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1 Introduction

The following document presents the analysis with R. The exposition follows
roughly the software development approach used in this project. Namely, a
single PSTH is analyzed first step by step, requiring the definitions of short
functions or the use of a few command lines. Once this prototypical analysis
is achieved, one class and its associated methods are defined. The code of the
methods being the same (modulo some variable name changes) as the code
of the functions previously defined. For clarity of the code presentation—as
well as to keep the code length able to fit within a single page—the literate
programming paradigm is used throughout this document, implying that
the construction of the actual working code often implies sticking together
several pieces. Therefore many listings, like Listing 1, will appear like:
Some code lines in R or Python
<<a-reference>>
Some more code lines

In such cases a "reference" made of a string between "«" and "»" (in the
case above "a-reference") refers to a listing whose content should be copied
and pasted in place of the reference.

Figures, tables and equations numbers given in this document
refer to figures, tables and equations in the companion manuscript.

1.1 Existing tests

Cox and P. A. W. Lewis (1966) present tests for homogeneous Poisson
(Sec. 6.3) and renewal (Sec. 6.4) processes. The tests for Poisson processes
use the fact that if the observed times: {t1, t2, . . . , tn} are a realization of a
homogeneous Poisson process with rate λ on the time interval [0, t0], then,
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conditionally on n, the total number of events observed at the end of the
time period, the quantities: {u(i) = ti/t0}i=1,...,n are observations of the
order statistics of n IID draws from a uniform distribution on (0, 1). It is
then possible to apply a Kolmogorov test or an Anderson-Darling test against
this null hypothesis giving a uniform conditional test for a Poisson process.
Durbin (1961, p. 48) followed by Peter A. W. Lewis (1965) argue further for
the use of what Cox and P. A. W. Lewis (1966, p. 154-155) dubbed Durbin’s
transformation of the ti in order to improve the power of these tests against
the uniform null hypothesis. The algorithm producing this transformation
follows:

1. Go from the {u(i) = ti/t0}i=1,...,n discussed in the previous para-
graph to the intervals: c1 = u(1), ci = u(i) − u(i−1) (i = 2, . . . , n),
cn+1 = 1− u(n)} (the latter should IID realizations from an exponen-
tial distribution with parameter 1).

2. Get the order statistics {c(1), . . . , c(n)} and form the differences gi =
(n+ 2− i)

(
c(i) − c(i−1)

)
for i = 1, . . . , n+ 1 with c(0) = 0 (they should

be independent exponentially distributed random variables with means
1).

3. The observations u′(i) =
∑i

j=1 gj for i = 1, . . . , n should then be ob-
servations from the order statistics of n IID draws from a uniform
distribution on (0, 1).

As pointed out by Cox and P. A. W. Lewis (1966, p. 158) the tests
on transformed data are sensitive to discretization: they fail to apply if
the latter is too coarse. The data used here where sampled at 12800 Hz
with a spike sorting procedure that did not properly cope with sampling
jitter (Pouzat and Detorakis 2014). This unaccounted for sampling jitter
amounts to a "too coarse" sampling and give rise to a pronounced stair-case
aspect of the empirical cumulative distribution function (ECDF) of the u′(i)
for small values of i. This leads to spurious positive values when applying
the Anderson-Darling test. We therefore decided when working with the
transformed data to jitter the original observed times uniformly by plus or
minus half a sampling period (in practice plus or minus 40 µs). This destroys
the stair-case aspect without touching the overall structure.

In addition to these tests against a uniform distribution on (0, 1), the
correlation coefficients of the successive inter-event intervals at different lags
(the autocorrelation function of the inter-events intervals) is inspected and
the log of the survivors function—that should be a straight line under the
null hypothesis—is plotted.
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1.2 A remark on the pseudo-random number generators used
by R and Python

As most readers know, when a (pseudo) random number is drawn from a
continuous distribution (exponential, normal, etc) a function of one or sev-
eral random numbers with a uniform distribution on [0,1) is used: exponen-
tial random numbers are typically generated with the inversion method–this
is done in both R with rexp and in the numpy.random module of Python
with exponential–; normal random numbers are generated with the inver-
sion method–used by default in function rnorm of R–or with the Box-Muller
method–used by function normal in numpy.random–or with the Kinderman
and Monahan method, etc. This implies that a crucial role is played by
the generator of uniform random numbers on [0,1)–or (0,1) as is the case
for R–. In principle, when one reads the documentation of the default uni-
form pseudo-random number generators (PRNG) implemented in both R and
Python, one gets the impression they are the same since both software used
the Mersenne Twister. This PRNG generates in fact discrete number in
{0, 1, . . . , 232 − 1} with a period of 219937 − 1. This feat is achieved by using
a tuple with 624 elements, each element being an unsigned integer coded on
32 bit. This means that such a tuple has to be provided in order to initialize
the generator. R and Python do this initialization differently and in order to
figure out precisely how they do it, the source codes have to be inspected. It
is then possible (but tedious) to use the same tuple in both languages. Then
one realizes that the generated sequences of floating point numbers (uniform
on the unit interval) are different! Inspection of the source codes provides
again the explanation: at each call, the Mersenne Twister outputs an un-
signed integer coded on 32 bit; R divides this number by 232 to get a floating
point number ∈ [0, 1) –then R checks if the number is 0 (or negative) and
in such a case it returns 1/2 × 1/(232 − 1) –; Python draws two successive
numbers from the Mersenne-Twister and constructs an "intermediate" 53 bit
unsigned integer with them–the leftmost 27 bit of first 32 bit unsigned inte-
ger provide the leftmost 27 bit of the intermediate number while the leftmost
26 bit of the second 32 bit unsigned integer provide the rightmost 26 bit of
the intermediate number; the intermediate number is then divided by 253 to
yield a floating point number ∈ [0, 1) (with the maximal achievable resolution
with double precision). R generates therefore double precision floating point
random numbers with a 32 bit resolution, while Python generates numbers
with a 53 bit resolution. This (undocumented) difference does not create
significant differences in the two versions of our code but it explains why we
could not work with the exact same sequences in both versions.
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2 The analysis with R

2.1 Implementation of existing tests

We define a function returning the Kolmogorov two sided or one sided statis-
tics against the null hypothesis—uniform distribution on (0, 1):
Kolmogorov_D <- function(Up,what=c("D","D+","D-")) {

stopifnot(all(Up > 0 & Up < 1))
what = what[1]
stopifnot(what %in% c("D","D+","D-"))
n <- length(Up)
ecdf <- (1:n)/n
Up = sort(Up)
Dp <- max(ecdf-Up)*sqrt(n)
Dm <- max(Up[-n]-ecdf[-n]+1/n)*sqrt(n)
if (what == "D") return(max(Dp,Dm))
if (what == "D+") return(Dp)
if (what == "D-") return(Dm)

}
We define next a function returning the Anderson-Darling statistics against

the same null hypothesis:
AndersonDarling_W2 <- function(Up) {

stopifnot(all(Up > 0 & Up < 1))
n <- length(Up)
-n-sum((2*(1:n)-1)*log(Up)+(2*n-2*(1:n)+1)*log(1-Up))/n

}
There are few published tables of the cumulative distribution function

of the Anderson-Darling statistics (either for finite sample size or in the
asymptotic limit) and there is no R function returning it. The G. Marsaglia
and J. Marsaglia (2004, page 3) algorithm returning this function with sixth
decimal place (or more) precision is therefore implemented next:
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pAD_W2 <- function(x) {
## Marsaglia and Marsaglia (2004) JSS 9(2):1--5
res <- numeric(length(x))
res[x<=0] <- 0
small <- 0 < x & x < 2
x_s <- x[small]
res[small] <- 1/sqrt(x_s)*exp(-1.2337141/x_s)
res[small] <- res[small]*(2.00012+

(.247105-
(.0649821-
(.0347962-
(.011672-.00168691*
x_s)*x_s)*x_s)*x_s)*x_s)

big <- x >= 2
x_b <- x[big]
res[big] <- 1.0776-(2.30695-(.43424-

(.082433-
(.008056-.0003146*
x_b)*x_b)*x_b)*x_b)*x_b

res[big] <- exp(-exp(res[big]))
res

}
We can test this implementation using the 0.9, 0.95 and 0.99 quantiles

given by G. Marsaglia and J. Marsaglia (2004, page 2):
c("90%"=pAD_W2(1.9329578327),

"95%"=pAD_W2(2.492367),
"99%"=pAD_W2(3.878125))

90% 95% 99%
0.8999889 0.9500081 0.9899974

The function performing Durbin’s transformation is defined next. It takes
a series of observed times and an observation interval as arguments:

