Christophe Pouzat 
  
Antoine Chaffiol 
  
Avner Bar-Hen 
  
Supplementary Material for: Homogeneity and identity tests for unidimensional Poisson processes with an application to neurophysiological peri-stimulus time histograms-Python version

whether they are published or not. The documents may come    

Introduction

This document presents the analysis with Python. The exposition follows roughly the software development approach used in this project. Namely, a single PSTH is analyzed first step by step, requiring the definitions of short functions or the use of a few command lines. Once this prototypical analysis is achieved, one class and its associated methods are defined. The code of the methods being the same (modulo some variable name changes) as the code of the functions previously defined. For clarity of the code presentation-as well as to keep the code length able to fit within a single page-the literate programming paradigm is used throughout this document, implying that the construction of the actual working code often implies sticking together several pieces. Therefore many listings, like Listing 1, will appear like: Some code lines in R or Python <<a-reference>> Some more code lines

In such cases a "reference" made of a string between "«" and "»" (in the case above "a-reference") refers to a listing whose content should be copied and pasted in place of the reference.

Figures, tables and equations numbers given in this document refer to figures, tables and equations in the companion manuscript.

Existing tests

Cox and P. A. W. [START_REF] Cox | The Statistical Analysis of Series of Events[END_REF] present tests for homogeneous Poisson (Sec. 6.3) and renewal (Sec. 6.4) processes. The tests for Poisson processes use the fact that if the observed times: {t 1 , t 2 , . . . , t n } are a realization of a homogeneous Poisson process with rate λ on the time interval [0, t 0 ], then, conditionally on n, the total number of events observed at the end of the time period, the quantities: {u (i) = t i /t 0 } i=1,...,n are observations of the order statistics of n IID draws from a uniform distribution on (0,[START_REF]t_stat[END_REF]. It is then possible to apply a Kolmogorov test or an Anderson-Darling test against this null hypothesis giving a uniform conditional test for a Poisson process. Durbin (1961, p. 48) followed by Peter A. W. [START_REF] Lewis | Some Results on Tests for Poisson Processes[END_REF] argue further for the use of what Cox and P. A. W. Lewis (1966, p. 154-155) dubbed Durbin's transformation of the t i in order to improve the power of these tests against the uniform null hypothesis. The algorithm producing this transformation follows:

1. Go from the {u (i) = t i /t 0 } i=1,...,n discussed in the previous paragraph to the intervals: c 1 = u [START_REF]t_stat[END_REF] , c i = u (i) -u (i-1) (i = 2, . . . , n), c n+1 = 1 -u (n) } (the latter should IID realizations from an exponential distribution with parameter 1).

2. Get the order statistics {c (1) , . . . , c (n) } and form the differences g i = (n + 2 -i) c (i) -c (i-1) for i = 1, . . . , n + 1 with c (0) = 0 (they should be independent exponentially distributed random variables with means 1).

3. The observations u (i) = i j=1 g j for i = 1, . . . , n should then be observations from the order statistics of n IID draws from a uniform distribution on (0,[START_REF]t_stat[END_REF].

As pointed out by Cox and P. A. W. Lewis (1966, p. 158) the tests on transformed data are sensitive to discretization: they fail to apply if the latter is too coarse. The data used here where sampled at 12800 Hz with a spike sorting procedure that did not properly cope with sampling jitter [START_REF] Pouzat | SPySort: Neuronal Spike Sorting with Python[END_REF]. This unaccounted for sampling jitter amounts to a "too coarse" sampling and give rise to a pronounced stair-case aspect of the empirical cumulative distribution function (ECDF) of the u (i) for small values of i. This leads to spurious positive values when applying the Anderson-Darling test. We therefore decided when working with the transformed data to jitter the original observed times uniformly by plus or minus half a sampling period (in practice plus or minus 40 µs). This destroys the stair-case aspect without touching the overall structure.

In addition to these tests against a uniform distribution on (0, 1), the correlation coefficients of the successive inter-event intervals at different lags (the autocorrelation function of the inter-events intervals) is inspected and the log of the survivors function-that should be a straight line under the null hypothesis-is plotted.

1.2 A remark on the pseudo-random number generators used by R and Python

As most readers know, when a (pseudo) random number is drawn from a continuous distribution (exponential, normal, etc) a function of one or several random numbers with a uniform distribution on [0,1) is used: exponential random numbers are typically generated with the inversion method-this is done in both R with rexp and in the numpy.random module of Python with exponential-; normal random numbers are generated with the inversion method-used by default in function rnorm of R-or with the Box-Muller method-used by function normal in numpy.random-or with the Kinderman and Monahan method, etc. This implies that a crucial role is played by the generator of uniform random numbers on [0,1)-or (0,1) as is the case for R-. In principle, when one reads the documentation of the default uniform pseudo-random number generators (PRNG) implemented in both R and Python, one gets the impression they are the same since both software used the Mersenne Twister. This PRNG generates in fact discrete number in {0, 1, . . . , 2 32 -1} with a period of 2 19937 -1. This feat is achieved by using a tuple with 624 elements, each element being an unsigned integer coded on 32 bit. This means that such a tuple has to be provided in order to initialize the generator. R and Python do this initialization differently and in order to figure out precisely how they do it, the source codes have to be inspected. It is then possible (but tedious) to use the same tuple in both languages. Then one realizes that the generated sequences of floating point numbers (uniform on the unit interval) are different! Inspection of the source codes provides again the explanation: at each call, the Mersenne Twister outputs an unsigned integer coded on 32 bit; R divides this number by 2 32 to get a floating point number ∈ [0, 1) -then R checks if the number is 0 (or negative) and in such a case it returns 1/2 × 1/( 2 The analysis with Python

