
HAL Id: hal-01224793
https://hal.science/hal-01224793

Submitted on 5 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Basis Updating Rule of Adaptive-Subspace
Self-Organizing Map (ASSOM)

Huicheng Zheng, Christophe Laurent, Grégoire Lefebvre

To cite this version:
Huicheng Zheng, Christophe Laurent, Grégoire Lefebvre. On the Basis Updating Rule of Adaptive-
Subspace Self-Organizing Map (ASSOM). Artificial Neural Networks - ICANN 2006, 16th International
Conference„ Sep 2006, Athens, Greece. �10.1007/11840817_46�. �hal-01224793�

https://hal.science/hal-01224793
https://hal.archives-ouvertes.fr

On the Basis Updating Rule of Adaptive-Subspace
Self-Organizing Map (ASSOM)?

Huicheng Zheng, Christophe Laurent, and Grégoire Lefebvre

France Telecom R&D – DIH/HDM
4, Rue du Clos Courtel

35512 Cesson Sévigné Cedex, France

Abstract. This paper gives other views on the basis updating rule of theASSOM
proposed by Kohonen. We first show that the traditional basisvector rotation rule
can be expressed as a correction to the basis vector which is proportional to com-
ponent vectors in the episode. With the latter form, some intermediate compu-
tations can be reused, leading to a computational load only linear to the input
dimension and the subspace dimension, whereas naive implementation of the tra-
ditional rotation rule has a computational load quadratic to the input dimension.
We then proceed to propose a batch-mode updating of the basisvectors. We show
that the correction made to each basis vector is a linear combination of component
vectors in the input episode. Computations can be further saved. Experiments
show that the proposed methods preserve the ability to generate topologically or-
dered invariant-feature filters and that the learning procedure is largely boosted.

1 Introduction

Adaptive-subspace self-organizing map (ASSOM) [1] is basically a combination of the
competitive selection and cooperative learning as in the traditional SOM [2] and a sub-
space method. The single weight vectors at map units in SOM are replaced by modules
of basis vectors in ASSOM that span some linear subspaces. ASSOM is an alternative to
the standard principal component analysis (PCA) method of feature extraction. An ear-
lier neural approach for PCA can be found in [3]. The ASSOM cangenerate spatially
ordered feature filters thanks to spatial interactions among processing units [4]. Each
module in ASSOM can be realized as a neural network which receives input vectors
and outputs their orthogonal projections on the represented subspaces.

The input to an ASSOM array is typically an episode, i.e. a sequence of pattern
vectors supposed to approximately span some linear subspace. These vectors shall also
be referred to as component vectors of the episode in this paper. By learning the episode
as a whole, ASSOM is able to capture the transformation codedin the episode. The
simulation results in [1] and [4] have demonstrated that ASSOM can induce ordered
filter banks to account for translation, rotation and scaling. The relationship between the
neurons in the ASSOM architecture and their biological counterparts are reported [4].
ASSOM has been applied to speech processing [5], texture segmentation [6], image

? This work was carried out during the tenure of a MUSCLE Internal fellowship
(http://www.muscle-noe.org).

2

retrieval [7] and image classification [7], [8], etc. in the literature. A supervised variant
of ASSOM, called supervised adaptive-subspace self-organizing map (SASSOM), was
used by Ruiz del Solar in [6].

The basis vector rotation rule in the traditional ASSOM implementation takes a
form of matrix multiplication. This rule is hard to understand and more seriously, naive
implemenation of the basis vector rotation rule leads to a computational load which is
quadratic to the input dimension, not to mention large amount of memory required by
the usually high-dimensional matrix operations. This deficiency renders naive imple-
mentation of the basic ASSOM learning very costly for practical applications.

There were efforts in the literature to reduce the computational load associated with
the basic ASSOM learning. De Ridder et al. [7] dropped topological ordering to re-
duce the computations involved in the cooperative learning. Furthermore, they per-
formed a batch-mode updating of subspaces with PCA to avoid the time-consuming
iterative updating. Similarly, López-Rubio et al. [9] used PCA with ASSOM to perform
PCA while retaining self-organization of generated features. The resulting algorithm is
named PCASOM. According to their report, under similar classification performance,
their algorithm runs about twice faster than the basic ASSOM. McGlinchey et al. [10]
replaced the traditional basis vector updating formula with one proposed by Oja [11].
According to their paper, the computational load is only linear to the input dimension,
but quadratic to the subspace dimension.

