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CRITICAL MULTI-TYPE GALTON-WATSON TREES CONDITIONED TO

BE LARGE

ROMAIN ABRAHAM, JEAN-FRANÇOIS DELMAS, AND HONGSONG GUO

Abstract. Under minimal condition, we prove the local convergence of a critical multi-type
Galton-Watson tree conditioned on having a large total progeny by types towards a multi-type
Kesten’s tree. We obtain the result by generalizing Neveu’s strong ratio limit theorem for
aperiodic random walks on Z

d.

1. Introduction

In [13], Kesten gives that the local limit of a critical or subcritical Galton-Watson (GW) tree
conditioned on having a large height is an infinite GW tree (in fact a multi-type GW tree with one
special individual per generation) with a unique infinite spine, which we shall call Kesten’s tree
in the present paper. In Abraham and Delmas [2] a sufficient and necessary condition is given
for a wide class of conditionings for a critical GW tree to converge locally to Kesten’s tree un-
der minimal hypotheses on the offspring distribution. Notice that condensation may arise when
considering sub-critical GW trees, see Janson [11], Jonnson and Stefansson [12], He [8] or Abra-
ham and Delmas [1] for results in this direction. When scaling limit of multi-type GW tree are
considered, one obtains as a limit a continuous GW tree, see Miermont [16] or Gorostiza and
Lopez-Mimbela [15] (when the probability to give birth to different types goes down to 0). In
this latter case see Delmas and Hénard [6] for the limit on the conditioned random tree to have
a large height.

In the multi-type case, Pénisson [18] proved that a critical d-types GW process conditioned
on the total progeny to be large with a given asymptotic proportion per types converges locally
to a multi-type GW process (with a special individual per generation) under the condition that
the branching process admits moments of order d+ 1. Stephenson [23] gave, under exponential
moments condition, the local convergence of a multi-type GW tree conditioned on a large popu-
lation for some type towards the multi-type Kesten’s tree introduced by Kurtz, Lyons, Pemantle
and Peres [14]. The aim of this paper is to give minimal hypotheses to insure the local conver-
gence of a critical multi-type GW tree conditioned on the total progeny to be large towards the
associated multi-type Kesten’s tree, see Theorem 3.1. The minimal hypotheses are the existence
of the mean matrix which is assumed to be primitive and an aperiodic condition on the offspring
distribution. Furthermore, we exactly condition by the asymptotic proportion per types for the
total progeny of the GW tree to be given by the (normalized) left eigenvector associated with
the Perron-Frobenius eigenvalue of the mean matrix.

If the asymptotic proportion per types is not equal to the (normalized) left eigenvector associ-
ated with the Perron-Frobeniux eigenvalue of the mean matrix, then under exponential moments
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condition for the offspring distribution, it is possible to get a Kesten’s tree as local limit, see [18].
However, without exponential moments condition for the offspring distribution no results are
known, and results in [1] for the mono-type case suggests a condensation phenomenon (at least
in the sub-critical case). Conditioning large multi-type (or even mono-type) continuous GW tree
to have a large population in the spirit of [6] is also an open question.

The proof of Theorem 3.1 relies on two arguments. The first one is a generalization of Dwass
formula for multi-type GW processes given by Chaumont and Liu [5] which encodes critical or
sub-critical d-multi-type GW forests using d random walks of dimension d. The second one is
the strong ratio theorem for random walks in Z

d, see Theorem 4.7, which generalizes a result by
Neveu [17] in dimension one. The proof of the strong ratio theorem relies on a uniform version
of the d-dimensional local theorem of Gnedenko [7], see also Gnedenko and Kolmogorov [7] (for
the sum of independent random variables), Rvaceva [21] (for the sum of d-dimensional i.i.d. ran-
dom variables) or Stone [24] (for the sum of d-dimensional i.i.d. lattice or non lattice random
variables), which is given in Section 4.2, and properties of the Legendre Laplace transform of
a probability distribution. As we were unable to find those latter properties in the literature,
we give them in a general framework in Section 4.1, as we believe they might be interesting by
themselves.

The paper is organized as follows. We present in Section 2 the topology of the multi-type
trees and a sufficient and necessary condition for the local convergence of random multi-type
trees, see Corollary 2.2, the definition of multi-type GW tree with a given offspring distribution
and the aperiodicity condition on the offspring distribution, see Definition 2.6. Section 3.1 is
devoted to the main result, Theorem 3.1, and its proof. The Appendix collects results on the
Legendre Laplace transform in a general framework in Section 4.1, Gnedenko’s d-dimensional
local theorem in Section 4.2, and the strong ratio limit theorem for d-dimensional random walks
in Section 4.3.

2. Multi-type trees

2.1. General notations. We denote by N = {0, 1, 2, . . .} the set of non-negative integers and
by N

∗ = {1, 2, . . .} the set of positive integers. For d ∈ N
∗, we set [d] = {1, . . . , d} .

Let d ≥ 1. We say x = (xi, i ∈ [d]) ∈ R
d is a column vector in R

d. We write 1 = (1, . . . , 1) ∈ R
d,

0 = (0, . . . , 0) ∈ R
d and denote by ei the vector such that the i-th element is 1 and others are 0.

For vectors x = (xi, i ∈ [d]) ∈ R
d and y = (yi, i ∈ [d]) ∈ R

d, we denote by 〈x, y〉 the usual scalar

product of x and y, by xy the product
∏d
i=1 x

yi
i , by |x| =∑d

i=1 |xi| and ‖ x ‖ =
√

〈x, x〉 the L1

and L2 norms of x, and we write x ≤ y (resp. x < y) if xi ≤ yi (resp. xi < yi) for all i ∈ [d].
For any nonempty set A ⊂ R

d, we define span A as the linear sub-space generated by A
(that is span A = {∑n

i=1 αiyi; αi ∈ R, yi ∈ A, i ∈ [n], n ∈ N
∗}) and for x ∈ R

d, we denote
x+A = {x+ y; y ∈ A}.

For a random variable X and an event A, we write E[X; A] for E [X1A].

2.2. Notations for marked trees. Let d ∈ N
∗. Denote by [d] the set of types or marks, by

Û =
⋃
n≥0(N

∗)n the set of finite sequences of positive integers with the convention (N∗)0 = {∅̂}
and by U =

⋃
n≥0

(
(N∗)n × [d]

)
the set of finite sequences of positive integers with a type. For

a marked individual u ∈ U , we write u = (û,M(u)) with û ∈ Û the individual and M(u) ∈ [d]
its type or mark. Let |u| = |û| be the length or height of u defined as the integer n such that

û = (u1, . . . , un) ∈ (N∗)n. If û and v̂ are two sequences in Û , we denote by ûv̂ the concatenation
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of the two sequences, with the convention that ûv̂ = û if v̂ = ∅̂ and ûv̂ = v̂ if û = ∅̂. For u, v ∈ U ,
we denote by uv the concatenation of u and v such that ûv = ûv̂ and M(uv) = M(v) if |v| ≥ 1;
M(uv) = M(u) if |v| = 0. Let u, v ∈ U . We say that v (resp. v̂) is an ancestor of u (resp. û) and

write v 4 u (resp. v̂ 4 û) if there exists w ∈ U such that u = vw (resp. ŵ ∈ Û such that û = v̂ŵ).

A tree t̂ is a subset of Û such that:

• ∅̂ ∈ t̂.
• If û ∈ t̂, then {v̂; v̂ 4 û} ⊂ t̂.
• For every û ∈ t̂, there exists kû[t̂] ∈ N such that, for every positive integer ℓ, ûℓ ∈ t̂ iff
1 ≤ ℓ ≤ kû[t̂].

A marked tree t is a subset of U such that:

(a) The set t̂ = {û;u ∈ t} of (unmarked) individuals of t is a tree.
(b) There is only one type per individual: for u, v ∈ t, û = v̂ implies M(u) = M(v) and thus

u = v.

Thanks to (b), the number of offsprings of the marked individual u ∈ t, ku[t], corresponds to
kû[t̂]. In what follows we will deal only with marked trees and call them only trees.

Denote by ∅t = (∅̂,M(∅t)) ∈ U the root of the tree t and write ∅ instead of ∅t when the
context is clear. The parent of v ∈ t \ ∅t in t, denoted by Pav(t) is the only u ∈ t such that
|u| = |v| − 1 and u 4 v. The set of the children of u ∈ t is

Cu(t) = {v ∈ t, Pav(t) = u}.

Notice that ku[t] = Card (Cu(t)) for u ∈ t. We set ku(t) = (k
(i)
u [t], i ∈ [d]), where for i ∈ [d]

k(i)u [t] = Card ({v ∈ Cu(t); M(v) = i})

is the number of offsprings of type i of u ∈ t. We have
∑

i∈[d] k
(i)
u [t] = ku[t]. The vertex u ∈ t is

called a leaf if ku[t] = 0 and let L0(t) = {u ∈ t, ku[t] = 0} be the set of leaves of t.

We denote by T the set of marked trees. For t ∈ T, we define |t| = (|t(i)|, i ∈ [d]) with
|t(i)| = Card ({u ∈ t,M(u) = i}) the number of individuals in t of type i. Let us denote by
T0 = {t ∈ T : Card (t) < ∞} the subset of finite trees. We say that a sequence v = (vn, n ∈
N) ⊂ U is an infinite spine if vn 4 vn+1 and |vn| = n for all n ∈ N. We denote by T1 the subset
of trees which have one and only one infinite spine. For t ∈ T1, denote by vt the infinite spine
of the tree t. Let T

′
1 be the subset of T1 such that the infinite spine has infinitely many times

all the types:

T
′
1 = {t ∈ T1; ∀i ∈ [d], Card ({v ∈ vt; M(v) = i}) = ∞}.

The height of a tree t is defined by H(t) = sup{|u|, u ∈ t}. For h ∈ N, we denote by

T
(h) = {t ∈ T;H(t) ≤ h} the subset of marked trees with height less than or equal to h.

