
HAL Id: hal-01224650
https://hal.science/hal-01224650v1

Submitted on 16 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bridging the gap between KAOS requirements models
and B specifications

Abderrahman Matoussi, Régine Laleau, Dorian Petit

To cite this version:
Abderrahman Matoussi, Régine Laleau, Dorian Petit. Bridging the gap between KAOS requirements
models and B specifications. [Research Report] TR-LACL-2009-5, LACL. 2009. �hal-01224650�

https://hal.science/hal-01224650v1
https://hal.archives-ouvertes.fr

Bridging the gap between KAOS requirements

models and B specifications

Abderrahman Matoussi Régine Laleau Dorian Petit

September 2009

TR–LACL–2009–5

Laboratoire d’Algorithmique, Complexité et Logique (LACL)
Département d’Informatique

Université Paris 12 – Val de Marne, Faculté des Science et Technologie
61, Avenue du Général de Gaulle, 94010 Créteil cedex, France

Tel.: (33)(1) 45 17 16 47, Fax: (33)(1) 45 17 66 01

Laboratory of Algorithmics, Complexity and Logic (LACL)
University Paris 12 (Paris Est)

Technical Report TR–LACL–2009–5

A. Matoussi, R. Laleau, D. Petit.
Bridging the gap between KAOS requirements models and B specifications

c© A. Matoussi, R. Laleau, D. Petit, September 2009.

Bridging the gap between KAOS requirements

models and B specifications

Abderrahman Matoussi1 Régine Laleau1 Dorian Petit2

1 Laboratory of Algorithmics, Complexity and Logic - University Paris Est, France

{abderrahman.matoussi, laleau}@univ-paris12.fr

2 University Lille Nord de France, F-59000 Lille,UVHC, LAMIH, F-59313
Valenciennes CNRS, UMR 8530, F-59313 Valenciennes, France

dorian.petit@univ-valenciennes.fr

Abstract

Employing formal methods for complex systems specification is steadily growing from
year to year. Whereas the formal specification process from abstraction to implementa-
tion via refinement is well understood, the traceability between initial user requirements
(requirements analysis) and the corresponding formal specification is still unsatisfying
and ambiguous. In fact, there is little research on reconciling the requirements phase
with the formal specification phase. Consequently, the gap between the requirements
phase and the formal specification phase continues to grow larger and the reconciliation
seems more and more difficult and complicated. Our objective is to combine these two
phases by using KAOS and the B method. KAOS is a goal-oriented methodology for
requirements engineering enabling analysis to build requirements models and to derive
requirements documents. B is a model-based formal method supported by tools and
that allows the design of systems, from specification to implementation. For that pur-
pose, we propose to derive the architecture of the B specification from the KAOS goal
model. This makes traceability between KAOS requirements and B models more explicit.

Keywords. Requirements engineering, KAOS methodology, B method, Traceability.

1 Introduction

Employing formal methods like B [1] and Z [2] for complex systems specification is steadily
growing from year to year. They have shown their ability to produce such systems for large
industrial problems such as Paris metro line 14 [20] or Roissy Val [21] using B method. With
most of formal methods, an initial mathematical model is refined in multiple steps, until
the final refinement contains enough details for an implementation. This initial model is
derived from the user requirements (requirements analysis) which has to be carefully written
before embarking in any computerized system development. As this formal development chain
matures, the major remaining weakness in the development chain is the gap between textual
or semi-formal requirements and the initial formal specification. In fact, the validation of this

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 2

initial formal specification is very difficult due to the inability to understand formal models
(for customers) and to link them with initial requirements (for designers). Consequently,
the gap between the requirements phase and the formal specification phase gets larger and
larger and the reconciliation seems more and more difficult. This report aims to bridge this
gap using the requirements analysis method KAOS and the B formal method. For that, we
propose a pragmatic approach to make traceability between requirements and B models more
explicit since traceability has become a key subject of requirements engineering research [17].
In a first step, we do not attempt to automate traceability or to create a perfect mapping.
Rather, we attempt to narrow the gap between the two phases by deriving the architecture
of the formal specification. This allows systematic analysis, validation and verification of the
mapping.

The remainder of the report is organized as follows. Section 2 overviews the KAOS and
the B formal methods that are employed in the proposed approach. Section 3 details our
traceability approach between a KAOS goal model and the B machines. Section 4 demon-
strates the approach with a case study. Section 5 discusses related work. Finally, Section 6
concludes with an outline of future work.

2 Background

This section briefly describes the two methods that the proposed approach is based on, namely
the B formal method and the KAOS method.

2.1 The B method

The B method [1] is a formal method for specifying, designing and coding software systems
that integrates formal proof techniques in software development. This method share the same
fundamentals as Z [2] and VDM [22]. It was used in the METEOR project [20], as well as
in less well-known development projects [23, 24] and even non-critical development projects
[25]. The software industry adopted B largely because of the availability of software tools
supporting all phases of the B development process.