Setting up Python

The analysis presented in the manuscript and detailed next is carried out with Python 3 (the following code runs and gives identical results with Python 2). We are going to use the 3 classical modules of Python's scientific ecosystem: numpy, scipy and matplotlib. We are also going to use two additional modules: sympy as well as h5py. We start by importing these modules:

import numpy as np import matplotlib.pyplot as plt import scipy import sympy as sy import h5py

Implementation of existing tests

We define a function returning the Kolmogorov two sided or one sided statistics against the null hypothesis-uniform distribution on (0, 1):

def Kolmogorov_D(Up, what="D"): import numpy as np if not np.all(Up > 0) and np.all(Up < 1):

raise ValueError('Every u in Up must satisfy 0 < u < 1') if not what in ["D","D+","D-"]:

raise ValueError('what must be one of "D","D+","D-"') n = len(Up) ecdf = np.arange (1,n+1) There are few published tables of the cumulative distribution function of the Anderson-Darling statistics (either for finite sample size or in the asymptotic limit) and there is no R function returning it. The G. Marsaglia and J. Marsaglia (2004, page 3) We can test this implementation using the 0.9, 0.95 and 0.99 quantiles given by G. Marsaglia and J. Marsaglia (2004, page 2):

print(" Nominal 0.90, computed: ",pAD_W2(1.9329578327),", difference: ", 0.9-pAD_W2(1.9329578327),"\n", "nominal 0.95, computed: ",pAD_W2(2.492367),", difference: ", 0.95-pAD_W2(2.492367),"\n", "nominal 0.99, computed: ",pAD_W2(3.878125),", difference: ", 0.99-pAD_W2(3.878125)) (np.logical_and(observation_interval[0] < observed_times, observed_times < observation_interval [START_REF]t_stat[END_REF])): raise ValueError('observation_interval is not compatible with'+\ 'observed_times') observed_times = observed_times.copy()-observation_interval [0] obs_duration = np.diff(observation_interval) n = len(observed_times) observed_times /= obs_duration iei = [observed_times [0]]+\ list(np.sort(np.diff(observed_times)

))+\ [1-observed_times[-1]] siei = [0]+sorted(iei) g = (n+2-np.arange(1,n+2))*np.diff(siei) return np.cumsum(g[:-1])

An exploration of time discretization and jittering effects on these statistics

As discussed in the first section, the time discretization due to sampling at acquisition time and sub-optimal spike sorting algorithm has consequences on the statistics used to test if an observed (aggregated process) is homogeneous Poisson or not. These consequences are explored here with simulations mimicking the pre-stimulation period of neuron 2 from data set e070528citronellal whose analysis is presented in the sequel. This neurons fires 1455 during 6 seconds (and 15 trials) giving an aggregated rate of 242.5 Hz. We perform next a simulation of 10000 homogeneous Poisson processes with the latter rate during 6 s. The two sided Kolmogorov statistics-D n √ n whose 0.95 and 0.99 quantiles are 1.358 and 1.628 respectively-as well as the Anderson-Darling one-W 2 n whose 0.95 and 0.99 quantiles are 2.492 and 3.878 respectively, the correct value of the latter quantile is from G. Marsaglia and J. Marsaglia (2004, page 2)-are computed on the resulting conditionally uniform process ({t 1 /6, . . . , t n /6}) as well as on its discretized version (with a time resolution corresponding to the actual sampling period of our data sets, 1/12800 s) and on a time jittered version of the discretized version (with a uniform jitter between -1/2 and +1/2 the sampling period). The same is done on the data after Durbin's transformation. A function is defined first doing the discretization: def discretize_time(observed_times, observation_period= [0,6], sampling_period=1/12800): import numpy as np dt = np.arange(observation_period [0],

observation_period [START_REF]t_stat[END_REF], sampling_period) return (0.5+(np.digitize(observed_times,dt)-1))*sampling_period A function doing the time jittering is defined next (taking care of the events sitting close to the observation interval boundaries): We can now do the simulation with a single realization as follows:

from numpy.random import seed, exponential seed(20110928) hp1 = np.cumsum(exponential (1/242.5,2000)