In this paper, we first show that with the traditional basis rotation rule, the correction
made to each basis vector is in fact a vector proportional to the component vector of the
input episode. With this modified form, some intermediate computations can be reused,
leading to a computational load only linear to both the inputdimension and the subspace
dimension. We then proceed to propose a batch-mode updatingof the basis vectors,
where the correction made to each basis vector is a linear combination of component
vectors in the episode. This modified rule further accelerates the learning procedure by
saving large amounts of computations.

This paper will be organized as follows: In Sect. 2, we reviewbriefly the basic
ASSOM learning procedure. The proposed alternative updating rules will be presented
in Sect. 3. Section 4 is dedicated to experiments which demonstrate the performance of
the proposed methods. This paper will be concluded by Sect. 5.

2 The Basic ASSOM Learning

An ASSOM is composed of an array of modules. Each module in theASSOM can
be realized by a two-layered neural network [4], as shown in Fig. 1. It calculates the
projection of an input vectorx on the subspaceL of the module. SupposingL is spanned
by a set of basis vectors{b1,b2, . . . ,bH}, whereH is the dimension ofL, the neurons
in the first layer take the orthogonal projectionsx

T
bh of the input vectorx on the

individual basis vectorsbh. The basis vectors are supposed to be orthonormalized. The
only quadratic neuron of the second layer sums up the squaredoutputs of the first-layer
neurons. The output of the module is then‖x̂L‖

2, the squared norm of the projection of
x on the subspaceL. It can be regarded as a measure of the matching between the input
vectorx and the subspaceL. For an input episodex(s), s ∈ S, whereS is the index set

3

of vectors in the episode, Kohonen proposed to use theenergy
∑

s∈S ‖x̂L(s)‖2, i.e. the
sum of squared norms of the projections of the individual vectors, as the measure [4].

1b 2b Hb

Q

x

1
Tbx

2ˆ
L
x

2
Tbx HbxT

Fig. 1. A module of ASSOM realized as a neural network.x is an input vector.{b1,b2, . . . ,bH}
is an orthonormal basis of the linear subspaceL of the module.Q is a quadratic neuron that sums
up squares of its inputs

The learning process of ASSOM approximately minimizes an error function in an
iterative way [4]. The iteration at stept of the basic ASSOM learning procedure pro-
ceeds as follows:

1. For the episodex(s), s ∈ S, locate the winning module indexed by
c = argmaxi∈I

∑

s∈S ‖x̂Li
(s)‖2, whereI is the index set of modules in the AS-

SOM.
2. For each modulei in the neighborhood ofc, includingc itself, update the subspace

Li for each component vectorx(s), s ∈ S, that is, update the basis vectorsb
(i)
h ,

according to the following rules:
(a) Rotate each basis vector according to:

b
(i)
h = P

(i)
c (x, t)b

′(i)
h , (1)

whereb(i)
h is the new basis vector andb

′(i)
h the old one. The matrixP(i)

c (x, t)
is a rotation operator defined by:

P
(i)
c (x, t) = I + λ(t)h(i)

c (t)
x(s)xT(s)

‖x̂Li
(s)‖‖x(s)‖

, (2)

whereI is the identity matrix,λ(t) a learning-rate factor that diminishes with

t. h
(i)
c (t) is a neighborhood function defined on the ASSOM lattice.

(b) Dissipate the basis vectorsb(i)
h to improve stability of the results [4] and then

orthonormalize these basis vectors.

Through this competitive and cooperative learning procedure, the ASSOM will fi-
nally arrive at a topologically organized status, where nearby modules represent similar
feature subspaces. Naive implementation of (1) requires a matrix multiplication which
needs not only a large amount of memory, but also a computational load quadratic to
the input dimension. It would be costly for practical applications of ASSOM.