2.3. Convergence determining class. For h ∈ N, the restriction function rh from T to T

is defined by rh(t) = {u ∈ t, |u| ≤ h}. We endow the set T with the ultra-metric distance

d(t, t′) = 2−max{h∈N,rh(t)=rh(t
′)}. The Borel σ-field associated with the distance d is the smallest

σ-field containing the singletons for which the restrictions (rh, h ∈ N) are measurable. With this
distance, the restriction functions are continuous. Since T0 is dense in T and (T, d) is complete,
we get that (T, d) is a Polish metric space.

Let t, t′ ∈ T and x ∈ L0(t). If the type of the root of t′ is M(x), we denote by

t⊗ (t′, x) = t ∪ {xv, v ∈ t′}
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the tree obtained by grafting the tree t′ on the leaf x of the tree t; otherwise, let t⊗ (t′, x) = t.
Then we consider

T(t, x) = {t ⊗ (t′, x), t′ ∈ T}
the set of trees obtained by grafting a tree on the leaf x of t. It is easy to see that T(t, x) is
closed and also open.

Set F = {T(t, x); t ∈ T0, x ∈ L0(t) and M(∅t) = M(x)}∪ {{t}; t ∈ T0}. Following the proof
of Lemma 2.1 in [2], it is easy to get the following result.

Lemma 2.1. The family F is a convergence determining class on T0 ∪ T
′
1.

We deduce the following corollary.

Corollary 2.2. Let (Tn, n ∈ N
∗) and T be random variables taking values in T0

⋃
T
′
1. Then the

sequence (Tn, n ∈ N
∗) converges in distribution towards T if and only if we have for all t ∈ T0

limn→+∞ P(Tn = t) = P(T = t) and for all x ∈ L0(t) such that M(∅t) = M(x):

lim
n→+∞

P(Tn ∈ T(t, x)) = P(T ∈ T(t, x)).

2.4. Aperiodic distribution. Let us consider a probability distribution F = (F (x), x ∈ Z
d)

on Z
d. In order to avoid degenerate cases, we assume that there exists x0 ∈ Z

d such that:

(1) 0 < F (x0) < 1.

Denote by supp (F ) = {x ∈ Z
d, F (x) > 0} the support set of F .

Definition 2.3. A distribution F on Z
d is called aperiodic if it has the property that for each

x ∈ Z
d, the smallest subgroup of Zd which contains the set x+ supp (F ) is Z

d itself.

Remark 2.4. An aperiodic distribution is called strongly aperiodic in [22, p.42].

Let x0 ∈ supp (F ) and denote by R0 the smallest subgroup of Zd that contains −x0+supp (F ).
The following lemma is elementary.

Lemma 2.5. The subgroup R0 does not dependent on x0, and F is aperiodic if and only if
R0 = Z

d.

Proof. For x ∈ Z
d, let Gx be the smallest subgroup of Zd that contains −x + supp (F ). Let

z ∈ Gx0 . There exists n, n′ ∈ N and yi, y
′
i ∈ supp (F ) for all i ∈ N

∗ such that
∑n

i=1(yi − x0) −∑n′

i=1(y
′
i − x0) = z. This implies that {n′x0 +

∑n
i=1 yi} − {nx0 +

∑n′

i=1 y
′
i} = z. We deduce that

for all x ∈ Z
d, {n′(x0 − x) +

∑n
i=1(yi − x)} − {n(x0 − x) +

∑n′

i=1(y
′
i − x)} = z. This gives that z

belongs to Gx. In particular we deduce that Gx = Gx0 for any x ∈ supp (F ). This implies that
R0 does not depend on x0. Furthermore R0 = Z

d implies that Gx = Z
d for all x ∈ Z

d, that is F
is aperiodic. Clearly if F is aperiodic then R0 = Z

d. �

2.5. Multi-type offspring distribution. We define a multi-type offspring distribution p of d
types as a sequence of probability distributions: p = (p(i), i ∈ [d]), with p(i) = (p(i)(k), k ∈ N

d)

a probability distribution on N
d. Denote by f = (f (1), . . . , f (d)) the generating function of the

offspring distribution p, i.e. for i ∈ [d] and s ∈ [0, 1]d:

(2) f (i)(s) = E[sXi ],

with Xi = (X
(j)
i , j ∈ [d]) a random variable on Nd with distribution p(i). Denote by mij =

∂sjf
(i)(1) = E[X

(j)
i ] ∈ [0,+∞] the expected number of offsprings with type j of a single individual

of type i. Denote by M the mean matrix M = (mij ; i, j ∈ [d]) and set (m
(n)
ij ; i, j ∈ [d]) = Mn

for n ∈ N
∗. Following [3, p.184], we say that:



CRITICAL MULTI-TYPE GALTON-WATSON TREES CONDITIONED TO BE LARGE 5

- p is non-singular if f(s) 6=Ms.
- M is finite if mij < +∞ for all i, j ∈ [d].

- M is primitive if M is finite and there exists n ∈ N
∗ such that for all i, j ∈ [d], m

(n)
ij > 0.

By Frobenius theorem, see [3, p.185], if M is primitive, then M has a unique maximal (for
the modulus in C) eigenvalue ρ. Furthermore ρ is simple, positive (ρ ∈ (0,+∞)), and the
corresponding right and left eigenvectors can be chosen positive. If ρ = 1 (resp. ρ > 1, ρ < 1),
we say that the offspring distribution and the associated multi-type GW tree are critical (resp.
supercritical, subcritical).

Recall the definition of an aperiodic distribution given in Definition 2.3.

Definition 2.6. Let p = (p(i), i ∈ [d]) be an offspring distribution and let xi ∈ supp (p(i)) for all

i ∈ [d]. We say that p is aperiodic, if the smallest subgroup of Zd that contains −xi+ supp (p(i))
for all i ∈ [d] is Z

d.

According to Lemma 2.5, we get that the definition of aperiodic offspring distribution does
not depend on the choice of xi ∈ supp (p(i)).

For an offspring distribution p, we shall consider the following assumptions:

(H1) The mean matrix M of p is primitive, and p is critical and non-singular.

(H2) The offspring distribution p is aperiodic.

2.6. Multi-type Galton-Watson tree and Kesten’s tree. We define the multi-type GW
tree τ with offspring distribution p.

Definition 2.7. Let p be an offspring distribution of d types and α a probability distribution on
[d]. A T-valued random variable τ is a multi-type GW tree with offspring distribution p and root

type distribution α, if for all h ∈ N, t ∈ T
(h), we have:

Pα(rh(τ) = t) = α(M(∅t))
∏

u∈t,|u|<h

k
(1)
u [t]! · · · k(d)u [t]!

ku[t]!
p(M(u))(ku(t)).

We deduce from the definition that for t ∈ T0, we have

Pα(τ = t) = α(M(∅t))
∏

u∈t

k
(1)
u [t]! · · · k(d)u [t]!

ku[t]!
p(M(u))(ku(t)).

The multi-type GW tree enjoys the branching property: an individual of type i generates children
according to p(i) independently of any born individual, for i ∈ [d].

Let p be an offspring distribution of d types such that (H1) holds. Denote by a∗ (resp. a)
the right (resp. left) positive normalized eigenvector of M such that 〈a,1〉 = 〈a, a∗〉 = 1. Notice
that a is a probability distribution on [d]. The corresponding size-biased offspring distribution
p̂ = (p̂(i), i ∈ [d]) is defined by: for i ∈ [d] and k ∈ N

d,

(3) p̂(i)(k) =
〈k, a∗〉
a∗i

p(i)(k).

Definition 2.8. Let p be an offspring distribution of d types whose mean matrix is primitive
and let α be a probability distribution on [d]. A multi-type Kesten’s tree τ∗ associated with the
offspring distribution p and root distribution α is defined as follows:

- Marked individuals are normal or special.
- The root of τ∗ is special and its type has distribution α.
- A normal individual of type i ∈ [d] produces only normal individuals according to p(i).
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- A special individual of type i ∈ [d] produces children according to p̂(i). One of those
children, chosen with probability proportional to a∗j where j is its type, is special. The

others (if any) are normal.

Notice that the multi-type Kesten’s tree is a multi-type GW tree (with 2d types). The indi-
viduals which are special in τ∗ form an infinite spine, say v∗, of τ∗; and the individuals of τ∗\v∗

are normal.
Let r ∈ [d]. We shall write Pr(dτ), resp. Pr(dτ

∗), for the distribution of τ , resp. τ∗, when
the type of its root is r (that is α = δr the Dirac mass at r). From [14], we get that for h ∈ N,

t ∈ T
(h) with M(∅t) = r, and x ∈ L0(t) with |x| = h and M(x) = i:

(4) Pr(rh(τ
∗) = t, v∗h = x) =

a∗i
a∗r

Pr(rh(τ) = t).

Notice that if M is primitive and p is critical or sub-critical, then a.s. Kesten’s tree τ∗ belongs
to T1. The next lemma asserts that there are infinitely many individuals of all types on the
infinite spine.

Lemma 2.9. Let p be an offspring distribution of d types satisfying (H1) and α a probability
distribution on [d]. Then a.s. the multi-type Kesten tree τ∗ belongs to T

′
1.

Proof. Recall that a∗ = (a∗i , i ∈ [d]) is the normalized right eigenvalue ofM such that 〈a∗, a〉 = 1.
By construction, the sequence (M(v∗n), n ∈ N) is a Markov chain on [d] and transition matrix
Q = (Qi,j, i, j ∈ [d]) given by

Qi,j = P(M(v∗1) = j|M(v∗0) = i) =
∑

k=(k1,...,kd)∈Nd

kja
∗
j

〈k, a∗〉 p̂
(i)(k) =

a∗j
a∗i
mi,j,

where we used (3) for the definition of p̂ and the definition of the mean matrix M for the last
equality. Since a∗ is positive andM is primitive, we deduce that Q is also primitive. This implies
that the Markov chain (M(v∗n), n ∈ N) is recurrent on [d] and hence it visits a.s. infinitely many
times all the states of [d]. �

The next lemma will be used in the proof of the Theorem 3.1. In the next lemma, we shall
consider a leaf x of a finite tree t with type i and the root of type r. However, we will only use
the case i = r in the proof of the Theorem 3.1.