) hp1 = hp1[hp1<6] hp1_d = discretize_time(hp1) hp1_dj = jitter_time(hp1_d)
The Kolmogorov and Anderson-Darling statistics are: D_W2_1 = {"D_o":Kolmogorov_D(hp1/6), "D_d":Kolmogorov_D(hp1_d/6), "D_dj":Kolmogorov_D(hp1_dj/6), "W2_o":AndersonDarling_W2(hp1/6), "W2_d":AndersonDarling_W2(hp1_d/6), "W2_dj":AndersonDarling_W2(hp1_dj/6)} res_out = "\n original discretized jittered\n" res_out += "D {D_o:12.8f} {D_d:12.8f} {D_dj:12.8f}\n" res_out += "W2 {W2_o:12.8f} {W2_d:12.8f} {W2_dj:12.8f}" print(res_out.format(**D_W2_1)) There is no "huge" effect of time discretization here. The same is done after Durbin's transformation. Since intervals of length 0 can be obtained with the discretized data, we set these zero length intervals to five times the smallest floating point number the machine can represent: The Kolmogorov and Anderson-Darling statistics are then: D_W2_2 = {"D_o":Kolmogorov_D(hp1_dt), "D_d":Kolmogorov_D(hp1_d_dt), "D_dj":Kolmogorov_D(hp1_dj_dt), "W2_o":AndersonDarling_W2(hp1_dt), "W2_d":AndersonDarling_W2(hp1_d_dt), "W2_dj":AndersonDarling_W2(hp1_dj_dt)} print(res_out.format(**D_W2_2)) There is a large effect of discretization on Anderson-Darling's statistics; effect that seems to be canceled by adding a jitter. Making a figure with the corresponding empirical cumulative distribution functions can help here; the stair-case pattern is very clear on the ECDF of the discretized data after Durbin's transformation: ------------------------------------------- Plotting the statistics for the discretized vs original and the "discretized and then jittered" vs original shows very clearly that the Anderson-Darling test should not be used for discretized data after Durbin's transformation but that jittering the discretized data makes the statistics behave essentially as the ones of the original data (the blue lines show the empirical 0.95 and 0.99 quantiles):

Getting the data

Our data (Pouzat and Chaffiol 2015) are stored in HDF5 format on the zenodo server (DOI:10.5281/zenodo.1428145). They are all contained in a file named CockroachDataJNM_2009_181_119.h5. The data within this file have an hierarchical organization similar to the one of a file system (one of the main ideas of the HDF5 format). The first organization level is the experiment; there are 4 experiments in the file: e060517, e060817, e060824 and e070528. Each experiment is organized by neurons, Neuron1, Neuron2, etc, (with a number of recorded neurons depending on the experiment). Each neuron contains a dataset (in the HDF5 terminology) named spont containing the spike train of that neuron recorded during a period of spontaneous activity. Each neuron also contains one or several further sub-levels named after the odor used for stimulation citronellal, terpineol, mixture, etc. Each a these sub-levels contains as many datasets: stim1, stim2, etc, as stimulations were applied; and each of these data sets contains the spike train of that neuron for the corresponding stimulation. Another dataset, named stimOnset containing the onset time of the stimulus (for each of the stimulations). All these times are measured in seconds.

The data can be downloaded with Python as follows: """ Create a StabilizedPSTH instance.

Parameters ----------spike_train_list: a list of spike trains (vectors with strictly increasing elements), where each element of the list is supposed to contain a response and where each list element is assumed time locked to a common reference time. onset: a number giving to the onset time of the stimulus. region: a two components list with the number of seconds before the onset (a negative number typically) and the number of second after the onset one wants to use for the analysis. spontaneous_rate: a positive number with the spontaneous rate assumed measured separately; if None, the overall rate obtained from spike_train_list is used; the parameter is used to set the bin width automatically. target_mean: a positive number, the desired mean number of events per bin under the assumption of homogeneity. stab_method: a string, either "Freeman-Tukey" (the default,

x -> sqrt(x)+sqrt(x+1)), "Anscombe" (x -> 2*sqrt(x+3/8)) or "Brown et al" (x -> 2*sqrt(x+1/4); the variance stabilizing transformation. """

Listing 3: init_StabilizedPSTH_docstring str_StabilizedPSTH The string method (used by function print) for Sta-bilizedPSTH:

def __str__(self):

"""Controls the printed version of the instance.""" import numpy as np return "An instance of StabilizedPSTH built from " \ + str(self.n_stim) + " trials with a " + str(self.width) \ + " (s) bin width.\n The PSTH is defined on a domain " \ + str(self.support_length) + " s long.\n" \ + " The stimulus comes at second 0.\n" \ + " Variance was stabilized with the " \ + self.stab_method + " method.\n" Listing 5: plot_StabilizedPSTH Tests We now test these functions and methods. We use the data recorded in the spontaneous to estimate the spontaneous discharge frequency: f = h5py.File("CockroachDataJNM_2009_181_119.h5","r") nu_spont_n2 = len(f["e070528/Neuron2/spont"])/60 print("The spontaneous rate of neuron 2 from experiment e070528 is: ", nu_spont_n2, "(Hz).")

