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Employing formal methods for complex systems specification is steadily growing from year to year. Whereas the formal specification process from abstraction to implementation via refinement is well understood, the traceability between initial user requirements (requirements analysis) and the corresponding formal specification is still unsatisfying and ambiguous. In fact, there is little research on reconciling the requirements phase with the formal specification phase. Consequently, the gap between the requirements phase and the formal specification phase continues to grow larger and the reconciliation seems more and more difficult and complicated. Our objective is to combine these two phases by using KAOS and the B method. KAOS is a goal-oriented methodology for requirements engineering enabling analysis to build requirements models and to derive requirements documents. B is a model-based formal method supported by tools and that allows the design of systems, from specification to implementation. For that purpose, we propose to derive the architecture of the B specification from the KAOS goal model. This makes traceability between KAOS requirements and B models more explicit.

Introduction

Employing formal methods like B [START_REF] Petit | The B-Book: Assigning programs to meanings[END_REF] and Z [START_REF] Spivey | Understanding Z[END_REF] for complex systems specification is steadily growing from year to year. They have shown their ability to produce such systems for large industrial problems such as Paris metro line 14 [START_REF] Behm | METEOR : A successful application of B in a large project[END_REF] or Roissy Val [START_REF] Badeau | Using B as a high level programming language in an industrial project: Roissy val[END_REF] using B method. With most of formal methods, an initial mathematical model is refined in multiple steps, until the final refinement contains enough details for an implementation. This initial model is derived from the user requirements (requirements analysis) which has to be carefully written before embarking in any computerized system development. As this formal development chain matures, the major remaining weakness in the development chain is the gap between textual or semi-formal requirements and the initial formal specification. In fact, the validation of this initial formal specification is very difficult due to the inability to understand formal models (for customers) and to link them with initial requirements (for designers). Consequently, the gap between the requirements phase and the formal specification phase gets larger and larger and the reconciliation seems more and more difficult. This report aims to bridge this gap using the requirements analysis method KAOS and the B formal method. For that, we propose a pragmatic approach to make traceability between requirements and B models more explicit since traceability has become a key subject of requirements engineering research [START_REF] Ocz | An analysis of the requirements traceability problem[END_REF]. In a first step, we do not attempt to automate traceability or to create a perfect mapping. Rather, we attempt to narrow the gap between the two phases by deriving the architecture of the formal specification. This allows systematic analysis, validation and verification of the mapping.

The remainder of the report is organized as follows. Section 2 overviews the KAOS and the B formal methods that are employed in the proposed approach. Section 3 details our traceability approach between a KAOS goal model and the B machines. Section 4 demonstrates the approach with a case study. Section 5 discusses related work. Finally, Section 6 concludes with an outline of future work.

Background

This section briefly describes the two methods that the proposed approach is based on, namely the B formal method and the KAOS method.

The B method

The B method [START_REF] Petit | The B-Book: Assigning programs to meanings[END_REF] is a formal method for specifying, designing and coding software systems that integrates formal proof techniques in software development. This method share the same fundamentals as Z [START_REF] Spivey | Understanding Z[END_REF] and VDM [START_REF] Bjorner | The Vienna Development Method: The Meta-Language[END_REF]. It was used in the METEOR project [START_REF] Behm | METEOR : A successful application of B in a large project[END_REF], as well as in less well-known development projects [START_REF] Carnot | Error-free software development for critical systems using the B-methodology[END_REF][START_REF] Dehbonei | Formal development of safety-critical software systems in railway signalling[END_REF] and even non-critical development projects [START_REF] Tatibout | Java card code generation from specifications[END_REF]. The software industry adopted B largely because of the availability of software tools supporting all phases of the B development process.

The B method is based on Abstract Machine Notation (AMN) and the use of formally proved refinements. Its mathematical basis is extracted from first-order logic, integer arithmetic and set theory. The original B (referred to as classical B, [START_REF] Petit | The B-Book: Assigning programs to meanings[END_REF] ) has a rich feature set that got consciously reduced in the more recent Event-B [START_REF] Abrial | Introducing dynamic constraints in B. In B'98[END_REF][START_REF] Cansell | Tutorial on the event-based B method : Concepts and case studies[END_REF] in order to make the notation easier to use and automated proving easier to implement. A B specification is structured in machines. One of the main parts of a B machine is the state space definition, which appears in the VARIABLES and INVARIANT clauses. The former enumerates the state components, and the latter defines restrictions on the possible values they can take. Operations allow machine variables to be transformed. The machine operations are defined by generalized substitutions, and each one contains: (i) a precondition represented by a predicate which expresses conditions to call this operation; (ii) an action represented by a substitution which expresses how machine variables evolve. Machines in classical B are labeled according to their abstraction level: MACHINE, RE-FINEMENT or IMPLEMENTATION, from the most abstract to the most concrete:

• The abstract machine is the decomposition unit of the B method which contains: (i) a static part which specifies the system state. This specification defines the variables describing the state of system components and the invariants which are logical formulas expressing the system static rules; (ii) a dynamic part which expresses the initialization and the evolution of the system state through a set of operations. Each operation must preserve the invariant of the machine.

• The refinement mechanism consists in reformulating, by successive steps, the variables and the operations of the abstract machine, so as to lead finally to a module which constitutes a running program. The intermediate steps of reformulation are called refinements and the last refinement level is called the implementation. A key merit of this refinement mechanism is the ability to preserve already proven system properties in higher level models. Hence, the refinement of an operation is correctly proven if it establishes the same result as its abstraction.

Each B component (MACHINE, REFINEMENT or IMPLEMENTATION) is structured using a single language, the B language. B models are accompanied by mathematical proofs, called proof obligations that guarantee correctness and effectiveness of system development. Industrial tools for the development of B based projects, which automatically generates proof obligations to be proven, have been available for a while now such as Atelier B1 .

KAOS methodology

KAOS (Knowledge Acquisition in autOmated Specification) [START_REF] Van Lamsweerde | Goal-Oriented Requirements Engineering: A Guided Tour[END_REF][START_REF] Letier | Reasoning About Agents in Goal-Oriented Requirements Engineering[END_REF] is a goal-based requirements engineering method. KAOS requires the building of a data model in UML-like notation. The particularity of KAOS is that it is able to implement goal-based reasoning. A goal defines an objective the system should meet, usually through the cooperation of multiple agents such as devices or humans. KAOS differentiates between goals and domain properties that are descriptive statements about the environment such as physical laws, organizational norms or policies, etc. KAOS is composed of several sub-models related through inter-model consistency rules:

• The central model is the goal model which describes the goals of a system and its environment. Goals are organized in a hierarchy obtained from the refinement of higher level goals into lower-level goals using the concept of refinement patterns [START_REF] Darimont | Formal Refinement Patterns for Goal-Driven Requirements Elaboration[END_REF]. Higherlevel goals are strategic and coarse-grained while lower-level goals are technical and fine-grained (more operational in nature).

• The object model defines the objects (agents, entity...) of interest in the application domain.

• The agent responsibility model takes care of assigning goals to agents in a realizable way.

• The operation model sums up all the behaviors that agents need to have to fulfill their requirements. Behaviors are expressed in term of operations performed by agents. Those operations work on objects described in the object model. So, they can create objects, provoke object state transitions or trigger other operations through send and receive events.

KAOS provides an optional formal assertion layer for the specification of goals in Real-Time Linear Temporal Logic (RT-LTL). Thanks to the use of developed formal reasoning techniques, analysts can identify and resolve conflicts between goals and prove absolute or partial goal satisfaction. A formal goal definition in KAOS begins with the description of the objects that the goal concerns. The definition then states the desired temporal ordering of states the concerned objects must hold in order to satisfy the goal. Goals are defined in the form: C ⇒ op T where C and T are assertions about environmental situations, and op is a temporal operator that indicates the desired temporal nature of the target situation (T ), in relation to a current situation (C).

KAOS provides a catalog of "Goal Patterns" that generalize the most common goal configurations. Achieve Goals (C ⇒ ⋄T ) desire achievement "some time in the future". That is, the target must eventually occur. Cease Goals (C ⇒ ⋄¬T ) disallow achievement "some time in the future". That is, there must be a state in the future where the target does not occur. Maintain Goals (C ⇒ T ) must hold "at all times in the future". Avoid Goals (C ⇒ ¬T ) must not hold "at all times in the future".

Goals in KAOS can be either "AND" or "OR" refined. A goal is AND-refined into sub-goals, such that the conjunction of the subgoals is a sufficient condition to achieve the parent goal. The OR-refinement relates a goal to a set of alternative subgoals in which the achievement of the higher-level goal requires the achievement of at least one of its subgoals. KAOS offers a lot of refinement patterns [START_REF] Darimont | Formal Refinement Patterns for Goal-Driven Requirements Elaboration[END_REF] that decompose goals. These patterns can only be used in the context of different tactics defined in KAOS such as the milestone-driven tactics which consists in identifying milestone states that must be reached to achieve the target predicate. The sub-goals G 1 , G 2 , ..., G n (n ≥ 2) refine a goal G in a domain theory Dom if the following conditions hold:

1. G 1 , G 2 , . . . , G n , Dom |= G (entailment) 2. j =i G j , Dom G for each i ∈ [1..n] (minimality) 3. G 1 , G 2 , . . . , G n , Dom f alse (consistency)
The first condition requires that the satisfaction of the subgoals together with the satisfaction of domain properties in Dom is sufficient for satisfying the parent goal G. The second condition requires that if a subgoal is left out of the refinement, the remaining subgoals are not sufficient for satisfying the parent goal. The third condition requires that the conjunction of the subgoals is logically consistent with the domain theory.

Thus, KAOS provides a set of domain independent refinement patterns which respect all these conditions and serve as guidance. These patterns help in improving the completeness and the consistency of goal models. They are grouped by the behavior prescription of the four high-level goals (Achieve, Avoid, Maintain and Cease) and can only be used in the context described by the tactics defined in KAOS.

KAOS also provides a criterion for stopping the refinement process. If a goal can be assigned to the sole responsibility of an individual agent, there is no need for further goal refinement to occur. Operational goals (goals that are assigned to agents) are the leaves of a goal graph. Each leaf can be either a requirement (if it is assigned to an agent of the system) or an expectation (if it is assigned to an agent in the environment). The reader may refer to [START_REF] Van Lamsweerde | Requirements Engineering: From System Goals to UML Models to Software Specifications[END_REF] for a full description of these notions.

Unfortunately, the KAOS method stops at the requirements phase and doesn't address the other software development levels. This is a serious shortcoming since it obliges designers to use another method for developing their systems. Consequently, it is difficult to validate specifications with regard to requirements. Nevertheless, contrary to other requirements methods such as i* [START_REF] Yu | Towards Modeling and Reasoning Support for Early-Phase Requirements Engineering[END_REF], KAOS is promising in that it can be extended with an extra step of formality which can fill in the gap between requirements and the later phases of development. For instance, the fact that both KAOS and B employ first-order predicate logic facilitates the correspondence between KAOS requirements models and B specifications.

Correspondence rules between KAOS goal models and B specifications

The transition from the requirements phase to the formal specification phase is one of the most difficult steps in software development. The ideal solution would be to automatically derive B specifications from KAOS goal models. Unfortunately, this solution is very complicated and hard to set up since it is necessary to construct the body of B operations. To overcome these difficulties, we present a simpler solution that consists in defining a mapping between requirements and B models to improve traceability. There has been substantial research on traceability [START_REF] Ocz | An analysis of the requirements traceability problem[END_REF]. Commonly, pre-and post-traceability are distinguished. Traceability of requirements towards specification is called post-traceability (or forward traceability). Traceability of a requirement back to its origin is named pre-traceability (or backward traceability).

In this report, we are interested in post-traceability only.

Since goals play an important role in requirements engineering process, the proposed mapping comes down to ensure traceability between KAOS goal models and B machines. Indeed, [START_REF] Robinson | Surfacing Root Requirements Interactions from Inquiry Cycle Requirements Documents[END_REF] affirms that goals provide a bridge linking stakeholder requests to system specification. As a consequence, rather than establishing traceability from the KAOS requirements model as a whole, we propose to establish traceability from individual goals that are part of the KAOS goal model.

The main idea is to build the architecture of the specification from the goal model. It consists in defining what a B machine contains and the links between the different machines. A B machine M G is associated with each goal G. This machine M G contains an operation called OP G that operationalizes this goal G; i.e. it describes the "work" to perform to reach the goal G, in terms of generalized substitutions. Moreover, each refinement of the goal G is represented by a B refinement machine Ref M G that refines the machine M G ; i.e. the abstract operation OP G is refined by a concrete one, called Ref OP G2 . Therefore, we have explored the natural complementarities between KAOS and B because both of them have the notion of refinement and are based on a constructive approach of refinement. It means that the B refinement verifies the above-mentioned KAOS refinement conditions. Of course, this needs to be formally proved, this is an ongoing work.

The following issue consists in structuring the B specification. There are a number of ways to structure these B machines. In fact, B offers a lot of relationships, such as the inclusion mechanism. It is the main mechanism for structuring large machines. It allows the abstract system state to be divided into several independent parts, each encapsulated by a separate included machine. These parts can then be combined into a single "including" B machines using the INCLUDES clause.

Consequently, our idea is that the B machines M G1 ...M Gn (related to the sub-goals of the goal G) are linked to the B machine Ref M G via the inclusion relationship INCLUDES. As the including machine state Ref M G is the combined state of all its included machines, the operation Ref OP G which changes the state is built by combining operations (OP G1 ...OP Gn ) of the included machines M G1 ...M Gn . The nature of this combination depends on the goal refinement pattern. We can distinguish three cases:

• Milestone goal refinement pattern: It prescribes that some milestone states are mandatory in order to reach a final one. For that, we consider that all the invoked operations (OP G1 ...OP Gn ) are structured as a sequence of operations in Ref OP G , separated by the B sequential operator over substitutions (; ) as shown in Figure 1. 

Case Study: The localization component

The objective of this section is to demonstrate the proposed approach through the localization component case study. The coming subsections briefly describes the localization component requirements followed by showing how to elaborate these requirements in KAOS and how to ensure traceability between KAOS models and B specifications.

An overview of the localization component

A localization system is a critical part of a land transportation system. Many positioning systems have been proposed over the last years. GPS, one of the most widely used positioning system, is perhaps the best-known. This system belongs to the GNSS (Global Navigation Satellite Systems) family which also regroups GALILEO or GLONASS. Services relying on GALILEO will benefit from a better accuracy estimated to less than 2 meters against 5 to 10 meters for the GPS system. One of the novel aspects of GALILEO resides in a new integrity signal to inform users whether they can trust or not the signal transmitted to them. The objective is here to improve the confidence in the positionning information to envisage the deployment of more critical applications.

Positioning systems are often dedicated to a particular environment; the GNSS technology, for example, generally does not work indoors. To resolve these problems, numerous alternative relying on very different technologies have arisen. In the last few years, Wireless LAN such as IEEE 802.11 networks have been considered by numerous location systems. These systems all use the radio signal strength to determine the physical location.

Localization systems can therefore be designed using various technologies like wireless personal netowrks such as Wifi or Bluetooth [START_REF] Hallberg | Positioning with bluetooth[END_REF][START_REF] Royo | Locating Users to Develop Location-Based Services in Wireless Local Area Networks[END_REF], sensors [START_REF] Orr | The smart floor: A mechanism for natural user identification and tracking[END_REF], GNSS repeaters or visual landmarks.

The KAOS goal model of the localization component

In this report we have modelize a localization component based on several basic and off-theshelf technologies : GPS, WIFI and sensors. This localization system will be used in a model of an autonomous vehicule : a CyCab. Figure 4 show a KAOS goal model of a localization component. Each Goal is described informally in natural language. In this report, we focus on the most frequently used "Goal Patterns" : the Achieve goals. The other "Goals Patterns" will be studied in further works. The high level goal G is defined as follows:

Goal G: Achieve [CycabLocalized]
InformalDef: The Cycab/vehicle must be localized.

In order to build the architecture of the specification from the above KAOS goal model, we must define what a B machine contains and the links between the different obtained B machines. As explained in Section 3, a B machine is associated with each goal. For instance, we associate a B machine Location to the most abstract goal G. In this B machine, we will have an operation called locate that will translate this goal; i.e. it describes the "work" to perform to reach the goal G, in terms of generalized substitutions. If we consider that obtaining a localization is to get a latitude and a longitude, we obtain the operation presented in Figure 5. Sets in upercase are abstract sets used to type the variables and are described in the B machine T ype sets as shown in Figure 6. The goal G is refined into three sub-goals according to the milestone-driven tactics:

Goal G 1 : Achieve [RawLocalizationsDone]
InformalDef: Firstly, a raw localization will be done.

Goal G 2 : Achieve [DataLocalizationValidated] InformalDef: Then, all the localization data will be validated.

Goal G 3 : Achieve [DataMerged]

InformalDef: Finally, all the data will be merged in order to obtain the final localization.

the sub-goals 1 , G 2 and G 3 are represented by three B machines Raw-Location, V alidation and F usion (see Figures 7, 8 and9), respectively. In each B machine, we will have a B operation that will translate these goals: locate-raw, validate and merge (respectively). Since the goal G is refined into three sub-goals G 1 , G 2 and G 3 according to the milestone goal refinement pattern, the abstract B machine Location is refined by the refinement machine Location r. Consequently, the abstract operation locate is refined by a concrete one, called also locate (presented in Figure 10). This latter is built by combining the operations (locate-raw, validate and merge). These invoked operations are structured as a sequence of operations in locate-R, separated by the B sequential operator over substitutions (; ). For that, the refinement machine Location r must include the three B machines Raw-Location , V alidation and F usion that contains the invoked operations.

Second refinement.

The goal G 1 is AND-refined in two subgoals:

Goal G 1.1 : Achieve [GPSUsed]
InformalDef: The Cycab must use the GPS system.

Goal G 1.2 : Achieve [WIFIUsed] InformalDef:
The Cycab must use the wireless technique.

Similarly, the sub-goals 1.1 , G 1.2 are represented by two B machines GP S and W IF I (see Figures 11,[START_REF] Ponsard | From Requirements Models to Formal Specifications in B. In REMO2V[END_REF], respectively. In each B machine, we will have a B operation that will translate these goals: locate gps and locate wifi (respectively). abstract B machine Raw-Location is refined by the refinement machine Raw-Location r. Consequently, the abstract operation locate-raw is refined by a concrete one (presented in Figure 13). This latter invokes the operations (locate gps and locate wifi) and executes them at the same time through the B parallel operator over substitutions (||). On the other hand, the goal G 2 is refined into two sub-goals according to the milestonedriven tactics:

Goal 2.1 : Achieve [RelativeLocalizationsDone]
InformalDef: At first, a relative localization will be done.

Goal 2.2 : Achieve [DataFiltered] InformalDef:
Then, all the localization data will be filtered.

The transformation into B machines (see Figures 

Third refinement.

The goal G 2.1 is OR-refined in two subgoals:

Goal G 2.1.1 : Achieve [SpeedSensorUsed]
InformalDef: The Cycab may use a sensor system.

Goal G 2.1.2 : Achieve [AccelerometerSensorUsed]
InformalDef: Or, it may use the accelerometer system.

As for the other refinement levels, the sub-goals G 2.1.1 , G 2.1.2 are represented by two B machines Speed and Accel (see Figures 17,[START_REF] Robinson | Surfacing Root Requirements Interactions from Inquiry Cycle Requirements Documents[END_REF], respectively. In each B machine, we will have a B operation that will translate these goals: locate speed and locate accel (respectively).

The abstract B machine Rel location is refined by the refinement machine Rel location r. Consequently, the abstract operation locate rel is refined by a concrete one (presented in Figure 19). This latter invokes the operations (locate accel and locate speed) and executes them in a nondeterministic way through the B parallel operator over substitutions (CHOICE). 

REFINEMENT

Related work

Our proposed approach aims at improving traceability between KAOS models and B specifications. In the sequel, we outline a number of approaches that have tried to bridge the gap between KAOS requirements model and formal methods.

An early attempt to bridge requirements to specification in the context of the B method is presented in [START_REF] Ponsard | From Requirements Models to Formal Specifications in B. In REMO2V[END_REF] which proposes a goal-oriented approach to elaborate a pertinent model and turn it into a high quality abstract B machines. The scheme used by the authors for transforming the KAOS requirements model to B is as follows: As agents are the active entities able to perform operations, a B machine is associated with each KAOS agent. The agent attributes and the operations arguments are represented by the sets, variables and constraints. All maintain goals under the agent responsibility are translated as invariants of the corresponding B machine. All the KAOS operations that an agent has to perform are represented by B operations.

The authors of [START_REF] Hassan | Goal-Oriented, B-Based Formal Derivation of Security Design Specifications from Security Requirements[END_REF] provides means for transforming the security requirements model built with KAOS to an equivalent one in B. This abstract B model is then refined using non-trivial B refinements that generate design specifications conforming to the initial set of security requirements. The authors consider each operational goal and each KAOS operation as a B operation. Also, they consider that each KAOS object, related to the operational goals, is B machine. So, The relationship among objects is captured using the B machine imports, includes, uses, and sees clauses that allow one B machine to relate to or compose other B machines. KAOS domain properties are transformed to B invariants or pre-conditions related to the corresponding B operations. The authors introduce the concept of goal achievement which reflected through the return values of the B operations that model KAOS goals. Hence, each B operation corresponding to an operational goal returns a flag indicating whether the goal implemented in this operation has been achieved or not.

We can also point out a work [START_REF] Nakagawa | Formal Specification Generator for KAOS: Model Transformation Approach to Generate Formal Specifications from KAOS Requirements Models[END_REF] proposing an automatically generator that transforms an extend KAOS model into VDM++ specifications. The generator connects operations in KAOS to those in VDM++, and entities in KAOS to objects or types in VDM++. The generated specification contains implicit operations consisting of pre-and post-conditions, inputs, and outputs of operations. However, this generated specifications require software developers to add the body of operations in order to create explicit specifications.

The GOPCSD (Goal-oriented Process Control System Design) tool [START_REF] El-Madah | Goal-Oriented Requirements Analysis for Process Control Systems Design[END_REF] is an adaptation of the KAOS method that serves to analyze the KAOS requirements and generate B formal specifications. The tool is used to construct the application requirements in the form of goalmodels by interacting with the user and importing library templates. Then, the requirements are checked to enable the system engineer to debug and correct them. Finally, the requirements will be translated to B specifications. The generated specifications can be refined and translated to executable code by a software engineer.

Recently, [START_REF] Aziz | From Goal-Oriented Requirements to Event-B Specifications[END_REF] presents a constructive verification-based approach that try to bridge the gap between declarative requirements and operational system specifications in a rigorous manner. The approach consists in linking high-level system requirements, expressed as linear temporal logic formulae, to a system specification expressed as an Event-B machine extended with the notion of obligations [START_REF] Bicarregui | Towards Modelling Obligations in Event-B[END_REF]. The source requirements are included as verification assertions that can be model-checked by tools like ProB [START_REF] Leuschel | ProB: A Model Checker for B[END_REF], showing that the proposed specification indeed meets the system requirements.

[10] presents very briefly a new approach that consists in including the requirements analysis phase in the software development associated with the formal methods by deriving an Event-B specification from a KAOS goal model. The interest of this constructive approach (driven by goals) is that the obtained specification preserves the properties of KAOS models. Thus, [START_REF] Matoussi | Laleau A First Attempt to Express KAOS Refinement Patterns with Event B[END_REF] shows that it is possible to express KAOS goal models with formal method like Event-B by staying at the same abstraction level.

Nevertheless, the traceability expressed by most of these works remains partial because they don't consider all the parts of the KAOS goal model but only the requirements (operational goals). Consequently, the formal model do not include any information about the non-operational goals and the type of goal refinement. In this report, we have explored how to cope with this problem using a new traceability approach between the whole KAOS goal model and the formal model. Hence, what we present can be very useful in practice to (i) systematically verify that all KAOS requirements are represented in the B model; (ii) systematically verify that each element in the B model has a purpose in KAOS.

Conclusion and further work

In this report, we present a mapping between KAOS requirements and B models. The main contribution of our approach is that it establishes a bridge between the non-formal and the formal worlds as narrow and concise as possible. Moreover, this bridge balances the tradeoff between complexity of rigid formality (B method) and expressiveness of semi-formal approaches (KAOS). While this report introduces and demonstrates the approach, a number of future research steps are ongoing. In fact, the current mapping is still partial and we are working on its extensions. Further work will consist in applying the approach on a number of case studies in to support non-functional goals. At tool level, we plan to develop a connector that establish a partial automated traceability between KAOS goal models and B specifications.
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  14, 15 and 16) is done exactly as for the first refinement.
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kept locations ← filter locations (new raw locations , sensors locations ) = PRE new raw locations ∈ SUBCOMPONENTS → (LATITUDE × LONGITUDE) ∧ sensors locations ∈ SUBSENSORS → ( LATITUDE × LONGITUDE)
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Usually, in B, the refined operation has the same name as the abstract operation
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