6



DurbinTransform <- function(observed_times,
observation_interval) {

if (missing(observation_interval))
observation_interval <- c(floor(min(observed_times)),

ceiling(max(observed_times)))
stopifnot(all((observation_interval[1] < observed_times) &

(observed_times < observation_interval[2])))
observed_times <- observed_times-observation_interval[1]
obs_duration <- diff(observation_interval)
n <- length(observed_times)
observed_times <- observed_times/obs_duration
iei <- c(observed_times[1],

sort(diff(observed_times)),
1-observed_times[n])

siei <- c(0,sort(iei))
g <- (n+2-(1:(n+1)))*diff(siei)
cumsum(g[1:n])

}

2.1.1 An exploration of time discretization and jittering effects
on these statistics

As discussed in the first section, the time discretization due to sampling at
acquisition time and sub-optimal spike sorting algorithm has consequences
on the statistics used to test if an observed (aggregated process) is homo-
geneous Poisson or not. These consequences are explored here with sim-
ulations mimicking the pre-stimulation period of neuron 2 from data set
e070528citronellal whose analysis is presented in the sequel. This neurons
fires 1455 during 6 seconds (and 15 trials) giving an aggregated rate of 242.5
Hz. We perform next a simulation of 10000 homogeneous Poisson processes
with the latter rate during 6 s. The two sided Kolmogorov statistics–Dn

√
n

whose 0.95 and 0.99 quantiles are 1.358 and 1.628 respectively–as well as the
Anderson-Darling one–W 2

n whose 0.95 and 0.99 quantiles are 2.492 and 3.878
respectively, the correct value of the latter quantile is from G. Marsaglia and
J. Marsaglia (2004, page 2)–are computed on the resulting conditionally uni-
form process ({t1/6, . . . , tn/6}) as well as on its discretized version (with a
time resolution corresponding to the actual sampling period of our data sets,
1/12800 s) and on a time jittered version of the discretized version (with a
uniform jitter between -1/2 and +1/2 the sampling period). The same is
done on the data after Durbin’s transformation. A function is defined first
doing the discretization:
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discretize_time <- function(observed_times,
observation_period=c(0,6),
sampling_period=1/12800) {

dt <- seq(observation_period[1],
observation_period[2],
sampling_period)

(0.5+(findInterval(observed_times,dt)-1))*sampling_period
}

A function doing the time jittering is defined next (taking care of the
events sitting close to the observation interval boundaries):
jitter_time <- function(observed_times,

observation_period=c(0,6),
sampling_period=1/12800) {

n <- length(observed_times)
res <- numeric(n)
within <- observation_period[1]+sampling_period/2 < observed_times &
observed_times < observation_period[2]-sampling_period/2
res[within] <- observed_times[within]+

(runif(sum(within))-0.5)*sampling_period
too_small <- observation_period[1]+sampling_period/2 >= observed_times
if (sum(too_small) > 0)

res[too_small] <- runif(sum(too_small),
observation_period[1],
observed_times[too_small]+sampling_period/2)

too_big <- observed_times >= observation_period[2]-sampling_period/2
if (sum(too_big)>0)

res[too_big] <- runif(sum(too_big),
observed_times[too_big]-sampling_period/2,
observation_period[2])

sort(res)
}

We can now do the simulation with a single realization as follows:
set.seed(20061001)
hp1 <- cumsum(rexp(2000,242.5))
hp1 <- hp1[hp1<6]
hp1_d <- discretize_time(hp1)
hp1_dj <- jitter_time(hp1_d)

The Kolmogorov and Anderson-Darling statistics are:
D_o <- Kolmogorov_D(hp1/6)
D_d <- Kolmogorov_D(hp1_d/6)
D_dj <- Kolmogorov_D(hp1_dj/6)
W2_o <- AndersonDarling_W2(hp1/6)
W2_d <- AndersonDarling_W2(hp1_d/6)
W2_dj <- AndersonDarling_W2(hp1_dj/6)
matrix(c(D_o,D_d,D_dj,W2_o,W2_d,W2_dj),

nr=2,nc=3,byrow=TRUE,
dimnames=list(c("D","W2"),

c("original","discretized","jittered")))
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original discretized jittered
D 0.7290281 0.7290172 0.7288731
W2 0.8037918 0.8037792 0.8037821

There is no "huge" effect of time discretization here. The same is done
after Durbin’s transformation. Since intervals of length 0 can be obtained
with the discretized data, we set these zero length intervals to five times the
smallest floating point number the machine can represent:
hp1_dt <- DurbinTransform(hp1,c(0,6))
hp1_d_dt <- DurbinTransform(hp1_d,c(0,6))
if (any(hp1_d_dt==0)) hp1_d_dt[hp1_d_dt==0] = 5*.Machine$double.eps
hp1_dj_dt <- DurbinTransform(hp1_dj,c(0,6))

The Kolmogorov and Anderson-Darling statistics are then:
D_o_dt <- Kolmogorov_D(hp1_dt)
D_d_dt <- Kolmogorov_D(hp1_d_dt)
D_dj_dt <- Kolmogorov_D(hp1_dj_dt)
W2_o_dt <- AndersonDarling_W2(hp1_dt)
W2_d_dt <- AndersonDarling_W2(hp1_d_dt)
W2_dj_dt <- AndersonDarling_W2(hp1_dj_dt)
matrix(c(D_o_dt,D_d_dt,D_dj_dt,W2_o_dt,W2_d_dt,W2_dj_dt),

nr=2,nc=3,byrow=TRUE,
dimnames=list(c("D","W2"),

c("original","discretized","jittered")))

original discretized jittered
D 0.5476887 0.6301718 0.5520699
W2 0.4310982 3.8983496 0.4013730

There is a large effect of discretization on Anderson-Darling’s statistics,
effect that seems to be canceled by adding a jitter. Making a figure with the
corresponding empirical cumulative distribution functions can help here:
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The stair-case pattern is very clear on the ECDF of the discretized data
after Durbin’s transformation.

The systematic simulation is done as follows with the empirical 0.95 and
0.99 quantiles for each statistic:
set.seed(20061001)
nrep <- 10000
D_W2 <- matrix(0,nr=12,nc=nrep)
rownames(D_W2) <- c("D_o","D_d","D_dj","W2_o","W2_d","W2_dj",

"D_o_dt","D_d_dt","D_dj_dt","W2_o_dt","W2_d_dt",
"W2_dj_dt")

for (i in 1:nrep) {
hp <- cumsum(rexp(2000,242.5))
hp <- hp[hp<6]
hp_d <- discretize_time(hp)
hp_dj <- jitter_time(hp_d)
hp_dt <- DurbinTransform(hp,c(0,6))
hp_d_dt <- DurbinTransform(hp_d,c(0,6))
if (any(hp_d_dt==0))

hp_d_dt[hp_d_dt==0] = 5*.Machine$double.eps
if (any(hp_d_dt==1))

hp_d_dt[hp_d_dt==1] = 1-5*.Machine$double.eps
hp_dj_dt <- DurbinTransform(hp_dj,c(0,6))
D_W2[,i] <- c(Kolmogorov_D(hp/6),Kolmogorov_D(hp_d/6),

Kolmogorov_D(hp_dj/6),AndersonDarling_W2(hp/6),
AndersonDarling_W2(hp_d/6),AndersonDarling_W2(hp_dj/6),
Kolmogorov_D(hp_dt),Kolmogorov_D(hp_d_dt),
Kolmogorov_D(hp_dj_dt),AndersonDarling_W2(hp_dt),
AndersonDarling_W2(hp_d_dt),AndersonDarling_W2(hp_dj_dt))

}
critic_val <- t(apply(D_W2,1,sort))[,c(0.95,0.99)*nrep]
colnames(critic_val) <- c("95%","99%")
critic_val

95% 99%
D_o 1.365848 1.622932
D_d 1.365872 1.622980
D_dj 1.366081 1.622934
W2_o 2.552890 3.902664
W2_d 2.552845 3.902644
W2_dj 2.552844 3.902616
D_o_dt 1.337336 1.638557
D_d_dt 1.483138 1.783313
D_dj_dt 1.336199 1.640817
W2_o_dt 2.484505 3.999619
W2_d_dt 9.289051 11.976610
W2_dj_dt 2.463011 4.005226

Plotting the statistics for the discretized vs original and the "discretized
and then jittered" vs original shows very clearly that the Anderson-Darling
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test should not be used for discretized data after Durbin’s transformation
but that jittering the discretized data makes the statistics behave essentially
as the ones of the original data (the blue lines show the empirical 0.95 and
0.99 quantiles):