Lemma 2.10. Let p be an offspring distribution of d types satisfying (H1) and r ∈ [d]. Let τ
be a GW tree with offspring distribution p and τ∗ be a Kesten’s tree associated with p. For all
t ∈ T0 with M(∅t) = r, x ∈ L0(t) with M(x) = i ∈ [d], and k ∈ N

d such that k ≥ |t|, we have:

(5) Pr(τ ∈ T(t, x)
∣∣ |τ | = k) =

a∗r
a∗i

Pi(|τ | = k − |t|+ ei)

Pr(|τ | = k)
Pr(τ

∗ ∈ T(t, x)).

Proof. Since τ∗ has a unique infinite spine v∗ and t ∈ T0, we deduce that τ∗ ∈ T(t, x) implies
that x belongs to v∗ and we get in the same spirit of (4) that:

(6) Pr(τ
∗ ∈ T(t, x)) =

a∗i
a∗r

Pr(τ ∈ T(t, x)).
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We have, following the ideas of [2]:

Pr(τ ∈ T(t, x), |τ | = k) =
∑

t′∈T0

Pr(τ = t⊗ (t′, x))1{|t⊗(t′,x)|=k}

=
∑

t′∈T0

Pr(τ ∈ T(t, x))Pi(τ = t′)1{|t⊗(t′,x)|=k}

= Pr(τ ∈ T(t, x))
∑

t′∈T0

Pi(τ = t′)1{|t′|=k−|t|+ei}

= Pr(τ ∈ T(t, x))Pi(|τ | = k − |t|+ ei),

where we used the branching property of the multi-type GW tree for the second equality. Use
(6) to deduce (5). �

3. Main results

3.1. Conditioning on the total population size. Recall that under (H1), we denote by
a = (aℓ, ℓ ∈ [d]) and a∗ = (a∗ℓ , ℓ ∈ [d]) the normalized left and right eigenvectors of the mean
matrix M associated with the eigenvalue ρ = 1 such that 〈a, a∗〉 =∑ ai = 1.

Theorem 3.1. Assume that (H1) and (H2) hold. Let (k(n), n ∈ N
∗) be a sequence of N

d

satisfying limn→∞ |k(n)| = +∞ and limn→∞ k(n)/|k(n)| = a. Let τ be a random GW tree with
critical offspring distribution p and τn be distributed as τ conditionally on {|τ | = k(n)}. Then
the sequence (τn, n ∈ N

∗) converges in distribution to the Kesten’s tree τ∗ associated with p.

Remark 3.2. Let τ be a critical GW tree with offspring distribution p satisfying (H1). We can

consider τ conditionally on the event the population of type i, |τ (i)|, is large. According to

Proposition 4 in [16], the random variable |τ (i)| is distributed as the total number of vertices
of a critical mono-type GW tree under Mτ (∅) = i, or as the total number of vertices of a
random number of independent mono-type critical GW trees with the same distribution un-
der Mτ (∅) 6= i. In particular, we deduce from [2] that, if p(i) is aperiodic, the key equality

limn→+∞ P(|τ (i)| = n− b)/Pr(|τ (i)| = n) = 1 holds for any b ∈ Z. And following the proof of

Theorem 3.1 after Equation (15), we easily get that τ conditioned on |τ (i)| being large converges
locally to Kesten’s tree. See [23] for a detailed proof.

Remark 3.3. The local convergence of a multi-type critical GW tree τ conditioned on the number
of vertices of one fixed type being large to a Kesten’s tree has been proved in [23]. It would be
easy to extend Theorem 3.1, with the same minimal conditions (H1) and (H2) to a conditioning
on an asymptotic proportion per types for d′ types, with d′ < d by using the constructions from
[19] or from [16]. The idea is to map a multi-type GW tree τ with d types onto another GW
tree τ ′ with d′ < d types and offspring distribution p′ so that the size of the population of types
1 to d′ of τ and τ ′ are the same. Then the key Equation (15) is now replaced by the one for τ ′

which holds if the offspring distribution p′ satisfies (H1) and (H2). Then the proof follows as in
the proof of Theorem 3.1 after Equation (15).

Remark 3.4. Theorem 3.1 can be used to extend results of [1] on mono-type GW tree in the
following sense. Let τ be a mono-type critical GW tree (that is d = 1) with offspring distribution
q. Assume that q(0)+ q(1) < 1 to avoid degenerated case and that q is aperiodic. Let A1, . . . , Ad
be pairwise disjoint subsets of N such that q(Ai) > 0 for all i ∈ [d] and for simplicity assume∑

i∈[d] q(Ai) = 1. (If this latter case is not satisfied, set Ad+1 = N\⋃i∈[d]Ai, and then use

the restriction method presented in Remark 3.3.) In order to avoid degenerated cases, we shall
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assume that q(Ai) > q(0) if 0 ∈ Ai (i.e. 0 ∈ Ai and there exists ℓ ∈ Ai such that ℓ > 0 and
q(ℓ) > 0).

Then consider artificially that τ is a d dimensional multi-type GW tree, by saying that an
individual u ∈ τ is of type i if the number of offspring of u lies in Ai. Notice that the corresponding
offspring distribution p = (p(i), i ∈ [d]) is defined as follows: for k = (k1, . . . , kd) ∈ N

d,

p(i)(k) = 1{|k|∈Ai}
q(|k|)
q(Ai)

|k|!∏
i∈[d] ki!

∏

j∈[d]

q(Aj)
kj ,

where we recall that |k| =∑i∈[d] ki. Since q(Ai) > q(0) if 0 ∈ Ai, we deduce the mean matrix is

positive and thus primitive. Its Perron-Frobenius eigenvalue is 1 since τ is a critical mono-type
GW tree which implies that it is also a critical multi-type GW tree. We get the condition (H1)
holds. Notice (H2) holds as q is aperiodic. One can easily check that the (normalized) left
eigenvector associated with the Perron-Frobenius eigenvalue is (q(Ai), i ∈ [d]).

For simplicity we shall design the corresponding multi-type GW tree by τ . In particular |τ (i)|
denotes the number of individuals in τ with number of children in Ai, and |τ | = (|τ (i)|, i ∈ [d]).
So we easily deduce from Theorem 3.1 that if (k(n), n ∈ N

∗) is a sequence of N
d satisfying

limn→∞ ki(n)/|k(n)| = q(Ai) for i ∈ [d] with limn→+∞ |k(n)| = +∞, then τn, which is distributed
as τ conditionally on {|τ | = k(n)}, converges in distribution to the (mono-type) Kesten’s tree τ∗

associated with q.
If we condition on an asymptotic proportion different from (q(Ai), i ∈ [d]) then it is possible

to use Remark 3.5 see also the Remark 3.6 for explicit computation in the binary case.

Remark 3.5. The change of offspring distribution given in Section 1.4 of [18], when it exits, allows
to extend Theorem 3.1 to sub-critical multi-type GW trees. In order to consider an asymptotic
proportion per types different from the one given by the (normalized) left eigenvector associated
with the Perron-Frobenius eigenvalue, one has to change the offspring distribution, see Theorem
3 of [18]. However, this requires exponential moments for the offspring distribution.

Remark 3.6. As an example, we consider the local convergence of binary GW tree conditioned
to have large population of nodes of out-degree in {0, 1} or in {2}. In particular, we shall see
that the distribution of the limiting Kesten’s tree depends only on the asymptotic ratio of the
number of nodes of out-degree in {0, 1} or in {2}.

Let q be an offspring distribution on {0, 1, 2} such that q(0)+q(1)+q(2) = 1 and q(0)q(1)q(2) >
0 (we don’t assume that q is critical, sub-critical or super-critical). Set A1 = {0, 1} and A2 = {2}.
Let τq be a mono-type GW tree with binary offspring q. For i ∈ [2], let |τ (i)| be the number of
individuals in τ with number of children in Ai. For k = (k1, k2) ∈ (N∗)2, let τq,k be distributed

as τq conditionally on {|τ (i)| = ki, i ∈ [2]}.
Let δ ∈ [1,+∞]. (The cases δ = 1 and δ = +∞ will be degenerated.) We define an offspring

distribution qδ on {0, 1, 2} as follows:

qδ(0) = qδ(2) =
1

δ + 1
and qδ(1) =

δ − 1

δ + 1
·

Notice that qδ is critical and depends only on δ and not on the original offspring distribution q.
Let τ∗δ be the Kesten’s tree associated with qδ.

Then using Remarks 3.4 and 3.5, it is easy to check that the sequence (τq,k(n), n ∈ N
∗), such

that limn→+∞ |k(n)| = +∞ and limn→+∞ k1(n)/k2(n) = δ (and require k1(n) > k2(n) in the
degenerated case δ = 1), converges in distribution towards the Kesten’s tree τ∗δ . In particular
the distribution of the limit depends on the proportion in the conditioning event and not on the
initial offspring distribution.
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3.2. Proof of Theorem 3.1. Assume that (H1) holds. Let τ be a random GW tree with critical
offspring distribution p. For i, j ∈ [d], we define the total number of individuals of type i whose
parent is of type j:

Bij = Card ({u ∈ τ, M(u) = i and M(Pa(u)) = j}) .
And we set B = (Bij ; i, j ∈ [d]). Notice that

∑
j∈[d]Bij = |τ (i)|.

Let (Xi,ℓ; ℓ ∈ N
∗) for i ∈ [d] be d independent families of independent random variables in N

d

with Xi,ℓ having probability distribution p(i). For i ∈ [d], we consider the random walk Si,n =
n∑
ℓ=1

Xi,ℓ for n ∈ N
∗ with Si,0 = 0. For k = (k1, . . . , kd) ∈ N

d, we set Sk =
∑

i∈[d] Si,ki . We adopt

the following convention for a d-dimensional random variable X to write X = (X(j), j ∈ [d]),

so that we have in particular S
(j)
i,n =

n∑
ℓ=1

X
(j)
i,ℓ . For k ∈ N

d and r ∈ [d], we define the matrix

S(k, r) = (Sij(k, r); i, j ∈ [d]) of size d× d by:

(7) Sij(k, r) = −S(j)
i,ki

+ (S
(j)
k + 1{r=i})1{i=j}.