The B method is based on Abstract Machine Notation (AMN) and the use of formally
proved refinements. Its mathematical basis is extracted from first-order logic, integer arith-
metic and set theory. The original B (referred to as classical B, [1]) has a rich feature set
that got consciously reduced in the more recent Event-B [3, 16] in order to make the notation
easier to use and automated proving easier to implement. A B specification is structured in
machines. One of the main parts of a B machine is the state space definition, which appears
in the VARIABLES and INVARIANT clauses. The former enumerates the state com-
ponents, and the latter defines restrictions on the possible values they can take. Operations
allow machine variables to be transformed. The machine operations are defined by general-
ized substitutions, and each one contains: (i) a precondition represented by a predicate which
expresses conditions to call this operation; (ii) an action represented by a substitution which
expresses how machine variables evolve.
Machines in classical B are labeled according to their abstraction level: MACHINE, RE-
FINEMENT or IMPLEMENTATION, from the most abstract to the most concrete:

• The abstract machine is the decomposition unit of the B method which contains: (i)
a static part which specifies the system state. This specification defines the variables
describing the state of system components and the invariants which are logical formulas

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 3

expressing the system static rules; (ii) a dynamic part which expresses the initialization
and the evolution of the system state through a set of operations. Each operation must
preserve the invariant of the machine.

• The refinement mechanism consists in reformulating, by successive steps, the variables
and the operations of the abstract machine, so as to lead finally to a module which
constitutes a running program. The intermediate steps of reformulation are called
refinements and the last refinement level is called the implementation. A key merit of
this refinement mechanism is the ability to preserve already proven system properties
in higher level models. Hence, the refinement of an operation is correctly proven if it
establishes the same result as its abstraction.

Each B component (MACHINE, REFINEMENT or IMPLEMENTATION) is
structured using a single language, the B language. B models are accompanied by mathe-
matical proofs, called proof obligations that guarantee correctness and effectiveness of system
development. Industrial tools for the development of B based projects, which automatically
generates proof obligations to be proven, have been available for a while now such as Atelier
B1.

2.2 KAOS methodology

KAOS (Knowledge Acquisition in autOmated Specification) [6, 7] is a goal-based requirements
engineering method. KAOS requires the building of a data model in UML-like notation.
The particularity of KAOS is that it is able to implement goal-based reasoning. A goal
defines an objective the system should meet, usually through the cooperation of multiple
agents such as devices or humans. KAOS differentiates between goals and domain properties
that are descriptive statements about the environment such as physical laws, organizational
norms or policies, etc. KAOS is composed of several sub-models related through inter-model
consistency rules:

• The central model is the goal model which describes the goals of a system and its
environment. Goals are organized in a hierarchy obtained from the refinement of higher
level goals into lower-level goals using the concept of refinement patterns [4]. Higher-
level goals are strategic and coarse-grained while lower-level goals are technical and
fine-grained (more operational in nature).

• The object model defines the objects (agents, entity...) of interest in the application
domain.

• The agent responsibility model takes care of assigning goals to agents in a realizable
way.

• The operation model sums up all the behaviors that agents need to have to fulfill
their requirements. Behaviors are expressed in term of operations performed by agents.
Those operations work on objects described in the object model. So, they can create
objects, provoke object state transitions or trigger other operations through send and
receive events.

1http://www.atelierb.eu/

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 4

KAOS provides an optional formal assertion layer for the specification of goals in Real-
Time Linear Temporal Logic (RT-LTL). Thanks to the use of developed formal reasoning
techniques, analysts can identify and resolve conflicts between goals and prove absolute or
partial goal satisfaction. A formal goal definition in KAOS begins with the description of the
objects that the goal concerns. The definition then states the desired temporal ordering of
states the concerned objects must hold in order to satisfy the goal. Goals are defined in the
form: C ⇒ op T where C and T are assertions about environmental situations, and op is a
temporal operator that indicates the desired temporal nature of the target situation (T), in
relation to a current situation (C).

KAOS provides a catalog of “Goal Patterns” that generalize the most common goal con-
figurations. Achieve Goals (C ⇒ ⋄T) desire achievement “some time in the future”. That is,
the target must eventually occur. Cease Goals (C ⇒ ⋄¬T) disallow achievement “some time
in the future”. That is, there must be a state in the future where the target does not occur.
Maintain Goals (C ⇒ T) must hold “at all times in the future”. Avoid Goals (C ⇒ ¬T)
must not hold “at all times in the future”.