2.2 Loading the required libraries and data

The analysis requires a package available on the Comprehensive R Archive
Network (CRAN): STAR. The reader should therefore start by installing it if
the package is not already installed. The library is then loaded in the session
with:
library(STAR)
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2.3 Step by step analysis of the response of neuron 2 from
data set e070528citronellal

2.3.1 Definition and tests of PSTH construction and stabilization

make_stabilizedPSTH definition We define function make_stabilizedPSTH
that returns a PSTH together with its variance stabilized version, after set-
ting the stimulus onset time at 0, as an object of class stabilizedPSTH. The
parameters and returned value of this "constructor" are:

Parameters
----------
spike_train_list: a list of spike trains (vectors with strictly

increasing elements), where each element of the list is supposed
to contain a response and where each list element is assumed
time locked to a common reference time.

spontaneous_rate: a positive number with the spontaneous rate
assumed measured separately; if missing, the overall rate obtained
from spike_train_list is used; the parameter is used to set the
bin width automatically.

target_mean: a positive number, the desired mean number of events
per bin under the assumption of homogeneity.

onset: a number giving to the onset time of the stimulus.
region: a two components vector with the number of seconds before

the onset (a negative number typically) and the number of second
after the onset one wants to use for the analysis.

stab_method=: a string, either "Freeman-Tukey" (the default,
x -> sqrt(x)+sqrt(x+1)), "Anscombe" (x -> 2*sqrt(x+3/8)) or "Brown
et al" (x -> 2*sqrt(x+1/4); the variance stabilizing transformation.

Returns
-------
An object of class (S3) stabilizedPSTH that is fundamentally a list
with the following elements:
st: a vector with the aggregated spike trains (the stimulus comes

at time 0).
x: a vector with the bins’ centers (time starts now at zero).
y: a vector with the stabilized counts.
n: a vector with the actual counts.
n_stim: a scalar, the number of stimulation / trials used to build

the PSTH.
width: a scalar, the bin width.
stab_method: a string, the variance stabilization method.
spontaneous_rate: a scalar, the spontaneous rate.
support_length: a scalar, the length of the PSTH support.
call: an expression, the matched call.

The skeleton of the function definition follows:
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make_stabilizedPSTH <- function(spike_train_list,
spontaneous_rate,
target_mean = 3,
onset,
region = c(-2,8),
stab_method = c("Freeman-Tukey",

"Anscombe","Brown et al")) {
<<make_stabilizedPSTH-parameters-check>>
<<make_stabilizedPSTH-hist-and-stab>>
<<make_stabilizedPSTH-output>>

}

Listing 1: make_stabilizedPSTH definition skeleton
The first part checks the parameters and applies some basic processing:

stopifnot(is.list(spike_train_list))
n_stim <- length(spike_train_list)
aggregated_train <- sort(as.vector(unlist(spike_train_list)))
if (missing(spontaneous_rate)) {

time_span <- ceiling(aggregated_train[length(aggregated_train)])-
floor(aggregated_train[1])

spontaneous_rate <- length(aggregated_train)/n_stim/time_span
}
stopifnot(spontaneous_rate > 0)
stopifnot(target_mean > 0)
if (missing(onset)) {

stopifnot(is.repeatedTrain(spike_train_list))
onset <- attr(spike_train_list,"stimTimeCourse")[1]

}
from = region[1]+onset
to = region[2]+onset
aggregated_train <- aggregated_train[from <= aggregated_train &

aggregated_train <= to]-onset
stopifnot(stab_method %in% c("Freeman-Tukey","Anscombe","Brown et al"))

Listing 2: make_stabilizedPSTH-parameters-check
The actual histogram computation and its stabilization comes next:
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bin_width <- ceiling(target_mean/n_stim/spontaneous_rate*1000)/1000
aggregated_bin <- seq(region[1],region[2]+bin_width,bin_width)
aggregated_hist <- hist(aggregated_train,aggregated_bin,plot=FALSE)
aggregated_counts <- aggregated_hist$counts
if (stab_method[1] == "Freeman-Tukey") {

y <- sqrt(aggregated_counts)+sqrt(aggregated_counts+1)
} else {

if (stab_method[1] == "Anscombe") {
y <- 2*sqrt(aggregated_counts+0.375)

} else {
y <- 2*sqrt(aggregated_counts+0.25)

}
}

Listing 3: make_stabilizedPSTH-hist-and-stab
The output of the function is then defined:

res <- list(st = aggregated_train,
x = aggregated_bin[-length(aggregated_bin)]+bin_width/2,
y = y,
n = aggregated_counts,
n_stim = n_stim,
width = bin_width,
stab_method = stab_method[1],
spontaneous_rate = spontaneous_rate,
support_length = diff(region),
call = match.call())

class(res) <- "stabilizedPSTH"
res

Listing 4: make_stabilizedPSTH-output

Methods for stabilizedPSTH objects We define next a print method for
the stabilizedPSTH objects:
print.stabilizedPSTH <- function(x,...) {

cat(paste("A stabilizedPSTH object build from",x$n_stim,
"trials with a", x$width, "(s) bin width.\n"))

cat(paste(" The PSTH is defined on a domain", x$support_length,
"s long.\n"))

cat(paste0(" The stimulus comes at second 0.\n"))
cat(paste(" Variance was stabilized with the", x$stab_method,

"method.\n"))
}

Listing 5: print method for stabilizedPSTH instances.
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plot.stabilizedPSTH <- function(x,y,
col,lwd,
xlab,ylab,
what=c("stab","counts"),
...) {

stopifnot(what[1] %in% c("stab","counts"))
what <- what[1]
if (what == "stab") {

y <- x$y
if (missing(ylab)) {

if (x$stab_method == "Freeman-Tukey")
ylab <- expression(sqrt(n)+sqrt(n+1))

if (x$stab_method == "Anscombe")
ylab <- expression(2*sqrt(n+3/8))

if (x$stab_method == "Brown et al")
ylab <- expression(2*sqrt(n+1/4))

}
} else {

y <- x$n
if (missing(ylab)) ylab <- "Counts per bin"

}
if (missing(xlab)) xlab <- "Time (s)"
if (missing(lwd)) lwd <- 1
if (missing(col)) col <- 1
plot(x$x,y,col=col,type="l",lwd=lwd,xlab=xlab,ylab=ylab,...)

}

Listing 6: plot method for stabilizedPSTH instances.

Tests We now test these functions and methods. We use the data recorded
in the spontaneous to estimate the spontaneous discharge frequency:
data(e070528spont)
(nu_spont_n2 = length(e070528spont[[2]])/60)

[1] 19.55

We then build the instance of our new class stabilizedPSTH for neuron 2 of
the data set; we also use the newly defined print method for this instance:
data(e070528citronellal)
(citron_spsth_n2 = make_stabilizedPSTH(e070528citronellal[[2]],

spontaneous_rate=nu_spont_n2,
region=c(-6,6)))

A stabilizedPSTH object build from 15 trials with a 0.011 (s) bin width.
The PSTH is defined on a domain 12 s long.
The stimulus comes at second 0.
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Variance was stabilized with the Freeman-Tukey method.

Is the pre-stimulation period compatible with a homogeneous Pois-
son process As mentioned in the companion manuscript the tests homo-
geneous / non-homogeneous Poisson we propose are valid only if the conver-
gence to the Poisson process has been reached. This requires that responses
to the successive stimulations were uncorrelated and that enough stimula-
tions were aggregated to loose the "memory" exhibited by the individual
responses (they are clearly not Poisson). As a first step we can check if the
pre-stimulation period is compatible with the realization of a homogeneous
Poisson process. We can perform what Cox and P. A. W. Lewis (1966)
call a uniform conditional test for a Poisson process on the original data
computing both the Kolmogorov and the Anderson-Darling statistics:
early_train <- citron_spsth_n2$st[citron_spsth_n2$st < 0] + 6
c(D=Kolmogorov_D(early_train/6),

W2=AndersonDarling_W2(early_train/6))

D W2
0.8279022 0.6255841

Working Durbin’s transformation after jittering the data we get:
early_train_j <- jitter_time(early_train,c(0,6))
early_train_t <- DurbinTransform(early_train_j,c(0,6))
c(D=Kolmogorov_D(early_train_t),

W2=AndersonDarling_W2(early_train_t))