4

3 On the Basis Updating Rule of ASSOM

3.1 Insight on the Basis Vector Rotation

In the first place we propose to replace the formulae (1) and (2) through a little math-

ematical deduction. The termb
′(i)
h in (1) can be distributed to the right side of (2),

leading to the current basis vector and a correction to it:

b
(i)
h = b

′(i)
h + ∆b

(i)
h , (3)

where

∆b
(i)
h = λ(t)h(i)

c (t)
x(s)xT(s)b

′(i)
h

‖x̂Li
(s)‖‖x(s)‖

. (4)

x
T(s)b

′(i)
h is in fact a scalar value. The equation can be rewritten as:

∆b
(i)
h = α

(i)
c,h(s, t)x(s) . (5)

Hereα
(i)
c,h(s, t) is a scalar value defined by:

α
(i)
c,h(s, t) = λ(t)h(i)

c (t)
x

T(s)b
′(i)
h

‖x̂Li
(s)‖‖x(s)‖

. (6)

This shows that the correction∆b
(i)
h is in fact proportional to the component vector

x(s), as illustrated in Fig. 2, which seems to have been ignored bymany practition-
ers. Equation (5) gives a clearer way to understand the basisvector rotation in ASSOM

learning than the traditional rotation matrix (2). Note that in (6),xT(s)b
′(i)
h is the pro-

jection of the component vector on the basis vectors represented by the neurons of the
first layer, which we have already when computing the projection ‖x̂Li

(s)‖ (cf. Fig. 1).
If we calculate the scaling factorα(i)

c,h(s, t) first, and then scale the component vec-
tor x(s) with this factor, the computations associated with the basis vector updating
will be dramatically reduced. This implementation will be referred to as FL-ASSOM
for fast-learning ASSOM. It is completely equivalent to thebasic ASSOM in terms of
generating topologically ordered invariant-feature filters.

Let us compare the computational loads of the basis vector updating in the basic
ASSOM and FL-ASSOM by analyzing the respective updating formulae. We assume
the input dimension to beN , and the subspace dimension to beM . We first evaluate the
computations required by naive implementation of the traditional basis vector updating
rule (1). For each component vectorx(s), x(s)xT(s) in (2) needsN2 multiplications,
the matrix multiplication in (1) amounts toMN2 multiplications. There are totally
aboutMN2 + N2 multiplications. Similarly, the number of additions required by (1)
can be shown to be aroundMN2 +N2. Finally, the computational load of naive imple-
mentation of the traditional updating rule is approximately O(MN2), i.e. quadratic to
the input dimension and linear to the subspace dimension. The replacement proposed
by McGlinchey et al. [10] leads to a computational load ofO(M2N), as shown in their
paper, i.e. linear to the input dimension but quadratic to the subspace dimension. Now

5

)(i
hb

)(' i
hb

)(),()(
,

)(stsi
hc

i
h xb α=∆

)(sx

Fig. 2. An alternative view of the basis vector updating rule of ASSOM. The correction∆b
(i)
h

is

proportional to the component vectorx(s). After updating,b(i)
h

represents better the component
vectorx(s)

with the proposed updating rule (5), for each component vector x(s), the computations

of ‖x̂Li
(s)‖ and‖x(s)‖ in (6) need aboutMN+2N multiplications, andα(i)

c,h(s, t)x(s)
in (5) aboutMN multiplications. In all (5) needs about2MN + 2N multiplications.
Similarly, the number of additions can be shown to be about2MN + 2N . So with (5),
the computational load is approximatelyO(MN), i.e. linear to both the input dimen-
sion and the subspace dimension. So there is an obvious benefit in using (5) other than
naive implementation of (1).

3.2 Further Boosting: Batch-mode Basis Vector Updating

Basis vector updating can be further boosted by working in a batch mode. We can
avoid computing the value of‖x̂Li

(s)‖ in (6) by using the value computed previously
during module competition. However this could not be done inside the framework of
FL-ASSOM since the subspaces are continuously changing in receiving each compo-
nent vector of the episode. To save computation of‖x̂Li

(s)‖, the following batch-mode
rotation operator [4] will be useful:

B
(i)
c (t) = I + λ(t)h(i)

c (t)
∑

s∈S

x(s)xT(s)

‖x(s)‖2
. (7)

With this rotation operator, each basis vector in the subspace will be rotated only once
for the whole input episode.

For stability of the solution, we expect the magnitude of thecorrection made to the
basis vectors to be monotonically decreasing with respect to ‖x̂Li

(s)‖. We borrow the

idea from the basic rotation operatorP
(i)
c (x, t) [4] to divide the learning-rate factorλ(t)

by the scalar value‖x̂Li
(s)‖/‖x(s)‖, which only changes the effective learning rate.