The spontaneous rate of neuron 2 from experiment e070528 is: 19.55

We create the spike train list and extract the stimulus onset time: We then build the instance of our new class StabilizedPSTH for neuron 2 of the data set; we also use the newly defined print method for this instance:

citron_spsth_n2 = StabilizedPSTH(train_list, spontaneous_rate=nu_spont_n2, region = [-6,6], onset=citron_onset) print(citron_spsth_n2)
An instance of StabilizedPSTH built from 15 trials with a 0.011 (s) bin width.

The PSTH is defined on a domain 12 s long.

The stimulus comes at second 0.

Variance was stabilized with the Freeman-Tukey method.

The plot method displaying the stabilized PSTH is invoked with:

citron_spsth_n2.plot()

The one displaying the actual counts is invoked with: citron_spsth_n2.plot(what="counts") 

early_train = citron_spsth_n2
.st[citron_spsth_n2.st < 0] + 6 et_stat = (Kolmogorov_D(early_train/6), AndersonDarling_W2(early_train/6)) print(("D: {D:.4}, Prob(D): {PD:.4f}\n" "W2: {W2:.4f}, Prob(W2): {PW2:.4f}").format(D=et_stat [0], PD=pDsN(et_stat[0]), W2=et_stat [START_REF]t_stat[END_REF], PW2=pAD_W2(et_stat [START_REF]t_stat[END_REF]))) "W2: {W2:.4f}, Prob(W2): {PW2:.4f}").format(D=ett_stat [0], PD=pDsN(ett_stat [0]), W2=ett_stat [START_REF]t_stat[END_REF], PW2=pAD_W2(ett_stat [START_REF]t_stat[END_REF]))) We can obtain a plot of the log-survivor function of the intervals with:

The auto-correlation coefficient of the inter-event interval at lag one is not significantly different from 0 (at the 0.99 level):

iei_early_cc = np.corrcoef(iei_early[:-1],
iei_early[1:])[0,1]*\ np.sqrt(len(iei_early)-1) print(("The inter event interval autocorrelation at lag 1\n" "for the pre-stimulation period of neuron 2 from\n" "data set e070528citronellal is {0:.4f}").format(iei_early_cc))

The inter event interval autocorrelation at lag 1 for the pre-stimulation period of neuron 2 from data set e070528citronellal is 2.3938

But a plot of the auto-correlation function-with the estimated correlation coeffcient ρ is multiplied by the square root of the sample size-up to lag 10 does show some signs of correlations:

Kernel smoothing

The tricube function We start by defining a tricube_kernel function: ----------x: point at which the estimator is looked for. X: abscissa of the observations. Y: ordinates of the observations. kernel: a univariate 'weight' function.

Returns -------

The estimated ordinate at x. """ w = kernel(X-x) return np.sum(w*Y)/np.sum(w) """Computes Mallow's Cp score given data X and Y, a bandwidth bw, a bivariate function kernel and a variance sigma2.

Parameters ----------X: abscissa of the observations. Y: ordinates of the observations. bw: the bandwidth. kernel: a bivariate function taking an ordinate as first parameter and a bandwidth as second parameter. sigma2: the variance of the ordinates. -------A tuple with the bandwidth, the trace of the smoother and the Cp score. """ from numpy.matlib import identity L = np.zeros((len(X),len(X))) ligne = np.zeros(len(X)) for i in range(len(X)): ligne = kernel(X-X[i], bw) L[i,:] = ligne/np.sum(ligne) n = len(X) trace = np.trace(L) if trace == n: return None Cp = np.dot(np.dot(Y,(identity(n)-L)), np.dot((identity(n)-L),Y).T) [0,0]/n + 2*sigma2*trace/n return (bw, trace, Cp)

Returns

Listing 8: Cp-score-definition In an actual test setting we would use a few kernel bandwidths (1 to 10) in order to have a moderate Bonferroni correction (giving tighter confidence bands); typically we would used multiples of the initial bin width like: 5, 10, 50, 100, 500 leading to: bw_multiplicator = np.array ([5,10,50,100,500]) bw_vector = citron_spsth_n2.width*bw_multiplicator citron_Cp_n2 = np.array ([Cp_score(citron_spsth_n2.x,citron_spsth_n2.y, bw) for bw in bw_vector])

Here, for the sake of illustration, a denser set of bandwidth will also be used: bw_multiplicatorDense = np.arange(5,101,1) bw_vectorDense = citron_spsth_n2.width*bw_multiplicatorDense citron_CpDense_n2 = np.array ([Cp_score(citron_spsth_n2.x,citron_spsth_n2.y, bw) for bw in bw_vectorDense])

We then extract the bandwidth giving the best (lowest) score and get the corresponding Nadaraya-Watson estimator: bw_best_Cp = bw_vector [np.argmin(citron_Cp_n2[:,[START_REF]6f}[END_REF])] citron_NW_n2 = np.array ([NW_Estimator(x,citron_spsth_n2.x, citron_spsth_n2.y, kernel = lambda y: tricube_kernel(y, bw_best_Cp)) for x in citron_spsth_n2.x]) The integral of the squared derivative of the kernel is:

1.49866250530693

We then get the κ 0 for neuron 2: kappa_0_n2 = citron_spsth_n2.support_length*IK/bw_best_Cp print("The value of kappa_0 is:\n",kappa_0_n2)

The value of kappa_0 is: 163.490455124392

Getting the constant c of our tube formula We define next a function, tube_target returning the "target", that is: So the critical 0.95 quantile of the Anderson-Darling distribution (2.492) is exceeded but not the 0.99 quantile (3.857).