D W2
1.041566 2.161787

We can obtain a plot of the log-survivor function of the intervals with:
iei_early <- diff(early_train)
par(cex=2)
plot(sort(iei_early),1-seq(along=iei_early)/length(iei_early),

type="S",log="y",xlab="Inter event interval (s)",
ylab="Survivor function",xlim=c(0,0.025),lwd=2)
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The auto-correlation coefficient of the inter-event interval at lag one is
not significantly different from 0 (at the 0.99 level):
cor(iei_early[-length(iei_early)],iei_early[-1])*

sqrt(length(iei_early)-1)

[1] 2.393833

But a plot of the auto-correlation function up to lag 10 does show some
signs of correlations:
acf(iei_early,lag.max=10,lwd=2,cex.lab=2)
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PSTH and variance-stabilized-PSTH figure A figure showing the
"counts" and the "stabilized counts" is produced by the following commands:
layout(matrix(1:2,nc=2))
par(mar=c(5,5,4,1),cex=2)
plot(citron_spsth_n2,what="counts",

ylab=expression("Number of events"~(Y[i])),
main="Original")

plot(citron_spsth_n2,
ylab=expression(sqrt(Y[i])+sqrt(Y[i] + 1)),
main="Variance stabilized",ylim=c(0,6),xlim=c(-6,6))
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2.3.2 Kernel smoothing

The tricube function We start by defining a tricube_kernel function:
tricube_kernel <- function(x,bw=1.0) {

ax <- abs(x/bw)
result <- numeric(length(x))
result[ax <= 1] <- 70*(1-ax[ax <= 1]^3)^3/81
result }

Listing 7: tricube-kernel-definition-with-R

The Nadaraya-Watson estimator We define next a function, NW_Estimator,
returning the Nadaraya-Watson estimator at a given point. Its parameters
and returned value are:

Parameters
----------
x: point at which the estimator is looked for.
X: abscissa of the observations.
Y: ordinates of the observations.
kernel: a univariate ’weight’ function.

Returns
-------
The estimated ordinate at x.

NW_Estimator <- function(x,X,Y,
kernel = function(y) tricube_kernel(y,1.0)) {

w <- kernel(X-x)
sum(w*Y)/sum(w) }

Listing 8: Nadaraya-Watson-estimator-definition-with-R
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Mallow’s Cp score computation We now need a function returning
Mallow’s Cp score and define a function, Cp_score, doing the job. Its pa-
rameters and returned value are:

Computes Mallow’s Cp score given data X and Y, a bandwidth bw,
a bivariate function kernel and a variance sigma2.

Parameters
----------
X: abscissa of the observations.
Y: ordinates of the observations.
bw: the bandwidth.
kernel: a bivariate function taking an ordinate as first parameter

and a bandwidth as second parameter.
sigma2: the variance of the ordinates.

Returns
-------
A vector with the bandwidth, trace of the smoother and the Cp score.

Cp_score <- function(X,Y,bw = 1.0,
kernel = tricube_kernel,
sigma2=1) {

L <- matrix(0,nrow=length(X),ncol=length(X))
ligne <- numeric(length(X))
for (i in 1:length(X)) {

ligne <- kernel(X-X[i], bw)
L[i,] <- ligne/sum(ligne) }

n <- length(X)
trace <- sum(diag(L))
if (trace == n) {

return(NULL)
} else {

Cp = (sum((Y- Y%*%L)^2) + 2*sigma2*trace)/n
c(bw,trace, Cp) }}

Listing 9: Cp-score-definition-with-R
In an actual test setting we would use a few kernel bandwidths (1 to 10)

in order to have a moderate Bonferroni correction (giving tighter confidence
bands); typically we would used multiples of the initial bin width like: 5, 10,
50, 100, 500 giving:
bw_multiplicator <- c(5,10,50,100,500)
bw_vector <- citron_spsth_n2$width*bw_multiplicator
citron_Cp_n2 <- sapply(bw_vector,

function(bw) Cp_score(citron_spsth_n2$x,
citron_spsth_n2$y,
bw))

Here, for the sake of illustration, a denser set of bandwidth will also be
used:
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bw_multiplicatorDense <- seq(5,101,1)
bw_vectorDense <- citron_spsth_n2$width*bw_multiplicatorDense
citron_CpDense_n2 <- sapply(bw_vectorDense,

function(bw) Cp_score(citron_spsth_n2$x,
citron_spsth_n2$y,
bw))

We then extract the bandwidth giving the best (lowest) score and get
the corresponding Nadaraya-Watson estimator:
min_pos <- which.min(citron_Cp_n2[3,])
bw_best_Cp <- citron_Cp_n2[1,min_pos]
citron_NW_n2 <- sapply(citron_spsth_n2$x,

function(x)
NW_Estimator(x,

citron_spsth_n2$x,
citron_spsth_n2$y,
kernel = function(y)

tricube_kernel(y,
bw_best_Cp)))

2.3.3 Figure with Cp score vs bandwidth and smooth estimator

The equivalent of Fig. 2 in R is built with:
layout(matrix(1:2,nc=2))
par(mar=c(5,5,4,1),cex=2)
plot(bw_vectorDense,citron_CpDense_n2[3,],type="l",col=’red’,lwd=2,

xlab=’Bandwidth (s)’,ylab=’Cp Scores’,
main=’Score vs bandwidth’,xlim=c(0,1))

points(bw_vector,citron_Cp_n2[3,],pch=16)
plot(citron_spsth_n2,

ylab=expression(sqrt(Y[i])+sqrt(Y[i] + 1)),
main="Data and Nadaraya-Watson est.",ylim=c(0,6))

lines(citron_spsth_n2$x,citron_NW_n2,col=2,lwd=2)
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2.3.4 Confidence set for the smoother

κ0 We get the value of the integral IK =
(∫ b

a K
′(t)2dt

)1/2
appearing in

κ0 ≈ (b − a)/h IK with the open source computer algebra system (CAS)
maxima (http://maxima.sourceforge.net/):
print(float(sqrt(integrate(diff(70*(1-x^3)^3/81,x)^2,x,0,1)*2)));

1.498662505306927

We then get the κ0 for neuron 2:
(kappa_0_n2 <- citron_spsth_n2$support_length*1.498662505306927/bw_best_Cp)

[1] 163.4905

Getting the constant c of our tube formula We define next a function,
tube_target returning the "target", that is:

2 (1− Φ(c)) +
κ0
π

exp−c
2

2
− α ,

tube_target <- function(x,alpha,kappa)
(2*(1-pnorm(x)) + kappa*exp(-x^2/2)/pi - alpha)^2

Listing 10: define-tube-target-with-R
We then get the c values for two α, 0.95 and 0.9 with:

c_p95 <- optimize(tube_target,c(3,5),
alpha=0.05/length(bw_multiplicator),
kappa=kappa_0_n2)$minimum

c_p90 <- optimize(tube_target,c(2,5),
alpha=0.1/length(bw_multiplicator),
kappa=kappa_0_n2)$minimum

Smoothing matrix We define a function returning the smoothing matrix
L–a matrix whose (L)i,j element is given by li(tj), where the li() are defined
in the text and the tj are the centers of our PSTH bins–:
make_L <- function(X,kernel = function(y) tricube_kernel(y,1.0)) {

result <- matrix(0,nr=length(X),nc=length(X))
ligne <- numeric(length(X))
for (i in 1:length(X)) {

ligne <- kernel(X-X[i])
result[i,] = ligne/sum(ligne) }

result }
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Listing 11: make_L-definition-with-R
n2citron_NW_L_best <- make_L(citron_spsth_n2$x,

kernel = function(y)
tricube_kernel(y,bw_best_Cp))

n2citron_NW_L_best_norm <- sqrt(apply(n2citron_NW_L_best^2,1,sum))

Figure of the smooth estimate with the 0.95 confidence set The
equivalent of Fig. 2 in R is simply obtained with:
par(mar=c(5,5,4,1),cex=2)
u = citron_NW_n2+c_p95*n2citron_NW_L_best_norm
l = citron_NW_n2-c_p95*n2citron_NW_L_best_norm
x = citron_spsth_n2$x
plot(x,citron_spsth_n2$y,main="0.95 confidence envelop",

ylab=expression(sqrt(Y[i])+sqrt(Y[i] + 1)),type="n",
ylim=c(0,6))

polygon(c(x,rev(x)),c(u,rev(l)),border=NA,col="grey50")
abline(h=3.3,lwd=2)
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Results of the existings tests Applying the Kolmogorov test and the
Anderson-Darling test on the data gives:
n2_train <- citron_spsth_n2$st + 6
c(D=Kolmogorov_D(n2_train/12),

W2=AndersonDarling_W2(n2_train/12))

D W2
1.278224 1.039232

After jittering and Durbin’s transformation we get:
n2_train_j <- jitter_time(n2_train,c(0,12))
n2_train_t <- DurbinTransform(n2_train_j,c(0,12))
c(D=Kolmogorov_D(n2_train_t),

W2=AndersonDarling_W2(n2_train_t))

D W2
1.039290 2.519261

So the critical 0.95 quantile of the Anderson-Darling distribution (2.492)
is exceeded but not the 0.99 quantile (3.857).

2.3.5 Define class and methods doing the same job

make_smoothStabilizedPSTH definition We can now define a new class,
smoothStabilizedPSTH, whose instances contain all the results linked to
the kernel smoothing procedure. The arguments and returned value of the
constructor, make_smoothStabilizedPSTH, are:

Parameters
----------
stabilizedPSTH: an instance of stabilizedPSTH.
bandWidthMultipliers: a vector (but it can also be a scalar) of numbers (> 1)

by which the initial binwidth is going to be multiplied, defining thereby
the set of bandwidths that is going to be explored. The longer the vector
the stronger the Bonferroni correction for the confidence band calculation.

sigma2: a strictly positive number (default 1), the value at which the variance
has been stabilized.

Returns
-------
An instance of class smoothStabilizedPSTH that is essentially a list with the
following elements:
all the elements of the list making argument stabilizedPSTH, except the call

element that is changed.
bandWidthMultipliers: a copy of the argument with the same name.
bw_values: a vector, the set of kernel bandwidth that has been explored.
trace_values: a vector, the set of traces of the corresponding smoothing matrix.
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Cp_values: a vector, the set of Mallow’s Cp scores obtained.
bw_best_Cp: a scalar, the bandwidth giving the best Cp.
NW: a vector, the Nadaraya-Watson estimator obtained with bw_best_Cp.
L_best_norm: a vector, the corresponding "norm" of the smoothing matrix.
kappa_0: a scalar, the value of kappa_0.
get_c: a function that returns the critical value used to compute the confidence

band and that takes three arguments:
alpha: the level of the test (after Bonferroni correction).
lower: a scalar, the left bound for the optimization (see the built-in

optimize function).
upper: a scalar, the right bound for the optimization.

The following function definition refers to listings of the previous section.
The constructor definition skeleton is:
make_smoothStabilizedPSTH <- function(stabilizedPSTH,

bandWidthMultipliers = c(5,10,50,
100,500),

sigma2=1
) {

stopifnot("stabilizedPSTH" %in% class(stabilizedPSTH))
<<tricube-kernel-definition-with-R>>
<<Nadaraya-Watson-estimator-definition-with-R>>
<<Cp-score-definition-with-R>>
<<make_L-definition-with-R>>
<<define-tube-target-with-R>>
stopifnot(all(bandWidthMultipliers > 1))
stopifnot(sigma2 > 0)
<<get-Cp-values-and-kappa_0>>
<<Nadaraya-Watson-and-smoothing-matrix>>
get_c <- function(alpha=0.05,lower=2,upper=5)

optimize(tube_target,c(lower,upper),
alpha=alpha/length(bw_vector),kappa=kappa_0)$minimum

<<make_smoothStabilizedPSTH-output>>
}

get-Cp-values-and-kappa_0 computes the Cp values at different band-
width and gets the best before obtaining the kappa_0, just like we did before:
bw_vector <- stabilizedPSTH$width*bandWidthMultipliers
Cp_values <- sapply(bw_vector,

function(bw) Cp_score(stabilizedPSTH$x,
stabilizedPSTH$y,
bw,sigma2=sigma2))

if (length(bw_vector)==1) Cp_values <- matrix(Cp_values,3,1)
bw_best_Cp <- Cp_values[1,which.min(Cp_values[3,])]
if (bw_best_Cp == bw_vector[1] ||

bw_best_Cp == bw_vector[length(bw_vector)])
warning("Best Cp value reached at bandwidth extremum.")

kappa_0 <- stabilizedPSTH$support_length*1.498662505306927/bw_best_Cp
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Listing 12: get-Cp-values-and-kappa_0
The Nadaraya-Watson and the smoothing matrix together with the norm

of its rows are then obtained:
NW <- sapply(stabilizedPSTH$x,

function(x) NW_Estimator(x,stabilizedPSTH$x,
stabilizedPSTH$y,
kernel = function(y)

tricube_kernel(y,bw_best_Cp)))
L_best <- make_L(stabilizedPSTH$x,

kernel = function(y) tricube_kernel(y,bw_best_Cp))
L_best_norm <- sqrt(apply(L_best^2,1,sum))

Listing 13: Nadaraya-Watson-and-smoothing-matrix
The output is prepared next:

res <- list(x=stabilizedPSTH$x,
y=stabilizedPSTH$y,
n=stabilizedPSTH$n,
n_stim=stabilizedPSTH$n_stim,
width=stabilizedPSTH$width,
onset=stabilizedPSTH$onset,
stab_method=stabilizedPSTH$stab_method,
spontaneous_rate=stabilizedPSTH$spontaneous_rate,
support_length=stabilizedPSTH$support_length,
bandWidthMultipliers=bandWidthMultipliers,
bw_values = Cp_values[1,],
trace_values=Cp_values[2,],
Cp_values=Cp_values[3,],
bw_best_Cp=bw_best_Cp,
NW=NW,
L_best_norm=L_best_norm,
kappa_0=kappa_0,
get_c = get_c,
call = match.call())

class(res) <- "smoothStabilizedPSTH"
res

Listing 14: make_smoothStabilizedPSTH-output

plot method for smoothStabilizedPSTH instances We define next a
plot method for smoothStabilizedPSTH objects. When considering such
an object there are several "facets" one might want to look at:

• The data used to build the smooth estimate, that is, the stabilized
PSTH. This can be obtained by setting argument what to "stab".

• The smooth estimate itself; this can be obtained by setting argument
what to "smooth" (default value).
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• A confidence band corresponding to a specific level. This can be ob-
tained by setting argument what to "band"; then additional argu-
ments: alpha (setting the level of the test after Bonferroni correc-
tion) as well as lower and upper that are used by function get_c of
smoothStabilizedPSTH objects (these must be specified in order to
get the value, through numerical optimization, of parameter c).

If one does not want to do testing but display an estimator of the inhomo-
geneous Poisson process, argument scale can be set to "Hz" instead of it’s
default value "natural". But one might want to see the evolution of Mallow’s
Cp score with the bandwidth or or with the smoother’s trace; the former is
obtained by setting argument what to "Cp vs bandwidth" while the latter is
obtained by setting what to "Cp vs trace".

All argument to both of these methods that are not described here have
their classical meaning for plot methods.

In order to fit the plot.smoothStabilizedPSTH method definition on
single pages we define it by pieces. The outline of the method is:
plot.smoothStabilizedPSTH <- function(x,y,

col,lwd,
xlab,ylab,
type,
what=c("smooth",

"band",
"stab",
"Cp vs bandwidth",
"Cp vs trace"),

scale=c("natural","Hz"),
alpha=0.05,
lower=2,upper=5,
...) {

<<check-par-smoothStabilizedPSTH>>
if (what %in% c("smooth","band","stab")) {

<<case-smooth-band-stab-smoothStabilizedPSTH>>
} else {

<<case-Cp-smoothStabilizedPSTH>>
}

}

Listing 15: plot-method-for-smoothStabilizedPSTH-defintion
Where «check-par-smoothStabilizedPSTH» checks the validity of the

parameters passed to the constructor:
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what <- what[1]
stopifnot(what %in% c("smooth","band","stab","Cp vs bandwidth",

"Cp vs trace"))
scale <- scale[1]
stopifnot(scale %in% c("natural","Hz"))
if (missing(type)) type <- "l"

Listing 16: check-par-smoothStabilizedPSTH
Piece «case-smooth-band-stab-smoothStabilizedPSTH» deals with the

constructions of plots showing a smooth, a confidence band or the raw data
used to get the smooth:
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if (missing(ylab)) {
if (scale == "natural") {

if (x$stab_method == "Freeman-Tukey")
ylab <- expression(sqrt(n)+sqrt(n+1))

if (x$stab_method == "Anscombe")
ylab <- expression(2*sqrt(n+3/8))

if (x$stab_method == "Brown et al")
ylab <- expression(2*sqrt(n+1/4))

} else {
ylab <- "Frequency (Hz)"

}
}
if (what == "stab") y <- x$y
if (what == "smooth") y <- x$NW
if (what == "band") {

y <- x$NW
c <- x$get_c(alpha,lower,upper)
u <- y+c*x$L_best_norm
l <- y-c*x$L_best_norm