The batch-mode rotation operator then becomes:

B
(i)
c (t) = I + λ(t)h(i)

c (t)
∑

s∈S

x(s)xT(s)

‖x̂Li
(s)‖‖x(s)‖

. (8)

6

As for FL-ASSOM, we distributeb
′(i)
h to terms in this operator. With similar de-

duction as in FL-ASSOM, the basis vector updating rule becomes:

b
(i)
h = b

′(i)
h + ∆b

(i)
h , (9)

where
∆b

(i)
h =

∑

s∈S

(

α
(i)
c,h(s, t)x(s)

)

. (10)

The correction made to each basis vector is thus a linear combination of the component
vectors in the episode. The difference between the updatingrule (9) here and (3) is that
the former updates the basis vectors in a batch mode for the whole episode while the
latter updates the basis vectors for each component vector one by one.

The scalar parameterα
(i)
c,h(s, t) has the same form as (6) in FL-ASSOM:

α
(i)
c,h(s, t) = λ(t)h(i)

c (t)
x

T(s)b
′(i)
h

‖x̂Li
(s)‖‖x(s)‖

. (11)

The meaning of this equation is a little different from that of (6), where the subspace
Li(s) of the modulei should be updated for each component vectorx(s) in the episode
and thus we could not reuse the computational results of module competition. Here
in (11) the basis vector updating works in a batch mode, i.e. updating is performed only

after the whole episode has been received. Therefore,‖x̂Li
(s)‖ andx

T(s)b
′(i)
h can

reuse the results previously calculated during module competition. What we need to do
is only store the calculated values in registers and fetch them when needed. The compu-
tational load of (11) is thus trivial. Furthermore, the dissipation as well as orthonormal-
ization of basis vectors can be performed only once for each episode without loosing
accuracy since the basis vectors are not updated during the episode. The computational
load can thus be further reduced. This method will be referred to as BFL-ASSOM for
batch-mode fast-learning ASSOM.

Let us estimate the computational load of BFL-ASSOM. For basis vector updat-
ing with (10), we estimate the computational load averaged on each component vector
of the episode as we did for the basic ASSOM and FL-ASSOM. As has been men-
tioned, the calculation ofα(i)

c,h(s, t) according to (11) needs only trivial computation.
The majority of computation is in (10). Averaged on each vector in the episode, the
computational load required by basis vector updating with BFL-ASSOM is aboutMN
multiplications andMN additions. Furthermore, since the dissipation and orthonor-
malization of basis vectors can be performed only once for each episode, the whole
learning time can be further reduced.

4 Experiments

We first show that BFL-ASSOM can also generate the topologically ordered invariant-
feature filters as the basic ASSOM. The results of FL-ASSOM will be shown as the
ground truth since FL-ASSOM is mathematically equivalent to the basic ASSOM. One
of the most common transformations occurred to images is translation. We will show

7

that BFL-ASSOM permits to generate Gabor type filters from episodes subject to trans-
lation.

The input episodes are constructed from a colored noise image, which is generated
by filtering a white noise image with a second-order Butterworth filter. The cut-off fre-
quency is set to0.6 times of the Nyquist frequency of the sampling lattice. Eachepisode
is composed of6 vectors, each of which is formed on a circular receptive fieldon the
sampling lattice composed of349 pixels. The vectors in the same episode have only
random translation of no more than5 pixels in both the horizontal and the vertical di-
rections. The episodes are generated on random locations ofthe colored noise image.
The mean value of components of each input vector is subtracted from each component
of the vector. In order to symmetrize the filters with respectto the center of the receptive
field, the input samples are weighted by a Gaussian function symmetrically placed at
the center of the receptive field with a full width at half maximum (FWHM) that varies
linearly with respect to the learning stept from 1 to 16 sampling lattice spacings. Each
vector is normalized before entering into the ASSOM array. The ASSOM array is com-
posed of9 × 10 modules aligned in a hexagonal lattice with two basis vectors at each
module. The basis vectors of all the modules are initializedrandomly and orthonormal-
ized at the beginning of the learning process. The radius of the circular neighborhood
functionh

(i)
c (t) decreases linearly from6.73 (= 0.5 × (92 + 102)1/2) to 0.9 ASSOM

array spacings witht. The learning-rate factor has the formλ(t) = 0.1 · T/(T + 99t),
whereT is the total number of learning steps and set to30, 000 for the current experi-
ment.

The translation-invariant filters generated by BFL-ASSOM compared to those by
FL-ASSOM are shown in Fig. 3(a) with a gray scale. We can see that both methods gen-
erated topologically ordered Gabor-like filters. For either method, the two basis vectors
at the same array locations have the same frequencies but90 degrees of phase differ-
ence. Figure 3(b) shows how the average projection errore changes with the learning
stept for FL-ASSOM and BFL-ASSOM. For each input episodeX = {x(s), s ∈ S},

the projection error is calculated according toe(X) =
∑

s∈S
‖x(s)−x̂(s)‖2

‖x(s)‖2 , wherex̂(s)

is the orthogonal projection ofx(s) on the subspace of the winning module.e is the av-
erage ofe(X) over all the training episodes. We can see that the curves of FL-ASSOM
and BFL-ASSOM match very well in Fig. 3(b), which reveal thattheir difference in
terms of generating the filters is indeed very little.

In the second experiment, we compare the computational loads of the basic AS-
SOM, FL-ASSOM and BFL-ASSOM. We designed the experiment by using C++ im-
plementations of all the methods. In this experiment, the input dimension as well as
the subspace dimension vary. We count the elapsed CPU seconds for different methods.
The number of iterations are fixed to1, 000. Each episode is composed of6 vectors.
These vectors are generated randomly according to a uniformprobability distribution.
The rectangular ASSOM array contains10 × 10 modules.

The timing results are summarized in Table 1. As was anticipated, the time of up-
dating basis vectors with the basic ASSOM increased sharplywith the input dimension
and moderately with the subspace dimension. Basis vector updating is the bottleneck
of the basic learning procedure, especially when the input dimension is high. With FL-
ASSOM, it is clear that the time of updating basis vectors increases much more mod-

8

4.8

5

5.2

5.4

5.6

5.8

6

0 5 10 15 20 25 30
(×103)

FL-ASSOM

BFL-ASSOM

e

t

(a) (b)

Fig. 3. (a) The Gabor type filters generated by BFL-ASSOM compared tothose by FL-ASSOM
on episodes subject to translation.Top: Filters generated by FL-ASSOM;Bottom: Filters gener-
ated by BFL-ASSOM.Left: First basis vectors.Right: Second basis vectors. (b) Change of the
projection errore according to the learning stept for FL-ASSOM and BFL-ASSOM

erately with the input dimension. The response to the subspace dimension is also quite
mild. Basis vector updating is no longer a bottleneck for thelearning procedure. As a
result, the learning time drops dramatically compared to the basic ASSOM. However
learning time outside basis vector updating is not reduced.Now with BFL-ASSOM, we
can observe that the basis vector updating time is further reduced. Moreover, learning
time outside the basis vector updating is also reduced considerably compared to the
basic ASSOM and FL-ASSOM.

The relationship between the basis vector updating time andthe input dimension
or the subspace dimension for the three implementations of ASSOM is visualized in
Fig. 4. The basis vector updating time increases approximately linearly with respect to
the input dimension for FL-ASSOM and BFL-ASSOM, but apparently nonlinearly for
the basic ASSOM. In all the cases, the updating time increases approximately linearly
with respect to the subspace dimension.

5 Conclusions

The focus of this paper is on the basis updating rule of the ASSOM learning. We first
showed that the traditional basis rotation rule amounts to acorrection made to the basis
vectors which is proportional to the component vectors of the input episode. This gives
us a better understanding of the basis updating in ASSOM learning. With this modified
form of updating rule, some computations can be saved by reusing some intermediate
computations. The resulting method is referred to as FL-ASSOM. Naive implemen-
tation of the traditional basis updating rule leads to a computational load linear to the

9

Table 1. The timing results for the basic ASSOM, FL-ASSOM and BFL-ASSOM. VU (vector
updating time) denotes the time for the basis vector updating. WL (whole learning time) denotes
the time for the whole learning procedure, including those for module competition, basis vector
dissipation and orthonormalization. All the times are given in seconds

The basic ASSOM
M=2 M=3 M=4

VU WL VU WL VU WL
N=50 29.36 41.27 30.44 47.53 32.45 54.72
N=100 134.92 154.95 145.95 172.85 149.91 188.06
N=200 742.34 786.63 769.56 828.47 814.80 895.08
N=400 4529.694626.434956.645090.565200.785367.35

FL-ASSOM
M=2 M=3 M=4

VU WL VU WL VU WL
N=50 1.53 13.31 2.31 18.92 3.18 25.03
N=100 2.39 21.09 3.15 30.41 3.86 40.80
N=200 3.30 37.86 4.81 55.44 5.93 73.98
N=400 5.68 70.88 7.51 105.01 9.92 139.25