2 (1 -Φ(c)) + κ 0 π exp - c 2 2 -α ,

Define class and methods doing the same job

We can now define a new class, SmoothStabilizedPSTH, whose instances contain all the results linked to the kernel smoothing procedure. Listing 18: set-new-attributes get_c_SmoothStabilizedPSTH Method get_c for SmoothStabilizedPSTH return the factor c required to build the confidence band at a given level:

Listing 22: plot-Cp-SmoothStabilizedPSTH uplot_SmoothStabilizedPSTH uplot is another plot method for SmoothStabilizedPSTH instances where the variance stabilization is "undone", that is, the plot of a classical PSTH is produced. When a confidence band is drawn there is a potential caveat if the lower bound of the band has a lower value than the transformed / stabilized value of the lowest possible count, 0. In those cases, the inverse value of the lower bound will the set to the inverse of the transformed value of 0.

Testing identity

Boundary crossing probability

Background We are going to need the probability for a canonical Brownian motion to cross a boundary whose equation is a + b √ t between time 0 and time 1. To this end we use the results of [START_REF] Loader | Computations of boundary crossing probabilities for the Wiener process[END_REF] that can be summarized as follows, writing G(t) the CDF of the first passage time, g(t) the corresponding density and c(t) a continuous boundary. We can choose a function b(t), then G is solution of the following Volterra integral equation:

F (t) = t 0 K(t, u)dG(u) ,
where

F (t) = Φ - c(t) √ t + exp (-2b(t) (c(t) -tb(t))) Φ -c(t) + 2tb(t) √ t and K(t, u) = Φ -c(u)-c(t) √ t-u + exp (-2b(t) (c(t) -c(u) -(t -u)b(t))) Φ c(u)-c(t)+2(t-u)b(t) √ t-u
.

We now take 0 = t 0 < t 1 < • • • < t n = t with t j = jh for some h > 0 and we set t j-1/2 = (t j + t j-1 )/2 a discretized version of our Volterra equation is then given by the mid-point method :

F (t j ) = j i=1 K(t j , t i-1/2 )∆ i j = 1, . . . , n ,
where ∆ i = G(t i ) -G(t i-1 ) and since this linear system is lower triangular we get:

∆ j = F (t j ) - j-1 i=1 K(t j , t i-1/2 )∆ i /K(t j , t j-1/2 ) j = 1, . . . , n .
Assuming that c (t) exists for all t > 0 and setting [START_REF] Loader | Computations of boundary crossing probabilities for the Wiener process[END_REF] 

L(t, u) = ∂K(t, u)/∂u, G L (t 1 ) = F (t 1 ) G L (t n ) = F (t n ) + n-1 j=1 G L (t j ) [K(t n , t j+1 -K(t n , t j )] n = 2, . . . and G U (t 1 ) = F (t 1 )/K(t 1 , t 0 ) G U (t n ) = F (t n ) + n-1 j=1 G U (t j ) [K(t n , t j -K(t n , t j-1 )] /K(t n , t n-1 ) n = 2, . . .
show that if L(t, u) ≥ 0 for u < t then G L (t n ) ≤ G(t n ) ≤ G U (t n ) n = 1, 2, . . .

Python code

We present next a direct implementation of this algorithm in Python. We start with the docstring (user documentation of the function):

"""Probabilty for a canonical Brownian motion to cross a boundary defined by the continous function c_fct beween 0 and 1. Parameters ----------c_fct: a continuous function of a single variable defining the boundary. b_fct: an accessory function helping the convergence, the derivative of c_fct is a good default choice. bounds: a Boolean variable, if True (default) lower and upper bounds for the probability are returned.

Returns -------

The probability if bounds is False or a tuple with the lower bound the probability and the upper bound.

Details

-------Bounds calculation uses Eq. 3.6 and 3.7 p 102 of Loader and Deely (1987) J Statist Comput Simul 27: 95-105, and some conditions on the partial derivative of the Kernel appearing in the Volterra integral equation are supposed to be met."""

Simulation study

We want to estimate the coverage probability of our "Brownian domains" as a function of the sample size. We are going to use a Monte Carlo simulation to do that for each of our nine sets of square root boundary coefficients. To that end we define first a function carrying out the simulations at a given sample size-the normal (pseudo-) random numbers are generated with the function normal from module numpy.random, examination of the source code shows that these normal random numbers are generated with the Box-Muller algorithm-: We get the results shown on Table 2.