}
if (scale == "Hz") {

denom <- x$n_stim*x$width
if (x$stab_method == "Freeman-Tukey")

InvFct <- function(y) {
y <- pmax(y,1)
((y^2-1)/2/y)^2/denom }

if (x$stab_method == "Anscombe")
InvFct <- function(y) {

y <- pmax(y,2*sqrt(3/8))
(y^2/4 + sqrt(1.5)/4/y - 11/8/y^2 - 1/8)/denom }

if (x$stab_method == "Brown et al")
InvFct <- function(y) {

y <- pmax(y,1)
(y^2/4-0.25)/denom }

y <- InvFct(y)
if (what == "band") {

u <- InvFct(u)
l <- InvFct(l)

}
}
if (missing(xlab)) xlab <- "Time (s)"
if (missing(lwd)) lwd <- 1
if (missing(col)) col <- 1
if (what %in% c("stab","smooth")) {

plot(x$x,y,col=col,type=type,lwd=lwd,xlab=xlab,ylab=ylab,...)
} else {

plot(c(x$x,x$x),c(u,l),type="n",lwd=lwd,xlab=xlab,ylab=ylab,...)
polygon(c(x$x,rev(x$x)),

c(u,rev(l)),col=col,border=NA)
}
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Listing 17: case-smooth-band-stab-smoothStabilizedPSTH
Piece «case-Cp-smoothStabilizedPSTH» plots the Cp against the band-

width or against the smoothing matrix trace:
y <- x$Cp_values
if (missing(ylab)) ylab <- "Cp"
if (what == "Cp vs bandwidth") {

X <- x$bw_values
if (missing(xlab)) xlab <- "Bandwidth (s)"

} else {
X <- x$trace_values
if (missing(xlab)) xlab <- "Smoother trace"

}
if (missing(lwd)) lwd <- 1
if (missing(col)) col <- 1
plot(X,y,col=col,type=type,lwd=lwd,xlab=xlab,ylab=ylab,...)

Listing 18: case-Cp-smoothStabilizedPSTH

lines method for smoothStabilizedPSTH instances The lines works
in the same way as the plot one except that it can’t generate Cp values
displays.
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lines.smoothStabilizedPSTH <- function(x,
what=c("smooth","band","stab"),
scale=c("natural","Hz"),
alpha=0.05,
lower=2,upper=5,
...) {

what <- what[1]
stopifnot(what %in% c("smooth","band","stab"))
scale <- scale[1]
stopifnot(scale %in% c("natural","Hz"))
if (what == "stab") y <- x$y
if (what == "smooth") y <- x$NW
if (what == "band") {

y <- x$NW
c <- x$get_c(alpha,lower,upper)
u <- y+c*x$L_best_norm
l <- y-c*x$L_best_norm

}
if (scale == "Hz") {

if (x$stab_method == "Freeman-Tukey")
InvFct <- function(y) {

y <- pmax(y,1)
((y^2-1)/2/y)^2/x$n_stim/x$width }

if (x$stab_method == "Anscombe")
InvFct <- function(y) {

y <- pmax(y,2*sqrt(3/8))
(y^2/4 + sqrt(1.5)/4/y -

11/8/y^2 - 1/8)/x$n_stim/x$width }
if (x$stab_method == "Brown et al")

InvFct <- function(y) {
y <- pmax(y,1)
(y^2/4-0.25)/x$n_stim/x$width }

y <- InvFct(y)
if (what == "band") {

u <- InvFct(u)
l <- InvFct(l)

}
}
if (what %in% c("stab","smooth")) {

lines(x$x,y,...)
} else {

polygon(c(x$x,rev(x$x)),
c(u,rev(l)),border=NA,...)

}
}

Listing 19: lines-method-for-smoothStabilizedPSTH-defintion
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Tests So let us make an example of use by first getting the smoothStabilizedPSTH
of neuron 2:
citron_sspsth_n2 = make_smoothStabilizedPSTH(citron_spsth_n2)

The next figure shows the 99% confidence bands (left), the Cp values
as a function of the bandwidth (middle) and the estimated inhomogeneous
Poisson intensity with 95% confidence bands (right):
layout(matrix(1:4,2,2))
par(mar=c(5,5,4,1),cex.lab=2,cex.main=2)
plot(citron_sspsth_n2,what="band",alpha=0.01,

col=rgb(0,0,1,0.5),main=paste("Stabilized scale"),
ylab=expression(sqrt(Y[i])+sqrt(Y[i] + 1)))

plot(citron_sspsth_n2,what="Cp vs bandwidth",type="b",
col=2,lwd=2,main="Cp vs bandwidth")

plot(citron_sspsth_n2,what="band",alpha=0.05,
col=rgb(0,0,1,0.5),main=paste("Inhom. Poisson Est."),scale="Hz")
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2.4 Systematic analysis

We can now analyze all the odor responses of the data set in the same way,
building 99% confidence bands using 5 seconds before the stimulus onset and
6 seconds after it (the longest compromise among our data sets).

2.4.1 Experiment e060817

We get the spontaneous discharge rates of the three neurons of experiment
e060817:
data(e060817spont)
(e060817_spont_nu = sapply(e060817spont,length)/60)
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neuron 1 neuron 2 neuron 3
8.816667 20.483333 13.016667

We create next stabilizedPSTH instances corresponding to the citronel-
lal responses of each neuron as well as the smoothStabilizedPSTH:
data(e060817citron)
e060817citron_spsth = lapply(1:3,

function(idx) make_stabilizedPSTH(e060817citron[[idx]],
e060817_spont_nu[idx],
region = c(-5,6)))

e060817citron_sspsth = lapply(e060817citron_spsth,
make_smoothStabilizedPSTH)

The terpineol and mixture responses are processed with:
data(e060817terpi)
e060817terpi_spsth = lapply(1:3,

function(idx) make_stabilizedPSTH(e060817terpi[[idx]],
e060817_spont_nu[idx],
region = c(-5,6)))

e060817terpi_sspsth = lapply(e060817terpi_spsth,
make_smoothStabilizedPSTH)

data(e060817mix)
e060817mix_spsth = lapply(1:3,

function(idx) make_stabilizedPSTH(e060817mix[[idx]],
e060817_spont_nu[idx],
region = c(-5,6)))

e060817mix_sspsth = lapply(e060817mix_spsth,
make_smoothStabilizedPSTH)

2.4.2 Experiment e060824

This data set contains only two neurons and a single odor response (to citral).
The analysis is done with:
data(e060824spont)
(e060824_spont_nu = sapply(e060824spont,length)/59)
data(e060824citral)
e060824citral_spsth = lapply(1:2,

function(idx) make_stabilizedPSTH(e060824citral[[idx]],
e060824_spont_nu[idx],
region = c(-5,6)))

e060824citral_sspsth = lapply(e060824citral_spsth,
make_smoothStabilizedPSTH)

2.4.3 Experiment e060517

This data set contains the responses of three neurons to ionon:
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data(e060517spont)
(e060517_spont_nu = sapply(e060517spont,length)/61)
data(e060517ionon)
e060517ionon_spsth = lapply(1:3,

function(idx) make_stabilizedPSTH(e060517ionon[[idx]],
e060517_spont_nu[idx],
region = c(-5,6)))

e060517ionon_sspsth = lapply(e060517ionon_spsth,
make_smoothStabilizedPSTH)

2.4.4 Experiment e070528

This data set contains the responses of four neurons to citronellal:
data(e070528spont)
(e070528_spont_nu = sapply(e070528spont,length)/60)
data(e070528citronellal)
e070528citronellal_spsth = lapply(1:4,

function(idx) make_stabilizedPSTH(e070528citronellal[[idx]],
e070528_spont_nu[idx],
region = c(-5,6)))

e070528citronellal_sspsth = lapply(e070528citronellal_spsth,
make_smoothStabilizedPSTH)

2.4.5 A new version of Fig. 8 of Pouzat and Chaffiol (2009)

We can now make a new version of Fig. 8 of Pouzat and Chaffiol (2009) with
99% confidence bands instead of 95% pointwise confidence intervals using the
"natural" scale, the one on which the variance has been stabilized:
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ylim <- c(0,80)
opar <- par(mar=c(2,1,2,1))
on.exit(par(opar))
layout(matrix(1:18,nrow=3))
plotList <- function(list,start,middle) {

n <- length(list)
sapply(1:n,

function(idx) {
sspsth <- list[[idx]]
plot(sspsth,what="smooth",scale="Hz",type="n",xlab="",

ylab="",xaxt="n",yaxt="n",bty="n",ylim=ylim,
main=paste(start,middle,"neuron",idx))

segments(-4.5,15,-4.5,20,lwd=2)
segments(-5,0,6,0)
segments(0,0,0,ylim[2],col="grey80",lwd=2)
lines(sspsth,what="band",scale="Hz",col=rgb(0,0,1,0.5),

alpha=0.01)
})

}

plotList(e060517ionon_sspsth,"e060517","ionon")
plotList(e060817citron_sspsth,"e060817","citronellal")
plotList(e060817terpi_sspsth,"e060817","terpineol")
plotList(e060817mix_sspsth,"e060817","mixture")
plotList(e060824citral_sspsth,"e060824","citral")
plotList(e070528citronellal_sspsth,"e070528","citronellal")
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2.5 Testing identity

2.5.1 Boundary crossing probability

The required functions are included in our STAR package, they are named:
crossGeneral and crossTight. They return the distribution of the first
passage time of a canonical Brownian motion through a "general boundary"
(crossGeneral) and through a "square root boundary" as considered in this
manuscript (crossTight). They are fully documented in the package. Tests
against the results of Loader and Deely (1987) are included in the example
section of the functions’ documentation.
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Parameters of the "square root boundary" Following the example of
crossTight documentation we get the parameters a and b of a "square root
boundary" a+ b

√
t giving a 95% coverage probability with:

target95 <- mkTightBMtargetFct(ci=0.95)
p95 <- optim(log(c(0.3,2.35)),target95,method="BFGS")
p95$convergence
exp(p95$par)
d95 <- crossTight(a=exp(p95$par[1]),

b=exp(p95$par[2]),
withBound=TRUE,
logScale=FALSE)

summary(d95)

[1] 0
[1] 0.2999446 2.3479702
Prob. of first passage before 1: 0.025 (bounds: [0.02497,0.02503])

Integration time step used: 0.001.

A systematic estimation of the parameters a and b of the square root
boundary for coverage probabilities going from 0.9 to 0.99 is carried out as
follows (rounding to the third digit):
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p_vector <- seq(0.1,0.01,-0.01)
get_a_b <- function(p) {

h_size <- 0.001
target <- mkTightBMtargetFct(ci=1-p,h=h_size)
fit <- optim(log(c(0.3,2.35)),

target,method="BFGS")
dom <- crossTight(a=exp(fit$par[1]),

b=exp(fit$par[2]),
withBound=TRUE,
logScale=FALSE)

within <- dom$Gl[length(dom$Gl)] <= p/2 &
p/2 <= dom$Gu[length(dom$Gu)]

while (fit$convergence != 0 || !within) {
if (fit$convergence != 0) {

fit <- optim(fit$par,
target,
method="BFGS")

} else {
h_size <- h_size/10
target <- mkTightBMtargetFct(ci=1-p,h=h_size)
fit <- optim(fit$par,

target,method="BFGS") }
dom <- crossTight(a=exp(fit$par[1]),

b=exp(fit$par[2]),
withBound=TRUE,
logScale=FALSE)

within <- dom$Gl[length(dom$Gl)] <= p/2 &
p/2 <= dom$Gu[length(dom$Gu)] }

res <- exp(fit$par)
c(a=res[1],b=res[2])}

sqrt_coef <- t(rbind(1-p_vector,
sapply(p_vector,

get_a_b)))
(sqrt_coef <- round(sqrt_coef,digits=3))

a b
[1,] 0.90 0.292 2.077
[2,] 0.91 0.293 2.120
[3,] 0.92 0.295 2.167
[4,] 0.93 0.296 2.220
[5,] 0.94 0.298 2.279
[6,] 0.95 0.300 2.348
[7,] 0.96 0.302 2.430
[8,] 0.97 0.305 2.531
[9,] 0.98 0.308 2.668

[10,] 0.99 0.313 2.890

39



Back to the analysis of the data set We have already built the cit-
ronellal and terpineol PSTHs of neuron 1. We start by checking that during
the pre-stimulation period the aggregated processes have the properties of
an homogeneous Poisson process.
e060817citron_n1 <- e060817citron_spsth[[1]]$st
e060817citron_e1 <- e060817citron_n1[e060817citron_n1<0]+5
e060817citron_j1 <- jitter_time(e060817citron_e1,c(0,5))
e060817citron_t1 <- DurbinTransform(e060817citron_j1,c(0,5))
e060817citron_test <- c(D_o=Kolmogorov_D(e060817citron_e1/5),

W2_o=AndersonDarling_W2(e060817citron_e1/5),
D_t=Kolmogorov_D(e060817citron_t1),
W2_t=AndersonDarling_W2(e060817citron_t1))

e060817terpi_n1 <- e060817terpi_spsth[[1]]$st
e060817terpi_e1 <- e060817terpi_n1[e060817terpi_n1<0]+5
e060817terpi_j1 <- jitter_time(e060817terpi_e1,c(0,5))
e060817terpi_t1 <- DurbinTransform(e060817terpi_j1,c(0,5))
e060817terpi_test <- c(D_o=Kolmogorov_D(e060817terpi_e1/5),

W2_o=AndersonDarling_W2(e060817terpi_e1/5),
D_t=Kolmogorov_D(e060817terpi_t1),
W2_t=AndersonDarling_W2(e060817terpi_t1))

matrix(c(e060817citron_test,e060817terpi_test),
nr=2,byrow=TRUE,
dimnames=list(c("citronellal","terpineol"),

c("D original","W2 original",
"D transformed","W2 transformed")))

D original W2 original D transformed W2 transformed
citronellal 0.8559287 0.8342023 0.7424727 0.6534344
terpineol 0.5494214 0.3413150 1.0418106 1.3340762

The log-survivor function as well as the auto-correlation function of the
inter event intervals with the two stimulations are:
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We now want to build stabilizedPSTH instances corresponding to the
even and odd terpineol stimulations:
e060817terpiOdd_n1 <- e060817terpi[[1]]
e060817terpiOdd_n1[(1:10)*2] <- NULL
terpiOdd_n1_spsth <- make_stabilizedPSTH(e060817terpiOdd_n1,

e060817_spont_nu[1],
region = c(-5,6))

e060817terpiEven_n1 <- e060817terpi[[1]]
e060817terpiEven_n1[(1:10)*2-1] <- NULL
terpiEven_n1_spsth <- make_stabilizedPSTH(e060817terpiEven_n1,

e060817_spont_nu[1],
region = c(-5,6))

The equivalent of Fig. 5 is then obtained in R with:
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c95 <- function(x)
sqrt_coef[6,2]+sqrt_coef[6,3]*sqrt(x)

c99 <- function(x)
sqrt_coef[10,2]+sqrt_coef[10,3]*sqrt(x)

xx <- seq(0,1,len=201)
par(cex=2)
plot(xx,c95(xx),type="l",col=’red’,lwd=3,lty=’dashed’,

ylim=c(-4,5),xlab="Normalized time",
ylab=expression(S[k](t)))

lines(xx,-c95(xx),col=’red’,lwd=3,lty=’dashed’)
lines(xx,c99(xx),col=’red’,lwd=3)
lines(xx,-c99(xx),col=’red’,lwd=3)
X <- seq(along=terpiOdd_n1_spsth$y)/length(terpiOdd_n1_spsth$y)
Yp <- terpiOdd_n1_spsth$y
Ym <- terpiEven_n1_spsth$y
Y <- cumsum(Yp-Ym)/sqrt(length(Yp))/sqrt(2)
lines(X,Y,col=’blue’,lwd=3)
X <- seq(along=e060817citron_spsth[[1]]$x)/

length(e060817citron_spsth[[1]]$x)
Yp <- e060817terpi_spsth[[1]]$y
Ym <- e060817citron_spsth[[1]]$y
Y <- cumsum(Yp-Ym)/sqrt(length(Yp))/sqrt(2)
lines(X,Y,col=’black’,lwd=3)
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We now consider the citronellal response of neuron 2 from data set
e070528. The idea here is to compare the 6 seconds prior to stimulus presen-
tation with the 6 seconds after. So we start by building 2 stabilizedPSTH
instance corresponding to the two parts:
citron_spsth_n2_before = make_stabilizedPSTH(e070528citronellal[[2]],

spontaneous_rate=e070528_spont_nu[2],
region = c(-6,0))

citron_spsth_n2_after = make_stabilizedPSTH(e070528citronellal[[2]],
spontaneous_rate=e070528_spont_nu[2],
region = c(0,6))