BFL-ASSOM
M=2 M=3 M=4

VU WL VU WL VU WL
N=50 0.58 4.83 1.28 6.72 1.33 8.75
N=100 0.87 6.88 1.50 10.01 1.58 13.37
N=200 1.03 11.61 1.67 17.37 2.10 22.86
N=400 1.46 21.02 2.06 31.01 2.99 41.51

subspace dimension but quadratic to the input dimension. This computational load is re-
duced by FL-ASSOM to be linear to both the subspace dimensionand the input dimen-
sion. The ability of FL-ASSOM in generating topologically ordered invariant-feature
filters is altogether preserved since FL-ASSOM is mathematically equivalent to the ba-
sic ASSOM. We then proceeded to present BFL-ASSOM, where thebasis vectors are
updated in a batch mode. We showed that the correction made toeach basis vector is a
linear combination of the component vectors in the input episode.What’s more, large
amount of computations can be further saved by reusing more of previous computations
and performing only one dissipation and orthonormalization for each episode.

Our experiments showed that BFL-ASSOM can also generate topologically ordered
Gabor-like translation-invariant filters and that the bottleneck of the basis vector updat-
ing in the learning procedure is totally removed by FL-ASSOMand BFL-ASSOM. The
proposed methods can be easily adapted to the supervised ASSOM used in [6]. There
is an obvious benefit in using the proposed rules instead of naive implementation of the
basic learning rule.

References

1. Kohonen, T.: The adaptive-subspace som (assom) and its use for the implementation of
invariant feature detection. In Fogelman-Soulié, F., Gallinari, P., eds.: Proc.ICANN’95, Int.

10

0

200

400

600

800

1000

1200

50 100 200 400N

VU(s)

ASSOM

FL-ASSOM

BFL-ASSOM

0

200

400

600

800

1000

1200

2 3 4 M

VU(s)

ASSOM
FL-ASSOM

BFL-ASSOM

Fig. 4. Left: Relationship between the basis vector updating time (VU) and the input dimensionN
at the subspace dimensionM = 2. Right: Relationship between VU and the subspace dimension
M at the input dimensionN = 200. For sake of clarity, the updating times of FL-ASSOM and
BFL-ASSOM are magnified by a factor of 10

Conf. on Artificial Neural Networks. Volume 1., Paris (1995)3–10
2. Kohonen, T.: Self-Organizing Maps. 3rd edn. Springer-Verlag, Berlin Heidelberg New York

(2001)
3. Oja, E.: Principal components, minor components, and linear neural networks. Neural Net-

works5 (1992) 927–935
4. Kohonen, T., Kaski, S., Lappalainen, H.: Self-organizedformation of various invariant-

feature filters in the adaptive-subspace som. Neural Computation9(6) (1997) 1321–1344
5. Hase, H., Matsuyama, H., Tokutaka, H., Kishida, S.: Speech signal processing using adaptive

subspace som (assom). Technical Report NC95-140, The Inst.of Electronics, Information
and Communication Engineers, Tottori University, Koyama,Japan (1996)

6. Ruiz del Solar, J.: Texsom: texture segmentation using self-organizing maps. Neurocomput-
ing 21(1–3) (1998) 7–18

7. De Ridder, D., Lemmers, O., Duin, R.P., Kittler, J.: The adaptive subspace map for image
description and image database retrieval. In Ferri, F., et al., eds.: SSPR&SPR 2000. Volume
1876 of LNCS., Berlin Heidelberg, Springer-Verlag (2000) 94–103

8. Zhang, B., Fu, M., Yan, H., Jabri, M.: Handwritten digit recognition by adaptive-subspace
self-organizing map (assom). IEEE Transactions on Neural Networks10(4) (1999) 939–945

9. López-Rubio, E., Muñoz Pérez, J., Gómez-Ruiz, J.: A principal components analysis self-
organizing map. Neural Networks17 (2004) 261–270

10. McGlinchey, S., Fyfe, C.: Fast formation of invariant feature maps. In: European Signal
Processing Conference (EUSIPCO’98), Island of Rhodes, Greece (1998)

11. Oja, E.: Neural networks, principal components and subspaces. International Journal of
Neural Systems1 (1989) 61–68