Goals in KAOS can be either “AND” or “OR” refined. A goal is AND-refined into
sub-goals, such that the conjunction of the subgoals is a sufficient condition to achieve the
parent goal. The OR-refinement relates a goal to a set of alternative subgoals in which the
achievement of the higher-level goal requires the achievement of at least one of its subgoals.
KAOS offers a lot of refinement patterns [4] that decompose goals. These patterns can only
be used in the context of different tactics defined in KAOS such as the milestone-driven
tactics which consists in identifying milestone states that must be reached to achieve the
target predicate. The sub-goals G1, G2, ..., Gn(n ≥ 2) refine a goal G in a domain theory
Dom if the following conditions hold:

1. G1, G2, . . . , Gn, Dom |= G (entailment)

2.
∧

j 6=i Gj , Dom 2 G for each i ∈ [1..n] (minimality)

3. G1, G2, . . . , Gn, Dom 2 false (consistency)

The first condition requires that the satisfaction of the subgoals together with the satis-
faction of domain properties in Dom is sufficient for satisfying the parent goal G. The second
condition requires that if a subgoal is left out of the refinement, the remaining subgoals are
not sufficient for satisfying the parent goal. The third condition requires that the conjunction
of the subgoals is logically consistent with the domain theory.

Thus, KAOS provides a set of domain independent refinement patterns which respect all
these conditions and serve as guidance. These patterns help in improving the completeness
and the consistency of goal models. They are grouped by the behavior prescription of the four
high-level goals (Achieve, Avoid, Maintain and Cease) and can only be used in the context
described by the tactics defined in KAOS.

KAOS also provides a criterion for stopping the refinement process. If a goal can be
assigned to the sole responsibility of an individual agent, there is no need for further goal
refinement to occur. Operational goals (goals that are assigned to agents) are the leaves of a
goal graph. Each leaf can be either a requirement (if it is assigned to an agent of the system)
or an expectation (if it is assigned to an agent in the environment). The reader may refer
to [8] for a full description of these notions.

Unfortunately, the KAOS method stops at the requirements phase and doesn’t address
the other software development levels. This is a serious shortcoming since it obliges designers
to use another method for developing their systems. Consequently, it is difficult to validate

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 5

specifications with regard to requirements. Nevertheless, contrary to other requirements
methods such as i* [19], KAOS is promising in that it can be extended with an extra step of
formality which can fill in the gap between requirements and the later phases of development.
For instance, the fact that both KAOS and B employ first-order predicate logic facilitates
the correspondence between KAOS requirements models and B specifications.

3 Correspondence rules between KAOS goal models and B

specifications

The transition from the requirements phase to the formal specification phase is one of the most
difficult steps in software development. The ideal solution would be to automatically derive
B specifications from KAOS goal models. Unfortunately, this solution is very complicated
and hard to set up since it is necessary to construct the body of B operations. To overcome
these difficulties, we present a simpler solution that consists in defining a mapping between
requirements and B models to improve traceability. There has been substantial research
on traceability [17]. Commonly, pre- and post-traceability are distinguished. Traceability of
requirements towards specification is called post-traceability (or forward traceability). Trace-
ability of a requirement back to its origin is named pre-traceability (or backward traceability).
In this report, we are interested in post-traceability only.

Since goals play an important role in requirements engineering process, the proposed
mapping comes down to ensure traceability between KAOS goal models and B machines.
Indeed, [18] affirms that goals provide a bridge linking stakeholder requests to system specifi-
cation. As a consequence, rather than establishing traceability from the KAOS requirements
model as a whole, we propose to establish traceability from individual goals that are part of
the KAOS goal model.

The main idea is to build the architecture of the specification from the goal model. It
consists in defining what a B machine contains and the links between the different machines.
A B machine MG is associated with each goal G. This machine MG contains an operation
called OPG that operationalizes this goal G; i.e. it describes the ”work” to perform to reach
the goal G, in terms of generalized substitutions. Moreover, each refinement of the goal G

is represented by a B refinement machine RefMG that refines the machine MG; i.e. the
abstract operation OPG is refined by a concrete one, called RefOPG

2. Therefore, we have
explored the natural complementarities between KAOS and B because both of them have the
notion of refinement and are based on a constructive approach of refinement. It means that
the B refinement verifies the above-mentioned KAOS refinement conditions. Of course, this
needs to be formally proved, this is an ongoing work.

The following issue consists in structuring the B specification. There are a number of ways
to structure these B machines. In fact, B offers a lot of relationships, such as the inclusion
mechanism. It is the main mechanism for structuring large machines. It allows the abstract
system state to be divided into several independent parts, each encapsulated by a separate
included machine. These parts can then be combined into a single “including” B machines
using the INCLUDES clause.

Consequently, our idea is that the B machines MG1...MGn (related to the sub-goals of the
goal G) are linked to the B machine RefMG via the inclusion relationship INCLUDES. As
the including machine state RefMG is the combined state of all its included machines, the

2Usually, in B, the refined operation has the same name as the abstract operation

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 6

operation RefOPG which changes the state is built by combining operations (OPG1...OPGn)
of the included machines MG1...MGn. The nature of this combination depends on the goal
refinement pattern. We can distinguish three cases:

• Milestone goal refinement pattern: It prescribes that some milestone states are manda-
tory in order to reach a final one. For that, we consider that all the invoked operations
(OPG1...OPGn) are structured as a sequence of operations in RefOPG, separated by
the B sequential operator over substitutions (;) as shown in Figure 1.