  ] = observed_times[within]+\ (random_sample(sum(within))-0.5)*sampling_period too_small = observation_period[0]+sampling_period/2 >= observed_times if sum(too_small) > 0: s = random_sample(sum(too_small)) s *= (observed_times[too_small]+sampling_period/2-\ observation_period[0]*np.ones(len(s))) s += observation_period[0]*np.ones(len(s)) res[too_small] = s too_big = observed_times >= observation_period[1]-sampling_period/2 if sum(too_big)>0: b = random_sample(sum(too_big)) b *= (observation_period[1]*np.ones(len(b))-\ observed_times[too_big]-sampling_period/2) b += observed_times[too_big]-sampling_period/2 res[too_big] = b res[res==0] = 5*np.finfo(float).eps return np.sort(res)

  hp1_dt = DurbinTransform(hp1,[0,6]) hp1_d_dt = DurbinTransform(hp1_d,[0,6]) if np.any(hp1_d_dt==0): hp1_d_dt[hp1_d_dt==0] = 5*np.finfo(float).eps if np.any(hp1_d_dt==1): hp1_d_dt[hp1_d_dt==1] -= 5*np.finfo(float).eps hp1_dj_dt = DurbinTransform(hp1_dj,[0,6])

  citron_onset = f["e070528/Neuron2/citronellal/stimOnset"][...][0] train_list = [f[y][...]for y in["e070528/Neuron2/citronellal/stim"+str(x) for x in range[START_REF]t_stat[END_REF]16)]]

  D: {D:.4}, Prob(D): {PD:.4f}\n"

  def tricube_kernel(x,bw=1.0): ax = np.absolute(x/bw) result = np.zeros(x.shape) result[ax <= 1] = 70*(1-ax[ax <= 1]**3)**3/81. return result Listing 6: tricube-kernel-definition The Nadaraya-Watson estimator We define next a function returning the Nadaraya-Watson estimator at a given point: def NW_Estimator(x,X,Y, kernel = lambda y: tricube_kernel(y,1.0)): """Returns the Nadaray-Watson estimator at x, given data X and Y using kernel. Parameters

Listing 7 :

 7 Nadaraya-Watson-estimator-definition Mallow's Cp score computation We now need a function returning Mallow's C p score and define a function, Cp_score, doing the job: def Cp_score(X,Y,bw = 1.0, kernel = tricube_kernel,sigma2=1):

Figure 0

 0 Figure withCp score vs bandwidth and smooth estimator Fig.1is built with:

  .sqrt(np.sum(L_best**2,axis=1)) IK = 1.49866250530693 kappa_0 = self.support_length*IK/bw_best_Cp Listing 17: prepare-confidence-envelop-computation set-new-attributes The new attributes are set: self.bandWidthMultipliers = bandWidthMultipliers self.bw_values = Cp_values[:,0].copy() self.trace_values = Cp_values[:,1].copy() self.Cp_values = Cp_values[:,2].copy() self.bw_best_Cp = bw_best_Cp self.NW=NW self.L_best=L_best self.L_best_norm=L_best_norm self.kappa_0 = kappa_0

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  bit unsigned integer with them-the leftmost 27 bit of first 32 bit unsigned integer provide the leftmost 27 bit of the intermediate number while the leftmost 26 bit of the second 32 bit unsigned integer provide the rightmost 26 bit of the intermediate number; the intermediate number is then divided by 2 53 to yield a floating point number ∈ [0, 1) (with the maximal achievable resolution with double precision). R generates therefore double precision floating point random numbers with a 32 bit resolution, while Python generates numbers with a 53 bit resolution. This (undocumented) difference does not create significant differences in the two versions of our code but it explains why we could not work with the exact same sequences in both versions.

2 32 -1) -; Python draws two successive numbers from the Mersenne-Twister and constructs an "intermediate" 53

  The function performing Durbin's transformation is defined next. It takes a series of observed times and an observation interval as arguments:

	Nominal 0.90, computed: 0.899988917447 , difference: 1.10825528162e-05
	nominal 0.95, computed: 0.950008128363 , difference: -8.12836257569e-06
	nominal 0.99, computed: 0.989997384292 , difference: 2.61570839077e-06
	def DurbinTransform(observed_times,
	observation_interval=None):
	import numpy as np
	if observation_interval == None:

observation_interval = [np.floor(np.min(observed_times)), np.ceil(np.max(observed_times))] if not np.all

A systematic simulation is done as follows-printing the empirical 0.95 and 0.99 quantiles for each statistic at the end-: ------------------------------------------- raise ValueError('spontaneous_rate must be positive') if not stab_method in ["Freeman-Tukey","Anscombe","Brown et al"]:

raise ValueError('stab_method should be one of '\ +'"Freeman-Tukey","Anscombe","Brown et al"') left = region [0]+onset right = region [START_REF]t_stat[END_REF]+onset aggregated = aggregated [np.logical_and(left <= aggregated, aggregated <= right)]-onset bin_width = np.ceil(target_mean/n_stim/spontaneous_rate*1000)/1000 aggregated_bin = np.arange(region [0],

region [START_REF]t_stat[END_REF] Listing 9: tube-target-definition We then get the c values for two α, 0.95 and 0.9 with: from scipy.optimize import brentq c_p95 = brentq(tube_target,a=3,b=5,args=(0.05/len(bw_vector),kappa_0_n2)) c_p90 = brentq(tube_target,a=2,b=5,args=(0.1/len(bw_vector),kappa_0_n2))

