mufioz Pérez, J., Gobmez-Ruiz, J.:riagipal components analysis self-

organizing map. Neural Network¥ (2004) 261-270

McGlinchey, S., Fyfe, C.: Fast formation of invarianatigre maps. In: European Signal

Processing Conference (EUSIPCO’98), Island of Rhodes¢arél 998)

Oja, E.: Neural networks, principal components and gatss. International Journal of

Neural System4 (1989) 61-68

10.

11.