Figure 1: Traceability associated to the milestone goal refinement

• Basic AND goal refinement : It states that the parent goal G is satisfied if all the
sub-goals are satisfied. For that, our idea is that the operation RefOPG invokes the
operations (OPG1...OPGn) and executes them at the same time. Therefore, we consider
that all these operations are synchronously composed through the B parallel operator
over substitutions (||) as shown in Figure 2.

Figure 2: Traceability associated to the AND goal refinement

• OR goal refinement : It capture alternative ways of achieving goal G. Hence, we consider
that the invoked operations (OPG1...OPGn) are executed in a nondeterministic way in

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 7

RefOPG, separated by the B operator (CHOICE) as shown in Figure 3. In fact, this
B operator introduces a certain kind of bounded non-determinism.

Figure 3: Traceability associated to the OR goal refinement

Combining all the above-mentioned rules allows us to obtain a architecture of a B model. Fur-
thermore, the obtained architecture allows us to easily established traceability links between
KAOS goals and the B operations that operationalize these goals.

4 Case Study: The localization component

The objective of this section is to demonstrate the proposed approach through the localization
component case study. The coming subsections briefly describes the localization component
requirements followed by showing how to elaborate these requirements in KAOS and how to
ensure traceability between KAOS models and B specifications.

4.1 An overview of the localization component

A localization system is a critical part of a land transportation system. Many positioning
systems have been proposed over the last years. GPS, one of the most widely used positioning
system, is perhaps the best-known. This system belongs to the GNSS (Global Navigation
Satellite Systems) family which also regroups GALILEO or GLONASS.

Services relying on GALILEO will benefit from a better accuracy estimated to less than
2 meters against 5 to 10 meters for the GPS system. One of the novel aspects of GALILEO
resides in a new integrity signal to inform users whether they can trust or not the signal
transmitted to them. The objective is here to improve the confidence in the positionning
information to envisage the deployment of more critical applications.

Positioning systems are often dedicated to a particular environment; the GNSS technology,
for example, generally does not work indoors. To resolve these problems, numerous alternative
relying on very different technologies have arisen. In the last few years, Wireless LAN such
as IEEE 802.11 networks have been considered by numerous location systems. These systems
all use the radio signal strength to determine the physical location.

Localization systems can therefore be designed using various technologies like wireless
personal netowrks such as Wifi or Bluetooth [26, 27], sensors [28], GNSS repeaters or visual
landmarks.

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 8

4.2 The KAOS goal model of the localization component

In this report we have modelize a localization component based on several basic and off-the-
shelf technologies : GPS, WIFI and sensors. This localization system will be used in a model
of an autonomous vehicule : a CyCab. Figure 4 show a KAOS goal model of a localization
component. Each Goal is described informally in natural language.

Figure 4: KAOS goal model of a localization component

In this report, we focus on the most frequently used ”Goal Patterns” : the Achieve goals.
The other ”Goals Patterns” will be studied in further works. The high level goal G is defined
as follows:

Goal G: Achieve [CycabLocalized]
InformalDef: The Cycab/vehicle must be localized.

In order to build the architecture of the specification from the above KAOS goal model,
we must define what a B machine contains and the links between the different obtained B
machines. As explained in Section 3, a B machine is associated with each goal. For instance,
we associate a B machine Location to the most abstract goal G. In this B machine, we will
have an operation called locate that will translate this goal; i.e. it describes the ”work”
to perform to reach the goal G, in terms of generalized substitutions. If we consider that
obtaining a localization is to get a latitude and a longitude, we obtain the operation presented
in Figure 5. Sets in upercase are abstract sets used to type the variables and are described
in the B machine Type sets as shown in Figure 6.

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 9

MACHINE

Location

SEES

Type sets

OPERATIONS

estimated location ← locate =
ANY info lat , info long

WHERE info lat ∈ LATITUDE ∧ info long ∈ LONGITUDE

THEN estimated location := (info lat 7→ info long)
END

END

Figure 5: The B machine Location associated to the abstract goal G

MACHINE Type sets

SETS

SUBCOMPONENTS = { gps , wifi } ;
SUBSENSORS = { speed , accel }

CONCRETE CONSTANTS

LATITUDE , LONGITUDE , DISTANCE

PROPERTIES

LATITUDE = NAT

∧ LONGITUDE = NAT

∧ DISTANCE = NAT

END

Figure 6: The B machine Type sets used to declare sets and constantes

4.2.1 First refinement.

The goal G is refined into three sub-goals according to the milestone-driven tactics:

Goal G1: Achieve [RawLocalizationsDone]
InformalDef: Firstly, a raw localization will be done.

Goal G2: Achieve [DataLocalizationValidated]
InformalDef: Then, all the localization data will be validated.

Goal G3: Achieve [DataMerged]
InformalDef: Finally, all the data will be merged in order to obtain the final local-

ization.

Similarly, the sub-goals G1, G2 and G3 are represented by three B machines Raw-
Location, V alidation and Fusion (see Figures 7, 8 and 9), respectively. In each B machine,
we will have a B operation that will translate these goals: locate-raw, validate and merge
(respectively).

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 10

MACHINE

Raw location

SEES

Type sets

OPERATIONS

subcomponents locations ← locate raw =
ANY sc locations

WHERE sc locations ∈ SUBCOMPONENTS → (LATITUDE × LONGITUDE)
THEN subcomponents locations := sc locations

END

END

Figure 7: The B machine Raw-Location associated to the goal G1

MACHINE

Validation

SEES

Type sets

OPERATIONS

validated locations ← validate (raw locations) =
PRE

raw locations ∈ SUBCOMPONENTS → (LATITUDE × LONGITUDE)
THEN

ANY valid locations

WHERE valid locations ⊆ raw locations

THEN validated locations := valid locations

END

END

END

Figure 8: The B machine V alidation associated to the goal G2

MACHINE

Fusion

SEES

Type sets

OPERATIONS

merged location ← merge (raw locations) =
PRE

raw locations ∈ SUBCOMPONENTS 7→ (LATITUDE × LONGITUDE)
THEN

ANY estimate

WHERE estimate ∈ LATITUDE × LONGITUDE

THEN merged location := estimate

END

END

END

Figure 9: The B machine Fusion associated to the goal G3

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 11

REFINEMENT

Location r

REFINES

Location

SEES

Type sets

INCLUDES

Raw location , Validation , Fusion

OPERATIONS

estimated location ← locate =
VAR subcomponents locations , validated locations

IN

subcomponents locations ← locate raw ;
validated locations ← validate (subcomponents locations) ;
estimated location ← merge (validated locations)

END

END

Figure 10: The refinement machine Location r

Since the goal G is refined into three sub-goals G1, G2 and G3 according to the milestone
goal refinement pattern, the abstract B machine Location is refined by the refinement ma-
chine Location r. Consequently, the abstract operation locate is refined by a concrete one,
called also locate (presented in Figure 10). This latter is built by combining the operations
(locate-raw, validate and merge). These invoked operations are structured as a sequence
of operations in locate-R, separated by the B sequential operator over substitutions (;). For
that, the refinement machine Location r must include the three B machines Raw-Location

, V alidation and Fusion that contains the invoked operations.

4.2.2 Second refinement.

The goal G1 is AND-refined in two subgoals:

Goal G1.1: Achieve [GPSUsed]
InformalDef: The Cycab must use the GPS system.

Goal G1.2: Achieve [WIFIUsed]
InformalDef: The Cycab must use the wireless technique.

Similarly, the sub-goals G1.1, G1.2 are represented by two B machines GPS and WIFI

(see Figures 11, 12), respectively. In each B machine, we will have a B operation that will
translate these goals: locate gps and locate wifi (respectively).

The abstract B machine Raw-Location is refined by the refinement machine Raw-Location r.
Consequently, the abstract operation locate-raw is refined by a concrete one (presented in
Figure 13). This latter invokes the operations (locate gps and locate wifi) and executes
them at the same time through the B parallel operator over substitutions (||).

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 12

MACHINE

GPS

SEES

Type sets

OPERATIONS

gps loc ← locate gps =
ANY info lat , info long

WHERE info lat ∈ LATITUDE ∧ info long ∈ LONGITUDE

THEN

gps loc := { (info lat 7→ info long) }
END

END

Figure 11: The B machine GPS associated to the abstract goal G1.1

MACHINE

WIFI

SEES

Type sets

OPERATIONS

wifi loc ← locate wifi =
ANY info lat , info long

WHERE info lat ∈ LATITUDE ∧ info long ∈ LONGITUDE

THEN wifi loc := {(info lat 7→ info long)}
END

END

Figure 12: The B machine WIFI associated to the abstract goal G1.2

REFINEMENT

Raw location r

REFINES

Raw location

SEES

Type sets

INCLUDES

GPS , WIFI

OPERATIONS

subcomponents locations ← locate raw =
VAR gps loc , wifi loc

IN

gps loc ← locate gps || wifi loc ← locate wifi ;
subcomponents locations := ({ gps } × gps loc) ∪ ({ wifi } × wifi loc)

END

END

Figure 13: The refinement machine Raw-Location r

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 13

MACHINE

Rel location

SEES

Type sets

OPERATIONS

sensors locations ← locate rel =
ANY sens locations

WHERE sens locations ∈ SUBSENSORS → (LATITUDE × LONGITUDE)
THEN sensors locations := sens locations

END

END

Figure 14: The B machine Rel location associated to the abstract goal G2.1

On the other hand, the goal G2 is refined into two sub-goals according to the milestone-
driven tactics:

Goal 2.1: Achieve [RelativeLocalizationsDone]
InformalDef: At first, a relative localization will be done.

Goal 2.2: Achieve [DataFiltered]
InformalDef: Then, all the localization data will be filtered.

The transformation into B machines (see Figures 14, 15 and 16) is done exactly as for the
first refinement.

MACHINE

Filter

SEES

Type sets

OPERATIONS

kept locations ← filter locations (new raw locations , sensors locations) =
PRE

new raw locations ∈ SUBCOMPONENTS → (LATITUDE × LONGITUDE)
∧ sensors locations ∈ SUBSENSORS → (LATITUDE × LONGITUDE)

THEN

ANY

k locations

WHERE

k locations ⊆ new raw locations

THEN

kept locations := k locations

END

END

END

Figure 15: The B machine Filter associated to the abstract goal G2.2

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 14

REFINEMENT

Validation r

REFINES

Validation

SEES

Type sets

INCLUDES

Rel location , Filter

OPERATIONS

validated locations ← validate (raw locations) =
VAR sensors locations

IN

sensors locations ← locate rel ;
ASSERT

raw locations ∈ SUBCOMPONENTS → (LATITUDE × LONGITUDE)
∧ sensors locations ∈ SUBSENSORS → (LATITUDE × LONGITUDE)

THEN

validated locations ← filter locations (raw locations, sensors locations)
END

END

END

Figure 16: The refinement machine V alidation r

MACHINE

Speed

SEES

Type sets

OPERATIONS

speed location ← locate speed =
ANY info location

WHERE info location ∈ {(LATITUDE × LONGITUDE)}
THEN

speed location := info location

END

END

Figure 17: The B machine Speed associated to the abstract goal G2.1.1

4.2.3 Third refinement.

The goal G2.1 is OR-refined in two subgoals:

Goal G2.1.1: Achieve [SpeedSensorUsed]
InformalDef: The Cycab may use a sensor system.

Goal G2.1.2: Achieve [AccelerometerSensorUsed]
InformalDef: Or, it may use the accelerometer system.

As for the other refinement levels, the sub-goals G2.1.1, G2.1.2 are represented by two B
machines Speed and Accel (see Figures 17, 18), respectively. In each B machine, we will have
a B operation that will translate these goals: locate speed and locate accel (respectively).

The abstract B machine Rel location is refined by the refinement machine Rel location r.
Consequently, the abstract operation locate rel is refined by a concrete one (presented

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 15

MACHINE

Accel

SEES

Type sets

OPERATIONS

accel location ← locate accel =
ANY info location

WHERE info location : (LATITUDE × LONGITUDE)
THEN

accel location := info location

END

END

Figure 18: The B machine Accel associated to the abstract goal G2.1.2

in Figure 19). This latter invokes the operations (locate accel and locate speed) and
executes them in a nondeterministic way through the B parallel operator over substitutions
(CHOICE).

REFINEMENT

Rel location r

REFINES

Rel location

SEES

Type sets

INCLUDES

Speed, Accel

OPERATIONS

sensors locations ← locate rel =
CHOICE

VAR speed loc

IN

speed loc ← locate speed ;
sensors locations := ({speed} × speed loc)

END

OR

VAR accel loc

IN

accel loc ← locate accel ;
sensors locations := ({accel} × accel loc)

END

END

END

Figure 19: The refinement machine Rel location r

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 16

Figure 20: The architecture of the B machines

Figure 20 shows the structure of the different B machines. The obtained architecture
allows us to easily established traceability links between KAOS goals and the B operations
that operationalize these goals.

5 Related work

Our proposed approach aims at improving traceability between KAOS models and B speci-
fications. In the sequel, we outline a number of approaches that have tried to bridge the gap
between KAOS requirements model and formal methods.

An early attempt to bridge requirements to specification in the context of the B method
is presented in [12] which proposes a goal-oriented approach to elaborate a pertinent model
and turn it into a high quality abstract B machines. The scheme used by the authors for
transforming the KAOS requirements model to B is as follows: As agents are the active
entities able to perform operations, a B machine is associated with each KAOS agent. The
agent attributes and the operations arguments are represented by the sets, variables and
constraints. All maintain goals under the agent responsibility are translated as invariants
of the corresponding B machine. All the KAOS operations that an agent has to perform are
represented by B operations.

The authors of [9] provides means for transforming the security requirements model built
with KAOS to an equivalent one in B. This abstract B model is then refined using non-trivial
B refinements that generate design specifications conforming to the initial set of security
requirements. The authors consider each operational goal and each KAOS operation as a B
operation. Also, they consider that each KAOS object, related to the operational goals, is

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 17

B machine. So, The relationship among objects is captured using the B machine imports,
includes, uses, and sees clauses that allow one B machine to relate to or compose other B ma-
chines. KAOS domain properties are transformed to B invariants or pre-conditions related to
the corresponding B operations. The authors introduce the concept of goal achievement which
is reflected through the return values of the B operations that model KAOS goals. Hence,
each B operation corresponding to an operational goal returns a flag indicating whether the
goal implemented in this operation has been achieved or not.

We can also point out a work [11] proposing an automatically generator that transforms
an extend KAOS model into VDM++ specifications. The generator connects operations in
KAOS to those in VDM++, and entities in KAOS to objects or types in VDM++. The
generated specification contains implicit operations consisting of pre- and post-conditions,
inputs, and outputs of operations. However, this generated specifications require software
developers to add the body of operations in order to create explicit specifications.

The GOPCSD (Goal-oriented Process Control System Design) tool [5] is an adaptation
of the KAOS method that serves to analyze the KAOS requirements and generate B formal
specifications. The tool is used to construct the application requirements in the form of goal-
models by interacting with the user and importing library templates. Then, the requirements
are checked to enable the system engineer to debug and correct them. Finally, the require-
ments will be translated to B specifications. The generated specifications can be refined and
translated to executable code by a software engineer.

Recently, [15] presents a constructive verification-based approach that try to bridge the
gap between declarative requirements and operational system specifications in a rigorous
manner. The approach consists in linking high-level system requirements, expressed as linear
temporal logic formulae, to a system specification expressed as an Event-B machine extended
with the notion of obligations [13]. The source requirements are included as verification
assertions that can be model-checked by tools like ProB [14], showing that the proposed
specification indeed meets the system requirements.

[10] presents very briefly a new approach that consists in including the requirements
analysis phase in the software development associated with the formal methods by deriving
an Event-B specification from a KAOS goal model. The interest of this constructive approach
(driven by goals) is that the obtained specification preserves the properties of KAOS models.
Thus, [10] shows that it is possible to express KAOS goal models with formal method like
Event-B by staying at the same abstraction level.

Nevertheless, the traceability expressed by most of these works remains partial because
they don’t consider all the parts of the KAOS goal model but only the requirements (op-
erational goals). Consequently, the formal model do not include any information about the
non-operational goals and the type of goal refinement. In this report, we have explored
how to cope with this problem using a new traceability approach between the whole KAOS
goal model and the formal model. Hence, what we present can be very useful in practice
to (i) systematically verify that all KAOS requirements are represented in the B model; (ii)
systematically verify that each element in the B model has a purpose in KAOS.

6 Conclusion and further work

In this report, we present a mapping between KAOS requirements and B models. The
main contribution of our approach is that it establishes a bridge between the non-formal
and the formal worlds as narrow and concise as possible. Moreover, this bridge balances the
tradeoff between complexity of rigid formality (B method) and expressiveness of semi-formal

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 18

approaches (KAOS). While this report introduces and demonstrates the approach, a number
of future research steps are ongoing. In fact, the current mapping is still partial and we are
working on its extensions. Further work will consist in applying the approach on a number
of case studies in order to support non-functional goals. At tool level, we plan to develop a
connector that establish a partial automated traceability between KAOS goal models and B
specifications.

Acknowledgment

The work in this report is supported by the TACOS project ANR-06-SETI-017 founded by
the french ANR (National Research Agency).

References

[1] J.R. Abrial. The B-Book: Assigning programs to meanings. Cambridge University Press,
1996.

[2] J.M. Spivey. Understanding Z. Cambridge University Press, 1988.

[3] J.R. Abrial and L. Mussat. Introducing dynamic constraints in B. In B’98, volume 1393
of LNCS, pages 83–128, Montpellier, France, April 1998. Springer-Verlag.

[4] R. Darimont and A. van Lamsweerde. Formal Refinement Patterns for Goal-Driven
Requirements Elaboration. In SIGSOFT ’96, pages 179–190, San Francisco, California,
USA, October 1996. ACM SIGSOFT.

[5] I. El-Madah and T. Maibaum. Goal-Oriented Requirements Analysis for Process Control
Systems Design. In MEMOCODE 2003, pages 45–46, Mont Saint-Michel, France, June
2003. IEEE Computer Society.

[6] A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour. In RE
2001, pp. 249–263, Toronto, Canada, August 2001. IEEE Computer Society.

[7] E. Letier. Reasoning About Agents in Goal-Oriented Requirements Engineering. Phd
Thesis, Université Catholique de Louvain, Dépt. Ingénierie Informatique, Louvain-la-
Neuve, Belgium, Mai 2001.ftp://ftp.info.ucl.ac.be/pub/thesis/letier.pdf

[8] A. van Lamsweerde. Requirements Engineering: From System Goals to UML Models to
Software Specifications. Wiley, 2009.

[9] R. Hassan and S. Bohner and S. El-Kassas and M. Eltoweissy. Goal-Oriented, B-Based
Formal Derivation of Security Design Specifications from Security Requirements. In
ARES 2008, pages 1443–1450, Barcelona, Spain, March 2008. IEEE Computer Society.

[10] A. Matoussi and F. Gervais and R. Laleau A First Attempt to Express KAOS Refinement
Patterns with Event B. In ABZ 2008, pages 338, London, UK, September 2008. Springer.

[11] H. Nakagawa and K. Taguchi and S. Honiden. Formal Specification Generator for KAOS:
Model Transformation Approach to Generate Formal Specifications from KAOS Require-
ments Models. In ASE 2007, pages 531–532, Atlanta, Georgia, USA, November 2007.
ACM.

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 19

[12] C. Ponsard and E. Dieul. From Requirements Models to Formal Specifications in B. In
REMO2V’2006, Luxembourg, June 2006.

[13] J. Bicarregui and A. Arenas and B. Aziz and P. Massonet and C. Ponsard. Towards
Modelling Obligations in Event-B. In ABZ 2008, pages 181–194, London, UK, September
2008. Springer.

[14] M. Leuschel and M. Butler. ProB: A Model Checker for B. In K. Araki, S. Gnesi,
D. Mandrioli (eds), FME 2003: Formal Methods, LNCS 2805, pages 855–874, 2003.
Springer.

[15] B. Aziz and A. Arenas and J. Bicarregui and C. Ponsard and P. Massonet. From Goal-
Oriented Requirements to Event-B Specifications. In In: First Nasa Formal Method
Symposium (NFM 2009) , Moffett Field, California , USA, April 2009.

[16] D. Cansell and D. Mery. Tutorial on the event-based B method : Concepts and case
studies. In FORTE 2006, Paris, September 2006.

[17] OCZ. Gotel and CW Finkelstein. An analysis of the requirements traceability problem.
In Proceedings of the First International Conference on Requirements Engineering, pages
94–101, 1994. IEEE Computer Society Press.

[18] W.N. Robinson and S. Pawlowski. Surfacing Root Requirements Interactions from In-
quiry Cycle Requirements Documents. In The Third IEEE International Conference on
Requirements Engineering (ICRE’98), pages 82–89, Colorado Springs, CO, USA, 1998.
IEEE Computer Society Press.

[19] E. Yu. Towards Modeling and Reasoning Support for Early-Phase Requirements En-
gineering. In Proceedings of the 3rd IEEE International Symposium on Requirements
Engineering (RE’97), pages 226-235, 1997. IEEE Computer Society Press.

[20] P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. METEOR : A successful application
of B in a large project. In FM ’99: Proceedings of the Wold Congress on Formal Methods
in the Development of Computing Systems, Volume I pages 369–387, 1999. Springer.

[21] F. Badeau and A. Amelot. Using B as a high level programming language in an industrial
project: Roissy val. In Proceedings of the 4th International Conference of B and Z Users
(ZB05), pages 334–354, Guildford, UK, 2005. Springer.

[22] D. Bjorner, and C. Jones. The Vienna Development Method: The Meta-Language 1978.
Springer.

[23] M. Carnot, C. DaSilva, B. Dehbonei, and F. Mejia. Error-free software development for
critical systems using the B-methodology. In The Third IEEE International Symposium
on Software Reliability Engineering, pages 274–281, North Carolina, October 1992. IEEE
Computer Society Press.

[24] B. Dehbonei and F. Mejia. Formal development of safety-critical software systems in
railway signalling. In M. G. Hinchey and J. P. Bowen, editors, Applications of Formal
Methods, Series in Computer Science, pages 227–252, 1995. Prentice Hall International.

A. Matoussi, R. Laleau, D. Petit. Bridging the gap between KAOS requirements models and B specifications 20

[25] B. Tatibout, A. Requet, J.-C. Voisinet, and A. Hammad. Java card code generation
from B specifications. In I. J. Dong and E. J. Woodcock, editors, ICFEM, volume 2885,
pages 306–318. Formal Methods and Software Engineering, 2003. Springer.

[26] J. Hallberg and M. Nilsson and K. Synnes. Positioning with bluetooth. In 10th Int.
Conference on Telecommunications (ICT’2003), pages 954-958, 2003.

[27] J.A. Royo and E. Mena and L.C. Gallego. Locating Users to Develop Location-Based
Services in Wireless Local Area Networks. In Symposium on Ubiquitous Computing and
Ambient Intelligence (UCAmI2005), pages 471-478, Granada, Spain, 2005.

[28] R.J. Orr and G.D. Abowd. The smart floor: A mechanism for natural user identification
and tracking. In Conference on Human Factors in Computing Systems (CHI2000), pages
1–6, 2000. ACM Press