The following corollary is a direct consequence of the representation of Chaumont and Liu [5]
for multi-type GW process, which is the generalization of Dwass formula to the multi-type case.

Corollary 3.7. Assume that (H1) holds. Let τ be a random GW tree with critical offspring
distribution p. For r ∈ [d] and k ∈ (N∗)d, we have:

Pr(|τ | = k) =
1∏

i∈[d] ki
E [det(S(k, r)); Sk + er = k] .

Proof. For κ = (κij ; i, j ∈ [d]) ∈ N
d×d, we denote, for j ∈ [d], by κj the column vector (κij , i ∈

[d]). We deduce from Theorem 1.2 in [5] that, for r ∈ [d], k = (k1, . . . , kd) ∈ (N∗)d, κ = (κij ; i, j ∈
[d]) ∈ N

d×d such that

(8) k = er +
∑

j∈[d]

κj ,

we have:

(9) Pr(B = κ) = det(∆(k)− κ)
∏

j∈[d]

P(Sj,kj = κj)

kj
,

where ∆(k) is the d× d diagonal matrix with diagonal k. Because of (8), we have:

(10) Pr(|τ | = k, B = κ) = Pr(B = κ).

Thanks to the definition of S(k, r), we have ∆(k) − κ = S(k, r) on
⋂
j∈[d]

{
Sj,kj = κj

}
. By

summing (10) and thus (9) over all the possibles values of κ such that (8) holds, we get:

Pr(|τ | = k) =
∑

κ

Pr(B = κ)1{k=er+
∑

j∈[d] κj}

=
1∏

j∈[d] kj

∑

κ

det(∆(k)− κ)1{k=er+
∑

j∈[d] κj}
P(∀j ∈ [d], Sj,kj = κj)

=
1∏

i∈[d] ki
E [det(S(k, r)); er + Sk = k] .

�
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In order to compute the determinant det(S(k, r)), instead of using a development based on
permutations, we shall use a development based on elementary forests, see Lemma 4.5 in [5] and
Formula (11) below. (As we are interested in computing the determinant of a matrix whose all
lines but one sum up to 0, we shall only consider forests reduced to one tree.)

Recall 1 = (1, . . . , 1) ∈ R
d. For r ∈ [d], we consider Tr the subset of T0 of trees with root of

type r, having exactly d individuals all of them with a distinct type:

Tr = {t ∈ T0; |t| = 1, and M(∅t) = r}.

For t ∈ Tr and j ∈ [d] \ {r}, let jt denote the type of the parent of the individual of type j:
jt = M(Pa(uj)), where uj is the only element of t such that M(uj) = j. We shall use the
following formula to give asymptotics on det(S(k, r)).

Lemma 3.8. For r ∈ [d] and k ∈ (N∗)d, we have:

det(S(k, r)) =
∑

t∈Tr

∏

j∈[d]\{r}

S
(j)
jt,kjt

.

Proof. We follow the presentation of [5]. We say that a collection of trees is a forest. A forest
f = (tj , j ∈ J) is called elementary if the trees are pairwise disjoint and if the forest contains
exactly one individual of each type, that is

∑
j∈J |tj| = 1. Let F denote the set of elementary

forests. For f ∈ F, set ui the individual in f of type i, which belongs to a tree of f say tj, and
write if = M(v) for the type of the parent v = Paui(tj) of ui if |ui| > 0 and if = 0 if |ui| = 0.

According to Lemma 4.5 in [5], we have for κ = (κij ; i, j ∈ [d]) ∈ R
d×d

(11) det(κ) = (−1)d
∑

f∈F

∏

j∈[d]

κjf ,j,

with the convention that κ0,j = −∑i∈[d] κij .

Thanks to Definition (7) of S(k, r), this implies that for r ∈ [d] and k ∈ (N∗)d, we have:

(12) det(S(k, r)) =
∑

f∈F

∏

j∈[d]

S
(j)
jf ,kjf

,

with the convention that if jf = 0, then S
(j)
jf ,kjf

= 1{j=r}. Notice that
∏
j∈[d] S

(j)
jf ,kjf

= 0 if the

forest f is not reduced to a single tree whose root is of type r. To conclude, use that jf = jt if
the forest f is reduced to a single tree t. �

Let (X̃i,ℓ; ℓ ∈ N
∗, i ∈ [d]) be a sequence of random variables independent of (Xi,ℓ; ℓ ∈ N

∗, i ∈
[d]) with the same distribution.

For a finite subset K of N, we shall consider partitions A(ℓ,K) = (AK1 , . . . , A
K
ℓ ) of K such that

inf AK1 < · · · < inf AKℓ . For t ∈ Tr, i ∈ [d], recall that ui is the individual in t of type i. Denote
by Ci(t) = {j ∈ [d]; jt = i} the set of types of the children of ui in t. Let At be the family of

all A = (m, (A(mi,Ci(t))), i ∈ [d]), with m = (m1, . . . ,md) ∈ N
d such that 1 ≤ mi ≤ Card (Ci(t))

for all i ∈ [d] such that Card (Ci(t)) > 0. For convenience, we may write mA for m. With this
notation, we set:

S̃mA
=
∑

i∈[d]

mi∑

ℓ=1

X̃i,ℓ, G(A) =
∏

i∈[d]

mi∏

ℓ=1

∏

j∈A
Ci(t)

ℓ

X̃
(j)
i,ℓ ,
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with the convention that
∑

∅ = 0 and
∏

∅ = 1, and for k = (k1, . . . , kd) ∈ N
d such that ki ≥ d

for all i ∈ [d]:

Bk(mA) =
∏

i∈[d]

ki!

(ki −mi)!
·

Since X̃i,ℓ for i ∈ [d], ℓ ∈ N
∗ takes values in N

d and
∑

i∈[d]

∑mi
ℓ=1 Card (A

Ci(t)
ℓ ) = d−1, we deduce

that:

(13) 0 ≤ G(A) ≤
∣∣∣S̃mA

∣∣∣
d
.

We have the following result.

Corollary 3.9. For r ∈ [d] and k ∈ (N∗)d such that k ≥ d1, we have:

E [det(S(k, r)); Sk = b] =
∑

t∈Tr

∑

A∈At

Bk(mA)E
[
G(A); S̃mA

+ Sk−mA
= b
]
.

Proof. For r ∈ [d], t ∈ Tr, and k ∈ (N∗)d, we have:

∏

j∈[d]\{r}

S
(j)
jt,kjt

=
∏

i∈[d]

∏

j∈Ci(t)

ki∑

ℓ=1

X
(j)
i,ℓ .

Using the exchangeability of (Xi,ℓ; ℓ ∈ N
∗) for all i ∈ [d], we easily get for b, k ∈ (N∗)d such that

k ≥ d1:

E


 ∏

j∈[d]\{r}

S
(j)
jt,kjt

; Sk = b


 =

∑

A∈At

Bk(mA)E
[
G(A); S̃mA

+ Sk−mA
= b
]
.

Then use Corollary 3.7 and Lemma 3.8 to conclude. �

The next lemma is an extension of the strong ratio limit theorem given in [1]. Its proof is
postponed to Section 3.3. Recall that a is the normalized left eigenvector of the mean matrix M .

Lemma 3.10. Assume that (H1) and (H2) hold. Let G and H be two random variables in N

and N
d respectively, independent of (Xi,ℓ; ℓ ∈ N

∗, i ∈ [d]) and such that P(G = 0) < 1 and a.s.

G ≤ |H|d.
Set (k(n), n ∈ N

∗) and (sn, n ∈ N
∗) be two sequences in N

d satisfying limn→∞ |k(n)| = +∞
and limn→∞ k(n)/|k(n)| = limn→∞ sn/|k(n)| = a. Then for any given m, b ∈ N

d, we have:

lim
n→∞

E[G; H + Sk(n)−m = sn − b]

E[G; H + Sk(n) = sn]
= 1.

Notice that no moment condition is assumed for G or H.
Let b ∈ N

d such that k ≥ b+ 1. We have using Corollary 3.9:

(14)

∏
i∈[d](ki − bi)∏

i∈[d] ki

Pr(|τ | = k − b)

Pr(|τ | = k)

=
E [det(S(k − b, r)); Sk−b + er = k − b]

E [det(S(k, r)); Sk + er = k]

=

∑
t∈Tr

∑
A∈At

Bk−b(mA)E
[
G(A); S̃mA

+ Sk−b−mA
= k − b− er

]

∑
t∈Tr

∑
A∈At

Bk(mA)E
[
G(A); S̃mA

+ Sk−mA
= k − er

] ·
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Assume (H1) and (H2) hold. Let (k(n), n ∈ N
∗) be a sequence in N

d such that limn→∞ |k(n)| =
+∞ and limn→∞ k(n)/|k(n)| = a. Since P(G(A) = 0) < 1 and thanks to (13), we deduce from
Lemma 3.10 that:

lim
n→+∞

E

[
G(A); S̃mA

+ Sk(n)−b−mA
= k(n)− b− er

]

E

[
G(A); S̃mA

+ Sk(n)−mA
= k(n)− er

] = 1.

We also have:

lim
n→+∞

Bk(n)−b(mA)

Bk(n)(mA)
= 1.

Since all the terms in (14) are non-negative, and limn→+∞
∏
i∈[d](ki(n)−bi)/ki(n) = 1, we deduce

that:

(15) lim
n→+∞

Pr(|τ | = k(n)− b)

Pr(|τ | = k(n))
= 1.

Then, using Lemmas 2.10 (with i = r in (5)), we obtain that for all r ∈ [d], t ∈ T0 and x ∈ L0(t)
such that M(x) = r: limn→+∞ Pr(τn ∈ T(t, x)) = Pr(τ

∗ ∈ T(t, x)). Of course we have for n
large enough and t ∈ T0 that Pr(τn = t) = 0 = Pr(τ

∗ = t). We deduce from Corollary 2.2 that
(τn, n ∈ N

∗) converges in distribution towards τ∗ under Pr for all r ∈ [d]. This also implies that
the convergence in distribution holds under Pα for any probability distribution α on [d] of the
type of the root.

3.3. Proof of Lemma 3.10. We assume (H1). In particular, this implies that P(Xi,1 = 0) > 0
for some i ∈ [d]. Without loss of generality, we can assume this holds for i = d: P(Xd,1 = 0) > 0.

Recall that a is the normalized left eigenvector of the mean matrix M such that |a| = 1.
In particular a is a probability on [d]. Set vd = 0 ∈ N

d−1 and for i ∈ [d − 1], set vi =

(v
(1)
i , . . . , v

(d−1)
i ) ∈ N

d−1 such that v
(j)
i = 1{j=i} for j ∈ [d − 1]. Let Y = (U, V ) be a random

variable in N
d×N

d−1 such that for i ∈ [d], P(V = vi) = ai, and the distribution of U conditionally

on {V = vi} is p(i).
Recall Definition 2.3 of aperiodic probability distribution.

Lemma 3.11. Under (H2), the distribution of Y on Z
2d−1 is aperiodic.

Proof. Let F be the probability distribution of Y . Notice that P(Y = 0) ≥ P(Xd,1 = 0)P(V =
vd) > 0. Since 0 ∈ supp (F ), according to Lemma 2.5, the probability distribution F is aperiodic
if and only if the smallest subgroup that contains the support of F is Z

2d−1 itself. Let z ∈ Z
d

and v = (v(1), . . . , v(d−1)) ∈ Z
d−1. To prove that F is aperiodic, we have to find n, n′ ∈ N

∗ and
y1, . . . , yn and y′1, . . . , y

′
n′ in supp (F ) such that:

n∑

ℓ=1

yℓ −
n′∑

ℓ=1

y′ℓ =

(
z
v

)
.

For i ∈ [d], let xi ∈ supp (p(i)). Set v(d) = 0. We deduce from (H2) that for all z
′ ∈ Z

d, there
exists k = (k1, . . . , kd) and k = (k′1, . . . , k

′
d) in N

d, (xi,ℓ, ℓ ∈ N
∗) and (x′i,ℓ, ℓ ∈ N

∗) elements of

supp (p(i)) such that:

∑

i∈[d]

ki∑

ℓ=1

(xi,ℓ − xi)−
∑

i∈[d]

k′i∑

ℓ=1

(x′i,ℓ − xi) = z′.
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For a ∈ R, let a+ = max(a, 0) and a− = max(−a, 0). Taking z′ = z −∑d
i=1 v

(i)xi, we get:

∑

i∈[d]

ki∑

ℓ=1

xi,ℓ +
∑

i∈[d]

(k′i + v
(i)
+ )xi


−


∑

i∈[d]

k′i∑

ℓ=1

x′i,ℓ +
∑

i∈[d]

(ki + v
(i)
− )xi


 = z.

We deduce:
∑

i∈[d]

ki∑

ℓ=1

(
xi,ℓ
vi

)
+
∑

i∈[d]

(k′i + v
(i)
+ )

(
xi
vi

)
−


∑

i∈[d]

k′i∑

ℓ=1

(
x′i,ℓ
vi

)
+
∑

i∈[d]

(ki + v
(i)
− )

(
xi
vi

)
 =

(
z
v

)
.

To conclude, notice that (xi,ℓ,vi), (x
′
i,ℓ,vi) as well as (xi,vi) belong to supp (F ) for all i ∈ [d]. �

The next lemma is an extension of Theorem 4.7.

Lemma 3.12. Let F be a probability distribution on N
d′ which is aperiodic on Z

d′. Let (Yn, n ∈
N
∗) be independent random variables distributed according to F and set Wn =

∑n
ℓ=1 Yℓ for

n ∈ N
∗. Assume that E[|Y1|] < +∞. Let G and H ′ be two random variables in N and N

d′

respectively and independent of (Yn, n ∈ N
∗) such that P(G = 0) < 1 and a.s. G ≤ |H ′|c for

some c ≥ 1. Let (wn, n ∈ N
∗) be a sequence of Nd

′

such that limn→+∞wn/n = E[Y1]. Then for

any given ℓ ∈ N and b ∈ N
d′, we have:

(16) lim
n→∞

E[G; H ′ +Wn−ℓ = wn − b]

E[G; H ′ +Wn = wn]
= 1.

Proof. Since F is aperiodic and by elementary arithmetic consideration, it is enough to prove
(16) for ℓ = 1 and b ∈ N

d′ satisfying p = P(Y1 = b) > 0. Let ε > 0. Using similar arguments as
in (39), we get: ∣∣∣E[G; H

′ +Wn−1 = wn − b]

E[G; H ′ +Wn = wn]
− 1
∣∣∣ ≤ ε

p
+
Rn
p
,

and

Rn =
E
[
G; |Nn

n − p| > ε, H ′ +Wn = wn
]

E[G;H ′ +Wn = wn]
,

with Nn =
∑n

ℓ=1 1{Yℓ=b}. Choose g ∈ N
∗ and h ∈ N

d′ such that q = P(G = g,H ′ = h) > 0. We
have:

Rn ≤
|wn|c P

(∣∣∣Nn
n − p

∣∣∣ > ε
)

gqP(Wn = wn − h)
≤ |wn|c 2 e−2nε2

gqP(Wn = wn − h)
,

where we used G ≤ |H ′|c a.s. and that H ′+Wn = wn implies H ′ ≤ wn for the first inequality, and
inequality (40) in the Appendix for the second. Notice that for all ε′ > 0 we have |wn|c ≤ exp(ε′n)
for n large enough.

Then use Lemma 4.9 and Remark 4.8 to conclude that if limn→+∞wn/n = E[Y1], then

limn→+∞Rn = 0. Since ε > 0 is arbitrary, we get limn→+∞

∣∣∣E[G;H′+Wn−1=wn−b]
E[G;H′+Wn=wn]

− 1
∣∣∣ = 0,

which gives the result. �

For x ∈ R
d and z = (z1, . . . , zd) ∈ R

d, we set δ(x, z) = (x, z1, . . . , zd−1).
We consider (Yℓ, ℓ ∈ N

∗) independent random variables distributed as Y . We set Wn =∑n
ℓ=1 Yℓ. Let s ∈ N

d and k ∈ (N∗)d. We have:

(17) P
(
W|k| = δ(s, k)

)
= D(k)P(Sk = s) with D(k) =

|k|!∏
i∈[d] ki!

∏

i∈[d]

ai
ki .
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Recall G and H given in Lemma 3.10. We set H ′ = δ(H, 0) ∈ N
2d−1. We get for k, m, s and

b in N
d:

(18)
E[G; H + Sk−m = s− b]

E[G; H + Sk = s]
=

D(k)

D(k −m)

E[G; H ′ +W|k|−|m| = δ(s, k) − δ(b,m)]

E[G; H ′ +W|k| = δ(s, k)]
·

Thanks to Lemma 3.11 and (H2), the distribution of Y on Z
2d−1 is aperiodic. Since 0 ≤ G ≤

|H|d, we also have 0 ≤ G ≤ |H ′|d and P(G = 0) < 1. Let (k(n), n ∈ N
∗) and (sn, n ∈ N

∗) be two
sequences in N

d satisfying limn→∞ |k(n)| = +∞ and limn→∞ k(n)/|k(n)| = limn→∞ sn/|k(n)| =
a. Notice, this implies that limn→∞ δ(sn, k(n))/|k(n)| = E[Y1]. We deduce from Lemma 3.12
that:

lim
n→+∞

E[G; H ′ +W|k(n)|−|m| = δ(sn, k(n))− δ(b,m)]

E[G; H ′ +W|k(n)| = δ(sn, k(n))]
= 1.

Then notice that limn→+∞D(k(n))/D(k(n) − m) = 1 as limn→+∞ k(n)/|k(n)| = a. And use
(18) to get:

lim
n→∞

E[G; H + Sk(n)−m = sn − b]

E[G; H + Sk(n) = sn]
= 1.

This ends the proof of Lemma 3.10.

4. Appendix

4.1. Preliminary results. For x ∈ R
d and δ ≥ 0, let B(x, δ) be the open ball of Rd centered

at x with radius δ. For any non-empty subset A of Rd, denote: cv A the convex hull of A, cl A
the closure of A, int A the interior of A, aff A = x0 + span (A − x0) the affine hull of A where
x0 ∈ A and, if A is convex, ri A the relative interior of A:

ri A = {x ∈ A; aff A
⋂

B(x, δ) ⊂ A for some δ > 0}.

Notice that, for A convex, we have int A = ri A if and only if aff A = R
d. For a function f on

R
d taking its values in R

⋃{+∞}, its domain is defined by dom(f) = {x ∈ R
d : f(x) <∞}.

Let F be a probability distribution on R
d and X be a random variable on Z

d with distribution
F . Denote by supp (F ) the closed support of F : x 6∈ supp (F ) if and only if P(X ∈ B(x, δ)) = 0
for some δ > 0. Denote also by cv (F ) the convex hull of its support, aff (F ) and ri (F ) the
affine hull and the relative interior of cv (F ). We define ϕ the Log-Laplace of X taking values
in (−∞,+∞] as:

(19) ϕ(θ) = log
(
E

[
e〈θ,X〉

])
, θ ∈ R

d.

The function ϕ is convex, ϕ(0) = 0 (which implies that ϕ is proper), and lower-semicontinuous
(thanks to Fatou’s lemma). Its conjugate, ψ, is defined by:

(20) ψ(x) = sup
θ∈dom(ϕ)

(〈θ, x〉 − ϕ(θ)) , x ∈ R
d.

We recall that ψ is a lower-semicontinuous (proper) convex function. Since ϕ(0) = 0, we deduce
that ψ is non-negative. We first give a general lemma on the domain of ψ.

Lemma 4.1. Let F be a probability distribution on R
d. We have ri (F ) = ri dom(ψ).
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Proof. We use the asymptotic function, ϕ∞, associated with ϕ, see Section 2.5 in [4]. Since
ϕ(0) = 0, the asymptotic function is defined by ϕ∞(θ) = limt→+∞ ϕ(tθ)/t for θ ∈ R

d. This
gives:

ϕ∞(θ) = lim
t→+∞

log
(
E
[
e〈tθ,X〉

])

t
= sup

x∈supp (F )
〈θ, x〉 = sup

x∈cv (F )
〈θ, x〉.

According to Proposition 2.5.8 in [4], we have z ∈ ri dom(ψ) if and only if ϕ∞(θ) > 〈θ, z〉 for all
θ ∈ R

d except those satisfying ϕ∞(−θ) = ϕ∞(θ) = 0. We deduce that z ∈ ri dom(ψ) if and only
if supx∈cv (F )〈θ, x− z〉 > 0 for all θ ∈ R

d except those satisfying 〈θ, x− z〉 = 0 for all x ∈ cv (F ).

Assume z ∈ ri (F ). Let H be the orthogonal vector sub-space of aff (F ) in R
d. Since

ri (F ) ⊂ aff (F ), we get that for θ ∈ H and all x ∈ cv (F ) ⊂ aff (F ), we have 〈θ, x − z〉 = 0.
For θ ∈ R

d \H and all x ∈ cv (F ), we have 〈θ, x− z〉 = 〈θF , x− z〉, where θF is the orthogonal
projection of θ on aff (F ). By definition of ri (F ), we have that for all θ′ ∈ aff (F ), there exists
x ∈ ri (F ) ⊂ cv (F ) such that 〈θ′, x− z〉 > 0. In particular, we deduce that for θ ∈ R

d \H, we
have supx∈cv (F )〈θ, x− z〉 > 0. This implies that ri (F ) ⊂ ri dom(ψ).

Assume z ∈ ri dom(ψ). Notice that ri {z} = {z}. We deduce, from Proposition 1.1.11 in [4],
that z 6∈ ri (F ) is equivalent to the two convex sets {z} and cv (F ) being properly separated.
Thanks to Proposition 1.1.11 in [4], this is equivalent to the existence of θ ∈ R

d, θ 6= 0, such
that:

〈θ, z〉 ≥ sup
x∈cv (F )

〈θ, x〉 and 〈θ, z〉 > inf
x∈cv (F )

〈θ, x〉.

Since z ∈ ri dom(ψ), we get z 6∈ ri (F ) is equivalent to the existence of θ ∈ R
d, θ 6= 0, such

that for all x ∈ cv (F ) we have 〈θ, z〉 = 〈θ, x〉 and 〈θ, z〉 > infx∈cv (F )〈θ, x〉. Since those last two
assertions are incompatible, we deduce that z ∈ ri (F ) and thus ri dom(ψ) ⊂ ri (F ). This ends
the proof of this lemma. �

We have the following corollary.

Corollary 4.2. Let X be a random variable on R
d with probability distribution F . If X is

integrable then E[X] belongs to ri dom(ψ) and ψ(E[X]) = 0.

Proof. Since X is integrable, it is easy to check that E[X] belongs to ri (F ). The first part of the
corollary is then a consequence of Lemma 4.1. Jensen inequality implies that ϕ(θ) ≥ 〈θ,E[X]〉.
This gives 〈θ,E[X]〉 − ϕ(θ) ≤ 0. Then use (20) and the fact that ψ is non-negative to deduce
that ψ(E[X]) = 0. �

For θ ∈ dom(ψ), we define a probability measure on R
d by:

(21) dPθ(X ∈ dx) = e〈θ,X〉−ϕ(θ) dP(X ∈ dx).

We denote by mθ and Σθ the corresponding mean vector and covariance matrix if they exist, i.e:

(22) mθ = Eθ[X] = E[X e〈θ,X〉−ϕ(θ)] = ∇ϕ(θ) and Σθ = Cov θ(X,X).

We set IF = int dom(ϕ) the interior of the domain of the log-Laplace of F . Notice that X
under Pθ has small exponential moment for θ ∈ IF and its mean and covariance matrix are thus
well defined for θ ∈ IF . For a symmetric positive semi-definite matrix Σ, we denote by |Σ| its
determinant.

Lemma 4.3. Let F be a probability distribution on R
d. For any compact set K ⊂ IF , we have:

(23) sup
θ∈K

|Σθ| < +∞ and sup
θ∈K

Eθ

[
|X −mθ|3

]
< +∞.
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Proof. For all θ ∈ IF , we get that the ball B(θ, ε) centered at θ with positive radius ε belongs to
IF for ε small enough. This implies that X under Pθ has exponential moments, in particular it
belongs to L3. By dominated convergence we also get that the application:

θ 7→
(
mθ,Σθ,Eθ

[
|X −mθ|3

])

is continuous on IF . This ends the proof. �

We set OF = int cv (F ) the interior of the convex hull of the support of F .

Lemma 4.4. Assume OF is non-empty and bounded. Then the application θ 7→ mθ is one-to-
one from R

d onto OF and continuous as well as its inverse. In particular, for any compact set
K ⊂ OF , there exists r such that K ⊂ {mθ; |θ| ≤ r}.
Proof. It is easy to check, using Hölder inequality, that if OF is non-empty then ϕ is strongly
convex on its domain. If OF is bounded, then X is also bounded and the function ϕ is finite
on R

d, so that dom(ϕ) = R
d, as well as differentiable throughout R

d. This implies that ϕ is
smooth on R

d in the sense of [20] section 26. According to Theorem 26.5 in [20], this implies
that ∇ϕ is one-to-one from R

d onto the open set D = ∇ϕ(Rd), continuous as well as ∇ϕ−1.
Furthermore, according to Corollary 26.4.1 in [20], we have ri dom(ψ) ⊂ D ⊂ dom(ψ). Since
D is open, we deduce that D = ri dom(ψ) = int dom(ψ). Then, use Lemma 4.1 to get that
D = ri (F ) = OF . �

Recall Definition 2.3 for aperiodic probability distribution.

Lemma 4.5. Assume F is an aperiodic probability distribution on Z
d. Then, we have OF

non-empty and for any compact set K ⊂ IF ,
(24) inf

θ∈K
|Σθ| > 0.

Proof. Since F is aperiodic, we have aff (F ) = R
d. This readily implies that the dimension of

cv (F ) is d or equivalently that OF is non-empty. This proves the first part of the lemma.
Let θ ∈ IF be such that |Σθ| = 0. Then there exists h ∈ R

d \ {0} such that 〈h,Σθh〉 = 0.
This implies that Pθ-a.s. 〈h,X〉 = c with c = 〈h,mθ〉. This equality also holds P-a.s. as the two
probability measures P and Pθ are equivalent. In particular supp (F ) − x, with x ∈ supp (F ),
is orthogonal to h. Since F is aperiodic, the smallest subgroup in Z

d that contains the set
−x + supp (F ) is Z

d itself, which contradicts h 6= 0. We deduce that |Σθ| > 0 for all θ ∈ IF .
Then use that θ 7→ |Σθ| is continuous on IF to get the second part of the lemma. �

4.2. Gnedenko’s d-dimensional local theorem. Recall the definitions of ϕ, Pθ, mθ and Σθ
given by (19), (21) and (22) and that IF = int dom(ϕ). The next theorem is an extension of the
one-dimensional theorem of Gnedenko [7], see also [21, 24].

Theorem 4.6. Let F be an aperiodic probability distribution on Z
d such that IF is non-empty.

Let (Xℓ, ℓ ∈ N
∗) be independent random variables with distribution F and set Sn =

∑n
ℓ=1Xℓ for

n ∈ N
∗. Then for any compact subset K of IF , we have:

(25) lim
n→∞

sup
θ∈K

sup
s∈Zd

∣∣∣nd/2|Σθ|1/2Pθ(Sn = s)− (2π)−d/2 e−‖zn(θ,s)‖
2 /2
∣∣∣ = 0,

with zn(θ, s) = n−1/2Σ
−1/2
θ (s− nmθ).

The end of this section is devoted to the proof of Theorem 4.6.
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Thanks to Lemmas 4.3 and 4.5, we have |Σθ| > 0 and Σ
−1/2
θ is well defined. We define:

(26) Y = n−1/2Σ
−1/2
θ (X1 −mθ) and fθ(t) = Eθ

[
ei〈t, Y 〉

]
.

By the inversion formula, we know that for s ∈ Z
d:

(2π)dPθ(Sn = s) =

∫

(−π,π)d
Eθ

[
ei〈u,Sn−s〉

]
du

=

∫

(−π,π)d
Eθ

[
ei〈n

1/2Σ
1/2
θ u, n−1/2Σ

−1/2
θ (Sn−s)〉

]
du

=

∫

(−π,π)d
Eθ

[
ei〈n

1/2Σ
1/2
θ t, Y 〉

]n
e−i〈n

1/2Σ
1/2
θ u, zn(θ,s)〉 du.

In order to simplify the notation, we shall write z for zn(θ, s). By considering the change of

variable t = n1/2Σ
1/2
θ u, we obtain:

(2π)dPθ(Sn = s) = n−d/2|Σθ|−1/2

∫

Jθ

fθ(t)
n e−i〈t, z〉 dt,

where Jθ = {t ∈ R
d : n−1/2Σ

−1/2
θ t ∈ (−π, π)d}. We set:

In(θ) = nd/2|Σθ|1/2Pθ(Sn = s)− (2π)−d/2 e−‖z‖2 /2 .

Notice that

(2π)d/2 e−‖z‖2 /2 =

∫

Rd

e−‖t‖2 /2−i〈t,z〉 dt.

We obtain:

(2π)d In(θ) =

∫

Rd

(
1Jθ

(t)fθ(t)
n − e−‖t‖2 /2

)
e−i〈t,z〉 dt.

Let (Cn, n ∈ N
∗) be a sequence of positive numbers such that:

(27) lim
n→∞

Cn = ∞ and lim
n→∞

n−1/(12+6d)Cn = 0.

For ε ∈ (0, 1), we obtain:

(28) (2π)d|In(θ)| ≤
∫

Rd

∣∣∣1Jθ
(t)fθ(t)

n − e−‖t‖2 /2
∣∣∣ dt ≤ In,1(θ) + In,2(θ) + In,3(θ) + In,4,

with

In,1(θ) =

∫

J1

|fθ(t)n − e−‖t‖2 /2 |dt, In,2(θ) =

∫

J2,θ

|fθ(t)|ndt, In,3(θ) =

∫

J3,θ

|fθ(t)|ndt,

and In,4 =
∫
Jc
1
e−‖t‖2 /2 dt as well as J1 = {t ∈ R

d; ‖ t ‖ ≤ Cn}, J2,θ = {t ∈ R
d; ‖ t ‖ >

Cn and n−1/2 ‖ Σ
−1/2
θ t ‖ < ε}, J3,θ = {t ∈ Jθ; n−1/2 ‖ Σ

−1/2
θ t ‖ ≥ ε}. The proof of the Theorem

will be complete as soon as we prove the converge of the terms In,i to 0 for i ∈ {1, . . . , 4} uni-

formly for θ ∈ K (notice the terms In,i do not depend on s ∈ Z
d).

4.2.1. Convergence of In,4. Notice that In,4 does not depend on θ. And we deduce from (27)
that limn→∞ In,4 = 0.
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4.2.2. Convergence of In,3. Set h(θ, u) = |Eθ[ei〈u,X1〉]| for u ∈ R
d and L = {u ∈ [−2π + ε, 2π −

ε]d; ‖ u ‖ ≥ ε}. Since F is aperiodic, we deduce from Proposition P8 in [22, p.75], that h(θ, u) < 1
for u ∈ L. Since h is continuous in (θ, t) on the compact set K ×L, there exists δ < 1 such that
h(θ, u) ≤ δ on K × L. We get for θ ∈ K:

In,3(θ) ≤ nd/2|Σθ|1/2
∫

(−π,π)d
h(θ, u)n 1{‖u‖≥ε} du ≤ nd/2|Σθ|1/2(2π)dδn,

where we used that |fθ(t)| = h(θ, u) with t = n1/2Σ
1/2
θ u for the first inequality and that h is

bounded by δ on {u ∈ (−π, π)d; ‖ u ‖ ≥ ε}. Thanks to (23) we have supθ∈K |Σθ| <∞ and since
δ < 1, we get limn→∞ supθ∈K In,3(θ) = 0.

4.2.3. Convergence of In,2. From (23), we have

(29) a2 := sup
θ∈K

Eθ[‖ X1 −mθ ‖2] <∞ and a3 := sup
θ∈K

Eθ[‖ X1 −mθ ‖3] <∞.

We deduce, using the expression of Σ−1
θ based on the cofactors, that θ 7→ Σ−1

θ is continuous on

IF . This implies that ‖ Σ
−1/2
θ t ‖

2
= 〈t,Σ−1

θ t〉 is continuous in (θ, t) on IF ×R
d. We deduce that:

(30) c1 := sup
θ∈K, ‖t‖=1

〈t,Σ−1
θ t〉 <∞.

Hence we can choose ε small enough such that

(31) ε2a2 + εa3c1 < 1.

Recall Y = n−1/2Σ
−1/2
θ (X1 −mθ). By the symmetry of Σθ, we get that

(32) Eθ

[
‖ Y ‖2

]
=

1

n
Eθ

[
〈X1 −mθ,Σ

−1
θ (X1 −mθ)〉

]
=

1

n

d∑

j=1

d∑

ℓ=1

[
Σ−1
θ (j, ℓ)Σθ(ℓ, j)

]
=
d

n
·

Using similar computations, we obtain:

(33) Eθ

[
〈t, Y 〉2

]
=

‖ t ‖2
n

·

Recall notations a3 in (29) and c1 in (30). For t ∈ J2,θ, we get:

(34) Eθ

[
|〈t, Y 〉|3

]
≤ n−3/2 ‖ Σ

−1/2
θ t ‖

3
Eθ[‖ X1 −mθ ‖3] ≤

‖ t ‖2
n

εa3c1 ≤
‖ t ‖2
n

,

where we used n−1/2 ‖ Σ
−1/2
θ t ‖ < ε, (29) and (30) for the second inequality and (31) for the last.

Recall a2 given in (29). From (31) and since t ∈ J2,θ, we get:

(35) Eθ

[
〈t, Y 〉2

]
≤ ‖ n−1/2Σ

−1/2
θ t ‖

2
Eθ[‖ X1 −mθ ‖2] ≤ ε2a2 < 1.
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We deduce that, for all θ ∈ K and t ∈ J2,θ,

|fθ(t)| = |Eθ[ei〈t,Y 〉]| =
∣∣∣1− Eθ[|〈t, Y 〉|2]

2
− iEθ

[∫ 〈t,Y 〉

0

∫ v

0

∫ s

0
eiu dudsdv

] ∣∣∣

≤ 1− Eθ[|〈t, Y 〉|2]
2

+ Eθ

[∫ |〈t,Y 〉|

0

∫ v

0

∫ s

0
dudsdv

]

= 1− Eθ[|〈t, Y 〉|2]
2

+
Eθ[|〈t, Y 〉|3]

6

≤ 1− ‖ t ‖2
2n

+
‖ t ‖2
6n

= 1− ‖ t ‖2
3n

,

where we used that Eθ[Y ] = 0 for the first equality, that Eθ[〈t, Y 〉2] ≤ 1 for the first inequality
(see (35)) and (33) as well as (34) for the last inequality. Therefore, we get that:

In,2(θ) ≤
∫

J2,θ

|fθ(t)|ndt ≤
∫

J2,θ

(
1− ‖ t ‖2

3n

)n
dt ≤

∫

‖t‖>Cn

e−‖t‖2 /3 dt.

Since lim
n→∞

Cn = ∞, we deduce that limn→∞ supθ∈K In,2(θ) = 0.

4.2.4. Convergence of In,1. Since |fθ(t)| ≤ 1, we have:

(36) |fθ(t)n − e−‖t‖2 /2 | ≤ n|fθ(t)− e−‖t‖2 /(2n) | ≤ n|hθ(n, t)|+ ng(n, t),

where

hθ(n, t) = fθ(t)− 1 +
‖ t ‖2
2n

and g(n, t) =
∣∣∣ e−‖t‖2 /(2n) −1 +

‖ t ‖2
2n

∣∣∣.

Since 0 ≤ x+ e−x−1 ≤ x2/2 for x ≥ 0, we get for t ∈ J1:

(37) ng(n, t) ≤ ‖ t ‖4
8n

≤ n−1C4
n.

Since E[Y ] = 0 and E
[
〈t, Y 〉2

]
= ‖ t ‖2 /n, see (33), we deduce that:

hθ(n, t) = Eθ

[
ei〈t,Y 〉−1 + i〈t, Y 〉 − 〈t, Y 〉2

]
.

Let Ln = n
1
4 . We have:

|hθ(n, t)| ≤ Eθ

[∣∣∣ ei〈t,Y 〉−1 + i〈t, Y 〉+ 〈t, Y 〉2
2

∣∣∣
]

= Eθ

[∣∣∣ ei〈t,Y 〉−1 + i〈t, Y 〉+ 〈t, Y 〉2
2

∣∣∣; ‖ X1 −mθ ‖ < Ln

]

+ Eθ

[∣∣∣ ei〈t,Y 〉−1 + i〈t, Y 〉+ 〈t, Y 〉2
2

∣∣∣; ‖ X1 −mθ ‖ ≥ Ln

]

≤ 1

6
Eθ

[
|〈t, Y 〉|3; |X1 −mθ| < Ln

]
+ Eθ

[
〈t, Y 〉2; ‖ X1 −mθ ‖ ≥ Ln

]
,



20 ROMAIN ABRAHAM, JEAN-FRANÇOIS DELMAS, AND HONGSONG GUO

where we used | eiα−1− iα+ α2

2 | ≤ min(|α|3/6, α2) for α ∈ R for the second inequality. We have:

Eθ[|〈t, Y 〉|3; ‖ X1 −mθ ‖ < Ln] = Eθ

[
〈t, Y 〉2|〈t, n−1/2Σ

−1/2
θ (X1 −mθ)〉|; ‖ X1 −mθ ‖ < Ln

]

≤ n−1/2 ‖ t ‖√c1 LnEθ
[
〈t, Y 〉2

]

= n−3/2 ‖ t ‖3 √c1 Ln,
where we used c1 defined in (30) for the inequality and (33) for the last equality. Hölder’s
inequality gives:

Eθ

[
〈t, Y 〉2; ‖ X1 −mθ ‖ ≥ Ln

]
≤ Eθ

[
|〈t, Y 〉|3

]2/3
Pθ(‖ X1 −mθ ‖ ≥ Ln)

1/3.

Using a3 defined in (29), we get:

Eθ

[
|〈t, Y 〉|3

]
≤ n−3/2 ‖ Σ

−1/2
θ t ‖

3
Eθ

[
‖ X1 −mθ ‖3

]
≤ n−3/2c

3/2
1 ‖ t ‖3 a3.

Using Tchebychev inequality and a2 defined in (29), we get:

Pθ(‖ X1 −mθ ‖ ≥ Ln) ≤ Eθ

[
‖ X1 −mθ ‖2

]
L−2
n ≤ a2L

−2
n .

This gives:

Eθ

[
〈t, Y 〉2; ‖ X1 −mθ ‖ ≥ Ln

]
≤ n−1c1 ‖ t ‖2 a2/33 a

1/3
2 L−2/3

n .

For t ∈ J1, that is ‖ t ‖ ≤ Cn, we get:

n|hθ(n, t)| ≤
1

6
n−1/4C3

n

√
c1 + n−1/6c1C

2
na

1/3
2 .

Using (36) and (37), we deduce there exists a constant c which does not depend on t, θ and n
such that for t ∈ J1, θ ∈ K, we have:

|fθ(t)n − e−‖t‖2 /2 | ≤ c(n−1/4C3
n + n−1/6C2

n + n−1C4
n).

We deduce that for θ ∈ K:

In,1(θ) =

∫

J1

|fθ(t)n − e−‖t‖2 /2 | ≤ c(n−1/4C3
n + n−1/6C2

n + n−1C4
n)2

dCdn.

Recall that limn→∞ n−1/(12+6d)Cn = 0. This implies limn→∞ supθ∈K In,1(θ) = 0.

4.3. Strong ratio limit theorem. Recall Definition 2.3 for aperiodic probability distribution.
Consider an aperiodic distribution F on Z

d. Let X be a random variable with distribution F .
Recall the function ϕ(θ) = logE[e〈θ,X〉] defined in (19) and its conjugate ψ defined in (20).

Theorem 4.7. Let F be an aperiodic probability distribution on Z
d. Let (Xℓ, ℓ ∈ N

∗) be inde-
pendent random variables with the same distribution F . Let Sn =

∑n
ℓ=1Xℓ for n ∈ N

∗. For all

m ∈ N and b ∈ Z
d, we have:

(38) lim
n→∞

P(Sn−m = sn − b)

P(Sn = sn)
= 1,

where the sequence (sn, n ∈ N
∗) of elements of Zd satisfies the following conditions:

(a) supn∈N∗ | snn | <∞,
(b) limn→∞ ψ(snn ) = 0.
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Remark 4.8. Assume that X, with distribution F , is integrable. Thanks to Corollary 4.2, E[X]
belongs to ri dom(ψ), the relative interior of the domain of ψ and ψ(E[X]) = 0. According
to Theorem 1.2.3 in [4], the function ψ is relatively continuous on ri dom(ψ). Therefore if the
sequence (sn, n ∈ N

∗) of elements of dom(ψ) satisfies limn→∞ sn/n = E[X], then (a) and (b) of
Theorem 4.7 are satisfied. Notice also that if F is aperiodic (as assumed in Theorem 4.7), then
Lemmas 4.5 and 4.1 imply ri dom(ψ) is the (non-empty) interior of dom(ψ) which is also equal
to OF = int cv (F ).

4.4. Proof of Theorem 4.7. We adapt the proof of Neveu [17]. Since F is aperiodic and by
elementary arithmetic consideration, it is enough to prove (38) for m = 1 and b ∈ Z

d satisfying
p := P(X1 = b) > 0.

We set Nn = Card ({ℓ ≤ n;Xℓ = b}). Since for a ∈ Z
d the conditional probability P(Xℓ =

b|Sn = a) does not depend on ℓ (when 1 ≤ ℓ ≤ n), we get:

E

[
Nn

n

∣∣∣Sn = a

]
= P(Xn = b|Sn = a) = p

P(Sn−1 = a− b)

P(Sn = a)
·

For ε > 0, we have:

(39)
∣∣∣P(Sn−1 = a− b)

P(Sn = a)
− 1
∣∣∣ =

∣∣∣
E
[
Nn
n ;Sn = a

]

pP(Sn = a)
− 1
∣∣∣ ≤

E[|Nn
n − p|;Sn = a]

pP(Sn = a)
≤ ε

p
+
Rn(a)

p
,

with

Rn(a) =
P(|Nn

n − p| > ε)

P(Sn = a)
·

Thus, the proof will be complete as soon as we prove that for all ε > 0, limn→∞Rn(sn) = 0.
By Hoeffding’s inequality, see Theorem 1 in [10], since Nn is binomial with parameter (n, p),

we get:

(40) P

(∣∣∣∣
Nn

n
− p

∣∣∣∣ > ε

)
≤ 2 e−2nε2 .

We give a lower bound of P(Sn = sn) in the next lemma, whose proof is postponed at the end
of this section.

Lemma 4.9. Let F be an aperiodic probability distribution on Z
d. Let (Xℓ, ℓ ∈ N

∗) be inde-
pendent random variables with the same distribution F . Let Sn =

∑n
ℓ=1Xℓ for n ∈ N

∗. Then

for 0 < η < 1, K0 compact subset of OF , (sn, n ∈ N
∗) a sequence of elements of Zd such that

sn/n ∈ K0, there exists some n0 ≥ 1 such that for n ≥ n0 we have:

P(Sn = sn) e
nψ(sn/n) ≥ (1− η)n.

Using (40) and Lemma 4.9 with 1− η = e−ε
2
, we get:

Rn(sn) =
P
(∣∣Nn

n − p
∣∣ > ε

)

P(Sn = sn)
≤ 2 e−nε

2+nψ(sn/n) .

Since lim
n→∞

ψ(sn/n) = 0 by hypothesis, we get the result. �

Proof of Lemma 4.9. Since F is aperiodic, Lemma 4.5 implies that OF is non-empty.
We first assume that the support of F is bounded. In particular the domain of ϕ defined by

(19) is Rd. Recall notation (21) as well as mθ = Eθ[X] and Σθ = Cov θ(X,X). By hypothesis,
we have K0 is a compact subset of OF . According to Lemma 4.4, there exists a compact set of
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R
d such that K0 ⊂ {mθ, θ ∈ K}. According to Theorem 4.6, we have that for all ε > 0, there

exists n0 such that for all n ≥ n0:

sup
θ∈K

sup
s∈Zd

∣∣∣nd/2|Σθ|1/2Pθ(Sn = s)− (2π)−d/2 e−un(θ,s)
∣∣∣ < ε,

with

un(θ, s) =
〈sn − nmθ,Σ

−1
θ (sn − nmθ)〉
2n

·
So we get that for all n ≥ n0, θ ∈ K:

Pθ(Sn = sn) ≥ (2πn)−d/2|Σθ|−1/2 e−un(θ)−n−d/2|Σθ|−1/2ε

≥ (2πn)−d/2

(
sup
q∈K

|Σq|
)−1/2

e−un(θ)−n−d/2
(
inf
q∈K

|Σq|
)−1/2

ε.

We deduce that for all n ≥ n0:

sup
θ∈K

Pθ(Sn = sn) ≥ (2πn)−d/2

(
sup
q∈K

|Σq|
)−1/2

e− infθ∈K un(θ)−n−d/2
(
inf
q∈K

|Σq|
)−1/2

ε.

Since sn/n belongs to {mθ; θ ∈ K}, we get that infθ∈K un(θ) = 0. Thanks to (23) and Lemma

4.5, we can also choose ε > 0 and δ > 0 both small enough so that (2π)−d/2
(
supq∈K |Σq|

)−1/2 −
(infq∈K |Σq|)−1/2 ε > δ. Then we deduce that for all n ≥ n0:

sup
θ∈Rd

Pθ(Sn = sn) ≥ sup
θ∈K

Pθ(Sn = sn) ≥ n−d/2δ > 0.

Using (20), we get:

sup
θ∈Rd

Pθ(Sn = sn) = sup
θ∈Rd

P(Sn = sn) e
〈θ,sn−nϕ(θ)〉 = P(Sn = sn) e

nψ(sn/n) .

This gives, for some δ > 0, for all n ≥ n0:

(41) P(Sn = sn) e
nψ(sn/n) ≥ δn−d/2 > 0.

This gives Lemma 4.9 when the support of F is bounded.

Let F be a general aperiodic probability distribution on Z
d, and X a random variable with

distribution F . Let M > 0 be large enough and XM be distributed as X conditionally on
{|X| ≤ M}. Write δM = P(|X| > M). Let (XM

ℓ , ℓ ∈ N) be independent random variables

distributed as XM , and set SMn =
∑n

ℓ=1X
M
ℓ . We have:

P(SMn = sn) =
P(Sn = sn, |Xℓ| ≤M for 1 ≤ ℓ ≤ n)

P(|X| ≤M)n
≤ P(Sn = sn)

(1− δM )n
·

Let FM be the probability distribution of XM and ϕM defined by (19) with F replaced by FM
and ψM defined by (20) with ϕ replaced by ϕM . Since F is aperiodic, we get that FM is aperiodic
for M large enough. We get:

P(Sn = sn) e
nψ(sn/n) ≥ P(SMn = sn) e

nψ(sn/n)(1− δM )n = P(SMn = sn) e
nψM (sn/n) en∆M (sn/n),

where we define ∆M (s) = ψ(s) − ψ̃M (s) and ψ̃M (x) = supθ∈Rd (〈θ, x〉 − ϕ̃M (θ)) with ϕ̃M (θ) =

log
(
E
[
e〈θ,X〉 1{|X|≤M}

])
.

Notice that the sequence of continuous finite convex functions (ϕ̃M ,M ∈ N
∗) is non-decreasing

and converges point-wise to the convex function ϕ (which is not identically +∞ as ϕ(0) = 0).
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According to vii of Proposition E.1.3.1 in [9], we get the sequence of convex functions (ψ̃M ,M ∈
N
∗) is non-increasing and ψ̃M ≥ ψ. Therefore the sequence converge to a function say ψ̃ such

that ψ̃ ≥ ψ. Thanks to Theorem B.3.1.4 in [9] or Theorem II.10.8 of [20], ψ̃ is convex and

(ψ̃M ,M ∈ N
∗) converges to ψ̃ uniformly on any compact subset of ri dom(ψ̃). Theorem E.2.4.4

in [9] gives that the closure of ψ̃ (defined in Definition B.1.2.4 in [9]) is equal to ψ. Thanks to

Proposition 1.2.5 in [4], we get that ri dom(ψ̃) = ri dom(ψ) and on this set we have ψ̃ = ψ.
Since ri dom(ψ) = ri (F ) = OF , see Lemmas 4.1 and 4.5, this implies that limM→+∞∆M = 0
uniformly on any compact subset of OF .

Notice that ∆M ≤ 0. Therefore for any γ > 0, K0 compact subset of OF , there exists M0 such
that for M ≥ M0, 0 ≥ ∆M ≥ −γ on K0. We deduce from (41) with Sn and ψ replaced by SMn
and ψM that for some δ > 0 and γ > 0, there exists n0 ≥ 1 such that for all n ≥ n0:

P(Sn = sn) e
nψ(sn/n) ≥ δn−d/2 e−γn .

This implies that for some η ∈ (0, 1) and n large enough, we have P(Sn = sn) e
nψ(sn/n) ≥

(1− η)n. �
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[9] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of convex analysis. Springer Science & Business Media,

2001.
[10] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American sta-

tistical association, 58(301):13–30, 1963.
[11] S. Janson. Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation.

Probab. Surv., 9:103–252, 2012.
[12] T. Jonnson and S. Stefansson. Condensation in nongeneric trees. J. Stat. Phys., 142:277–313, 2011.
[13] H. Kesten. Subdiffusive behavior of random walk on a random cluster. Ann. de l’Inst. Henri Poincaré, 22:425–
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Statist, 44:1128–1161, 2007.
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