Y_before = citron_spsth_n2_before$y
Y_after = citron_spsth_n2_after$y
Y_diff = (Y_before-Y_after)/sqrt(2)
Y_NCM = cumsum(Y_diff)/sqrt(length(Y_diff))
X_NCM = (1:length(Y_diff))/length(Y_diff)

The test figure is obtained with:
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par(cex=2)
plot(xx,c95(xx),type="l",col=’red’,lwd=3,lty=’dashed’,

ylim=c(-4,5),xlab="Normalized time",
ylab=expression(S[k](t)))

lines(xx,-c95(xx),col=’red’,lwd=3,lty=’dashed’)
lines(xx,c99(xx),col=’red’,lwd=3)
lines(xx,-c99(xx),col=’red’,lwd=3)
lines(X_NCM,Y_NCM,col=’blue’,lwd=3)

2.6 Simulation study

We want to estimate the coverage probability of our "Brownian domains" as
a function of the sample size. We are going to use a Monte Carlo simulation
to do that for each of our nine sets of square root boundary coefficients. To
that end we define first a function carrying out the simulations for a given
sample size:
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inside_domain <- function(sample_size,
n_rep=100000,
coeff_list=sqrt_coef) {

## Computes a 95% confidence interval for the ’coverage
## probability’ of each square-root boundary defined in the list
## coeff_list for a given sample size using n_rep Monte Carlo
## replicates.
##
## Parameters
## ----------
## sample_size: an integer, the sample size.
## n_rep: an integer, the number of MC replicates.
## coeff_list: a matrix. Each row should contain the
## coefficient a and b in its second and third elements,
## the boundary being defined by: a + b*sqrt(t).
##
## Returns
## -------
## A matrix, each row contains the extremes of an
## Agresti-Coull 95% CI as defined by Brown et al (2001) Statistical
## Science 16:101-117. There is one row for each row of
## coeff_list.
st_v <- sqrt(seq(1,(sample_size))/sample_size)
b_matrix <- apply(coeff_list,1, function(coeff) coeff[2]+coeff[3]*st_v)
total_v <- numeric(dim(coeff_list)[1])
for (i in 1:n_rep) {

sim <- cumsum(rnorm(sample_size))/sqrt(sample_size)
within <- apply(b_matrix,2,

function(B) all(-B <= sim & sim <= B))
total_v <- total_v + within }

proba <- sapply(total_v, function(T) (T+2)/(n_rep+4))
t(sapply(proba,

function(p)
c(p - 2*sqrt(p*(1-p)/(n_rep+4)),

p + 2*sqrt(p*(1-p)/(n_rep+4)))))
}

We then use this function to get the empirical coverage probabilities in
a range of sample sizes:
set.seed(20110928)
samp_size_v <- c(25,50,75,100,250,500,750,1000,2500,5000,7500,10000)
empirical_CP <- sapply(samp_size_v,

function(n) t(inside_domain(n)))
The results obtained with R can be compared with the ones reported in

Table 2 obtained with Python:
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25 50 75 100 250 500 750 1000 2500 5000 7500 10000
0.99 up 0.995 0.994 0.994 0.994 0.993 0.992 0.992 0.992 0.992 0.991 0.991 0.992
0.99 low 0.993 0.992 0.992 0.991 0.99 0.99 0.99 0.99 0.99 0.989 0.989 0.989
0.98 up 0.989 0.988 0.986 0.986 0.984 0.983 0.983 0.983 0.983 0.982 0.981 0.982
0.98 low 0.986 0.985 0.984 0.984 0.981 0.981 0.98 0.981 0.98 0.979 0.979 0.98
0.97 up 0.982 0.981 0.978 0.978 0.975 0.974 0.974 0.974 0.973 0.973 0.971 0.972
0.97 low 0.98 0.978 0.976 0.975 0.972 0.971 0.971 0.971 0.97 0.969 0.968 0.969
0.96 up 0.976 0.974 0.971 0.971 0.967 0.965 0.965 0.965 0.964 0.963 0.962 0.963
0.96 low 0.973 0.971 0.968 0.968 0.963 0.962 0.962 0.962 0.96 0.96 0.958 0.959
0.95 up 0.97 0.967 0.964 0.963 0.958 0.956 0.956 0.956 0.955 0.954 0.952 0.953
0.95 low 0.966 0.964 0.96 0.959 0.955 0.953 0.953 0.952 0.951 0.95 0.948 0.95
0.94 up 0.963 0.96 0.956 0.955 0.95 0.947 0.947 0.946 0.944 0.944 0.942 0.943
0.94 low 0.96 0.956 0.952 0.951 0.947 0.943 0.943 0.942 0.94 0.94 0.938 0.939
0.93 up 0.956 0.953 0.948 0.947 0.942 0.938 0.938 0.937 0.935 0.935 0.933 0.934
0.93 low 0.953 0.949 0.944 0.943 0.938 0.934 0.934 0.932 0.93 0.931 0.929 0.929
0.92 up 0.95 0.945 0.941 0.939 0.934 0.929 0.929 0.927 0.925 0.925 0.924 0.924
0.92 low 0.946 0.941 0.936 0.935 0.929 0.925 0.924 0.923 0.921 0.921 0.919 0.92
0.91 up 0.943 0.938 0.933 0.931 0.924 0.92 0.919 0.917 0.915 0.916 0.914 0.915
0.91 low 0.939 0.934 0.928 0.926 0.92 0.916 0.915 0.913 0.91 0.911 0.909 0.91
0.90 up 0.936 0.931 0.924 0.923 0.916 0.911 0.91 0.909 0.906 0.906 0.904 0.905
0.90 low 0.932 0.926 0.92 0.918 0.911 0.907 0.905 0.904 0.901 0.901 0.899 0.9

2.7 Raster plots

There is a built-in function creating raster plots in STAR (Pouzat and Chaf-
fiol 2009, the plot method for objects of which the data just loaded are
instances), but we need a finer control of the graphical output for our figures
and define a mkRaster function:
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mkRaster <- function (x, stimTimeCourse = NULL, colStim = "grey80", xlim,
pch, xlab, ylab, main, ...) {

if (!is.repeatedTrain(x))
x <- as.repeatedTrain(x)

nbTrains <- length(x)
if (missing(xlim))

xlim <- c(0, ceiling(max(sapply(x, max))))
if (missing(xlab))

xlab <- "Time (s)"
if (missing(ylab))

ylab <- "trial"
if (missing(main))

main <- paste(deparse(substitute(x)), "raster")
if (missing(pch))

pch <- ifelse(nbTrains <= 20, "|", ".")
acquisitionDuration <- max(xlim)
plot(c(0, acquisitionDuration), c(0, nbTrains + 1), type = "n",

xlab = xlab, ylab = ylab, xlim = xlim, ylim = c(1, nbTrains +
1), bty = "n", main = main, axes = FALSE,...)

if (!is.null(stimTimeCourse)) {
rect(stimTimeCourse[1], 0.1, stimTimeCourse[2], nbTrains +

0.9, col = colStim, lty = 0)
}
invisible(sapply(1:nbTrains, function(idx) points(x[[idx]],

numeric(length(x[[idx]])) + idx, pch = pch)))
axis(1)

}
The first raster plot is then obtained with (compared to the Python

version, the stimulus onset time is not set to zero and the stimulus on period
is represented by the grey background):
par(cex.axis=3,cex.lab=4,cex.main=4,mar=c(5,5,5,1))
mkRaster(e060817citron[[1]],

stimTimeCourse=attr(e060817citron[["neuron 1"]],"stimTimeCourse"),
xlab="Time (s)",ylab="",main="Neuron 1",xlim=c(5,10))
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The second raster is built with:
layout(matrix(1:2,nr=2))
par(cex.axis=3,cex.lab=4,cex.main=4,mar=c(5,5,5,1))
mkRaster(e060817citron[[1]],

stimTimeCourse=attr(e060817citron[["neuron 1"]],"stimTimeCourse"),
xlab="Time (s)",ylab="",main="Citronellal",xlim=c(5,10))

mkRaster(e060817terpi[[1]],
stimTimeCourse=attr(e060817terpi[["neuron 1"]],"stimTimeCourse"),
xlab="Time (s)",main="Terpineol",ylab="",xlim=c(5,10))
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2.8 Terpineol and citronellal responses of neuron 1 from e060817

We create a figure showing the smoothStabilizedPSTH instances:
par(cex=3)
plot(e060817terpi_sspsth[[1]],what="smooth",

ylab=expression(sqrt(Y[i])+sqrt(Y[i+1])),lwd=3,col=’grey’)
lines(e060817citron_sspsth[[1]],what="smooth",lwd=3)
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