Smoothing matrix We define a function returning the smoothing matrix L-a matrix whose (L) i,j element is given by l i (t j ), where the l i () are defined in the text and the t j are the centers of our PSTH bins-: Listing 16: do-kernel-smoothing prepare-confidence-envelop-computation The assignment of the objects required for the confidence band construction is done as before:

def get_c(self,alpha=0.05,lower=2,upper=5):

"""Get solution of 2*(1-norm.cdf(x)) + kappa*np.exp(-x**2/2)/np.pi -alpha/len(self..bw_vector).

Parameters ---------alpha (0 < scalar < 1): the confidence level. lower (scalar > 0): the lower starting point of the Brent method. upper (scalar > 0): the upper starting point of the Brent method.

Return ------The solution (scalar).

Details -------

The Brent method is used. A Bonferroni correction is performed. """ if not 0 < alpha < 1: raise ValueError('alpha must be > 0 and < 1') if not lower > 0:

raise ValueError('lower must be > 0') if not upper > 0:

raise ValueError('upper must be > 0') <<tube-target-definition>> from scipy.optimize import brentq return brentq(tube_target,a=lower,b=upper, args=(alpha/len(self.bw_values),self.kappa_0))

Listing 19: get_c_SmoothStabilizedPSTH plot_SmoothStabilizedPSTH We define now the plot method for Smooth-StabilizedPSTH instances:

def plot(self,what="band",color='black', alpha=0.01,lower=2,upper=6, ylabel=None,xlabel=None): import matplotlib.pyplot as plt if not what in ["smooth","band","stab", "Cp vs bandwidth", "Cp vs trace"]: msg = 'what should be one of "smooth", "band", '+\ '"stab", "Cp vs bandwidth", "Cp vs trace"' raise ValueError(msg) if what in ["smooth","band","stab"]:

<<plot-smooth-band-stab-SmoothStabilizedPSTH>> else:

<<plot-Cp-SmoothStabilizedPSTH>>

Listing 20: plot_SmoothStabilizedPSTH plot-smooth-band-stab-SmoothStabilizedPSTH We plot the "smooth", the confidence band or the stabilized data as a function of time:

plt.plot(self.x,y,color=color) else:

plt.fill_between(self.x,u,l,color=color) plt.xlabel(xlabel) plt.ylabel(ylabel)

Listing 21: plot-smooth-band-stab-SmoothStabilizedPSTH plot-Cp-SmoothStabilizedPSTH We plot Mallow's Cp value as a function of the bandwidth of the smoothing matrix trace: The next figure shows the 99% confidence bands (top left), the Cp values

Systematic analysis

We can now analyze all the odor responses of the data set in the same way, building 99% confidence bands using 5 seconds before the stimulus onset and 6 seconds after it (the longest compromise among our data sets).

Experiment e060817

We get the spontaneous discharge rates of the three neurons of experiment e060817:

for i in range [START_REF]t_stat[END_REF]4)] print("The spontaneous discharge rates are:") for i in range(len(e060817_spont_nu)):

print(" Neuron {0}: {1:.2f} (Hz)".format (i+1,e060817_spont_nu[i]))

The spontaneous discharge rates are: Neuron 1: 8.82 (Hz) Neuron 2: 20.48 (Hz) Neuron 3: 13.02 (Hz)

We create next StabilizedPSTH instances corresponding to the citronellal responses of each neuron as well as the SmoothStabilizedPSTH: The terpineol and mixture responses are processed with: 

Experiment e060824

This data set contains only two neurons and a single odor response (to citral). The analysis is done with: 

Experiment e070528

This data set contains the responses of four neurons to citronellal: We can now make a new version of Fig. 8 of [START_REF] Pouzat | Automatic Spike Train Analysis and Report Generation. An Implementation with R, R2HTML and STAR[END_REF] with 99% confidence bands instead of 95% pointwise confidence intervals using the "natural" scale, the one on which the variance has been stabilized:

In the actual G_at_1_with_bounds definition below, «G_at_1_with_bounds-docstring» should be replaced by the code above. We then define a univariate function F corresponding the function F above. This function needs to have access to the norm class of scipy.stats and to have access to two functions c_fct and b_fct corresponding respectively to c and b: In the actual G_at_1_with_bounds definition below, «F-definition» is meant to be replaced by the above code. We define next a bivariate function K corresponding to K above and requiring the same functions c_fct and b_fct as F. This function implicitely assumes that c(u) -c(t) falls to 0 faster than √ t -u when t > 0 and u → t: G_L [0] = F(t_v [START_REF]t_stat[END_REF]) G_U [0] = F(t_v [START_REF]t_stat[END_REF])/K(t_v [START_REF]t_stat[END_REF],t_v [0]) Delta [0] = F(t_v [START_REF]t_stat[END_REF])/K(t_v [START_REF]t_stat[END_REF],t_v_half [0]) for j in range (1,n) We can refine these values by defining first a function returning a target function (to optimize later) with: We made a systematic estimation of the parameters a and b of the square root boundary for coverage probabilities going from 0.9 to 0.99. To that end we defined a "square root boundary tailored version" of G_at_1_with_bounds that makes a much better use of the vectorization allowed (en encouraged) by Python. We do not give the code in this document but it is fully disclosed in its source file.

We end up with the following coefficient table:

Square root boundary, a+b*sqrt(t), coefficients as a function of the probability for a Brownian motion process to be totally within the domain up to time 1.

---------------------------------------------------------- Back to the analysis of the data set We have already built the citronellal and terpineol PSTHs of neuron 1. We start by checking that during the pre-stimulation period the aggregated processes have the properties of an homogeneous Poisson process. e060817citron_n1 = e060817citron_spsth [0].st e060817citron_e1 = e060817citron_n1[e060817citron_n1<0]+5 e060817citron_j1 = jitter_time(e060817citron_e1,(0,5)) e060817citron_t1 = DurbinTransform(e060817citron_j1,(0,5)) e060817terpi_n1 = e060817terpi_spsth [0].st e060817terpi_e1 = e060817terpi_n1[e060817terpi_n1<0]+5 e060817terpi_j1 = jitter_time(e060817terpi_e1,(0,5)) e060817terpi_t1 = DurbinTransform(e060817terpi_j1,(0,5)) e060817comp_test = {"cDo":Kolmogorov_D(e060817citron_e1/5), "cW2o":AndersonDarling_W2(e060817citron_e1/5), "cDt":Kolmogorov_D(e060817citron_t1), "cW2t":AndersonDarling_W2(e060817citron_t1), "tDo":Kolmogorov_D(e060817terpi_e1/5), "tW2o":AndersonDarling_W2(e060817terpi_e1/5), "tDt":Kolmogorov_D(e060817terpi_t1), "tW2t":AndersonDarling_W2(e060817terpi_t1), "TDo":"D original", "TW2o":"W2 original", "TDt":"D transformed", "TW2t":"W2 transformed", "line1":"citronellal", "line2":"terpineol"} e060817comp_out = (" {TDo:>14} {TW2o:>14}" " {TDt:>14} {TW2t:>14}\n" "{line1:<14} {cDo:>14.4f} {cW2o:>14.4f}" " {cDt:>14.4f} {cW2t:>14.4f}\n" "{line2:<14} {tDo:>14.4f} {tW2o:>14.4f}" " {tDt:>14.4f} {tW2t:>14.4f}").format(**e060817comp_test) print(e060817comp_out) The log-survivor function as well as the auto-correlation function of the inter event intervals with the two stimulations are :

We now want to build stabilizedPSTH instances corresponding to the even and odd terpineol stimulations: We can now make Fig. 5 with:
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We now consider the citronellal response of neuron 2 from data set e070528. The idea here is to compare the 6 seconds prior to stimulus presentation with the 6 seconds after. So we start by building 2 StabilizedPSTH instance corresponding to the two parts: The test figure is obtained with: def inside_domain(sample_size, n_rep=100000, coeff_list=sqrt_coef): """Computes a 95% confidence interval for the 'coverage probability' of each square-root boundary defined in the list coeff_list for a given sample size using n_rep Monte Carlo replicates.

Parameters ----------sample_size: an integer, the sample size. n_rep: an integer, the number of MC replicates. coeff_list: a list of lists. Each sub list should contain the coefficient a and b in its second and third elements, the boundary being defined by: a + b*sqrt(t). We then use this function to get the empirical coverage probabilities in a range of sample sizes: np.random.seed(20110928) samp_size_list = [25,50,75,100,250,500,750,1000,2500,5000,7500,10000] emp_CP = [inside_domain(samp_size) for samp_size in samp_size_list]

Returns -------

Empirical coverage probabilities (presented as lower and upper bounds of 95% confidence intervals) tabulated as a function of the nominal coverage probability (rows) and of the sample size (columns).

__________________________________________________________________________________________________________________

Raster plots

def raster_plot(train_list, stim_onset=None, color = 'black'): """Create a raster plot. Parameters ----------train_list: a list of spike trains (1d vector with strictly increasing elements). stim_onst: a number giving the time of stimulus onset. If specificied, the time are realigned such that the stimulus comes at 0. color: the color of the ticks representing the spikes.

Side effect: A raster plot is created. """ import numpy as np import matplotlib.pyplot as plt if stim_onset is None: stim_onset = 0 for idx,trial in enumerate(train_list):

plt.vlines(trial-stim_onset, idx+0.6,idx+1.4, color=color) plt.ylim(0.5,len(train_list))

The first raster plot is then obtained with:

The second figure with raster plots is obtained with:

2.9 Terpineol and citronellal responses of neuron 1 from e060817

We create a figure showing the SmoothStabilizedPSTH instances: