
HAL Id: hal-01224645
https://hal.science/hal-01224645v1

Submitted on 16 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Expressing access control policies with an event-based
approach

Pierre Konopacki, Marc Frappier, Régine Laleau

To cite this version:
Pierre Konopacki, Marc Frappier, Régine Laleau. Expressing access control policies with an event-
based approach. [Research Report] TR-LACL-2010-6, LACL. 2010. �hal-01224645�

https://hal.science/hal-01224645v1
https://hal.archives-ouvertes.fr


Expressing access control policies with an event-based
approach

Pierre Konopacki Marc Frappier R égine Laleau

March 2010

TR–LACL–2010–6

Laboratoire d’Algorithmique, Complexit é et Logique (LACL)
Département d’Informatique

Université Paris 12 – Val de Marne, Facult́e des Science et Technologie
61, Avenue du Général de Gaulle, 94010 Créteil cedex France

Tel.: (33)(1) 45 17 16 47, Fax: (33)(1) 45 17 66 01



Laboratory of Algorithmics, Complexity and Logic (LACL)
University Paris 12 (Paris East)

Technical ReportTR–LACL–2010–6

P. Konopacki, M. Frappier, R. Laleau.
Expressing access control policies with an event-based approach

c© P. Konopacki, M. Frappier, R. Laleau, March 2010.



Expressing access control policies with an event-based approach

Pierre Konopacki Marc Frappier R égine Laleau

Laboratory of Algorithmics, Complexity and Logic - University Paris 12 (Paris East), France
Groupe de Recherche en Ingéniérie du Logiciel - Sherbrooke University, Canada

{pierre.konopacki,laleau}@univ-paris12.fr
{pierre.konopacki,marc.frappier}@usherbrooke.ca

Abstract

In this paper, we introduceEB3SEC. This language is used to express access control policies in
information systems. Permissions and prohibitions are expressed with a class diagram.EB3SEC

also includes a process algebra. This process algebra allows one to express specific constraints
over permissions and prohibitions. Organizational constraints such as obligation and separation
of duty are also supported by process algebra. Separation ofduty constraints can be expressed at
a workflow process level. Standards such as RBAC or OrBAC can be used to express the access
control policy, but their derivatives can also be used.EB3SEC provide a formal language with
a high level of expressiveness to describe access control policies. Keywords. Access Control,
Formal Security Methods, Security Models

1 Introduction

Information Systems (IS) are widely used in various economical and social areas. They contain pri-
vate and valuable data for their owners. In an IS security is enforced by many mechanisms, such as
secured protocols used between clients and servers or between servers in a distributed architecture.
The most used architecture to develop IS is the Service Oriented Architecture (SOA). Many mecha-
nisms have also been developed to secure different components of an IS build with this architecture,
or to secure communication between those components [14]. All those tools deserve one purpose :
to enforce an access control (AC) policy. The AC policy is thepart of the security policy that deals
with authorizations granted to users. An AC policy badly defined can lead to major issues for the
company that uses the IS : as an example we can cite banks that lost billiards since a trader used more
authorization that he should have been granted.

Security is an important goal for IS designers. In IS, data integrity is insured by anaccess control
(AC) policy which is implemented in the software and enforced by mechanisms like encryption, se-
cure data transfer protocols and authentication protocols. Furthermore, in some domains, IS security
is regulated by laws. As an example, in the financial domain, we can cite the Sarbane-Oxley law in
the United-States [23] and the Mer law in France [19]. In health care area, we can cite the PIPEDA
law in Canada [13]. These laws aim to protect information by regulating their access. Organisations
have to prove that the AC policy used by their IS comply with these laws. In this paper we propose a
new formal method which aims to model AC policies.

Our project is conducted with an industrial partner from thebanking industry in Canada. The
management of security policies in an industrial context isa highly complex task. Security policies



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 2

are informally described using plain English and adhoc diagrams, and then they are implemented into
concrete programs, in various components. Generally, the AC policy is implemented directly in the
individual services, mixed with the business logic of the IS. The traceability between the natural lan-
guage specification and the implementation code is hard to maintain. Thus, modifying and validating
an AC policy is a hard task. A small change in AC policy may easily take up to a month of effort for
implementation. With the current turmoil about security inthe industry, security policies are bound
to be frequently changed, which induces high maintenance costs for organisations.

Our goal is to streamline the management of AC policies. In this paper, we defineEB3SEC:
a simple, abstract, formal specification language to describe AC policies. To describe the use of
EB3SEC we give some example of how common AC constraints can be expressed inEB3SEC. The
idea is to develop security filter based onEB3SECmodeling. The first step to achieve this this goal is
to show a prototype of tool usingEB3SEC. We choose to present an interpretor that uses anEB3SEC

specification to grant or refuse incoming events.
The paper is structured as follows. Section 2 explains the problem addressed byEB3SEC. Sec-

tion 3 presents theEB3SEC language and the constraints that can be expressed in anEB3SEC model.
The expressiveness of the language is illustrated with an example presented in 3.1. After a discussing
about choices during the modeling in 4, we present a possibleimplementation of anEB3SEC interpre-
tor in 5. In 6, we present future works related toEB3SEC, before comparingEB3SEC to other similar
tools in 7.

2 PROBLEM DEFINITION - PROBDEF

We aim to create a language to model AC policies. A lot of methods with the same purpose already
exist. These methods have a state based approach [6]. In other words, expressing an AC constraint
only implies the current state of the system. Other methods,which are not state based, focuses on
a particular kind of constraint [18, 24]. Case studies depicting AC policies used by our industrial
partners imply business processes and constraints over actions ordering. Due to the variety of con-
straints that can be found in the case studies, the language we have to create must have a high level of
expressiveness.

In order to ease the modeling of these case studies, we propose a different approach based on
events accepted by the system, but with keeping a formal aspect. To do so, we want to express an AC
policy, by describing constraints it involves on events accepted by the system.

3 MODELING ACCESS CONTROL POLICIES - MODACCCONT-
POL

In this section we present some notations and assumptions used inEB3SEC. The denotational seman-
tics of anEB3SEC specification is given by a relationR defined onT (main)×O, whereT (main)
denotes the traces accepted bymain andO is the set of output events. The operational behaviour of
main is defined as follows. Lettrace denote the system trace, which is a list comprised ofvalid input
events accepted so far in the execution of the system. Lett::σ denote the right append of an input
eventσ to tracet, and let[ ] denote the empty trace.

trace := [ ];
forever do

receive input eventσ;
if main can accepttrace::σ then



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 3

trace := trace::σ;
send output evento such that(trace,o) ∈ R;

else
send error message;

We assume that to execute an action in the system, a user must be logged in. Thus, for each
events, we know the person trying to execute it, the role thisperson played, the place and the time
it happened. We introduce the notion of security events, which aren-tuples. The last element of the
n-tuple is the event itself, the other elements contains values of some parameters. For this paper, we
choose to use 5-tuples :

σ = 〈p,r,o, t,evt〉

. The definition of the 5-tuple is given by :

〈p,r,o, t,evt〉with:
p ∈ personId

andr ∈ roleId
ando ∈ orgId
andt ∈ Timestamp
andlabel(evt) ∈ action

In this definitionUser.name() is the set containing all values available for users during the login
step ; by the same way we describeRole.name(), Branch.name() andAction.label() which respec-
tively contain all the values of roles, organizations and actions. In our definition, we consider that the
time is represented by an integer which means the timestamp of the moment the action is performed.
As evt is an event we use the functionlabel which return the name of the action instantiated.evt, the
last part of a security event, is an instantiation of (the input parameters of) an action. The signature of
an actiona is given by a declaration

a(q1 : T1, . . . ,qn : Tn) : (qn+1 : Tn+1, . . . ,qm : Tm)

whereq1, . . . ,qn are input parameters of typesT1, . . . ,Tn andqn+1, . . . ,qm are output parameters
of typesTn+1, . . . ,Tm. A security event〈p,r,o, t,a(t1, ..., tn)〉 also constitutes an elementary process
expression. The special symbol “” may be used as an actual parameter of an action, to denote an
arbitrary value of the corresponding type.

ComplexEB3SEC process expressions can be constructed from elementary process expressions
(instantiated actions) using the following operators: sequence (�), choice (|), Kleene closure (∗), in-
terleaving (9), parallel composition (‖, i.e., CSP’s synchronisation on shared actions), guard (=⇒ ),
process call, and quantification of choice (|x ∈ T : . . .) and interleaving (9X ∈ T : . . .). TheEB3SEC

notation is similar to CSP [15] but the main differences betweenEB3SEC and CSP are: i)EB3SEC

allows one to use a single state variable, the system trace, in predicates of guard statements (as we
shall see below); ii)EB3SECuses a single operator, concatenation (as in regular expressions), instead
of prefixing and sequential composition, which makes specifications easier to read and write.

In the following we use this process algebra to express AC policies. We give now the kind of
constraints that can be expressed in an AC policy modeled inEB3SEC. Those constraints will be more
precisely described in the following of the document.

Permission allows the execution of an action.



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 4

Prohibition forbids the execution of an action.

Obligation forces the user to execute an action after an event

Separation of duty are used to forbid an execution of an action for a user after anevent.

Now, we discuss about each of these kinds of constraints, after introducing a running example to
illustrate our discussion.

3.1 THE RUNNING EXAMPLE : THE CHECK DEPOSIT - RUNEX

Our industrial partner provides us some case studies to workon. These case studies deal with check
deposit in a bank branch. Thus, as in [4] and [22] we illustrate our work on check deposit example.

We consider here the following process of the check deposit :Assuming that the client already has
an account in the company, he brings a check to the branch where he is affiliated. A bank employee
makes the check deposit effective in the IS. Thus, this deposit could be canceled, or validate, in the
second case, the account of the client has to to be credited.

The main difference with [4] and [22] was to consider an access control policy over different
bank branches. As an example, permissions given to users aredifferent from each other depending
on where the branch is located. Considering a procedure of check deposit, generally it has to be
validated by a supervisor, the number of required validations depends on the amount of the check
deposit, and this value fluctuates depending on the state where the procedure takes place. In order to
be more precise and understandable we stipulate in the following access control rules taking place in
the example.

rule 1 : Only clerk and banker are allowed to make check deposit effective.

rule 2 : Only banker and chief agencies are allowed to cancel or validate a check deposit.

rule 3 : Only clerk and banker are allowed to modify the amount of a bank account.

rule 4 : The validation or the cancellation of a deposit can not be done by the same person that did
the check deposit.

rule 5 : If the value of a check deposit exceed an amount, the check deposit must be validated by two
different persons including the chief agency. In Quebec this amount equals 10 000 $ whereas
in Ontario this amount equals 8 000 $.

rule 6 : The modification of the bank account of the customer must be done by the same employee
that did the check deposit effective.

In this example, we use four different actions which aredeposit, cancel, validate credit. Those
actions have three arguments which refer to the customer, the number of the check and the value of
the check deposit. In our model, we use integer for the value of the check, this assumption could be
easily understand, as a value of a check has only two digits after the coma. In this example, people
can play four different roles :customer, clerk, banker andchie f agency. We also assume that we
have at least two bank branches one in Montreal, QC and the other in Toronto, ON.



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 5

3.2 PERMISSION

When giving a permission, we want to allow someone to do something, but we want the security
environment to comply with a specific pattern. Thus, dealingwith permission, means to establish
pattern for the security environment for each event. By pattern, we mean that in order to be executed,
an event must have a security environment that respect some specific value.

The EB3SEC language allows the modeler to express the AC policy he wishes. This policy can
comply with an existing AC model as RBAC which is an ANSI standard [8]. The modeler can also
use a hand made model. To model the running example, we use thesecond method. In fact, the
example centralizes in a unique model AC policies of different branches. However, AC policy used in
each branch is quietly similar to the others, it slightly differ. To achieve this task we add to the RBAC
standard, the notion of organization which was first createdin the OrBAC model [?]. Generally by
organization, people think of AC constraints involved in SoD problems. In the OrBAC model, it deals
with the location. As an example, it could be used to model different branches of the system. In order
to be more readable, we use the termBranch in our model in place oforganization. In comparison to
the RBAC standard, this notion ofbranch/organization avoid us to multiply the number of instances
of actions and role. For example if we did not used this concept we had to create two different roles
for customer : one for each branch.

In order to express permissions, we have the 5-tuple, but we need to introduce four more operators.

• The Kleene closure written∗ is used to iterate a process expression an arbitrary number of time.

• The choice which is denoted by| and expresses that one of two process expressions can be
executed.

• The quantified choice is a variant of the previous operator. When a process expression depends
on the value a free variable, we can use a quantified choice to express the fact we can execute
this process expression for a specific value of the free variable. We note it :|x ∈ ens : a(x ),
and it means thata(x ) is executed with a specific value ofx taken in the setens.

• The wildcard is a syntax shortcut used instead of a quantified choice. As anexample,a( )
means|x ∈ ens : a(x )

In our work, we consider that security events are not necessarily correct : in fact we have in our
modeling to verify that the user can for example play the rolein the bank branch, both given by the
security environment. Now, we introduce a process expression permissionA and explain it.

permissionA( ) ,

(
〈agatha,banker, , ,deposit( , )〉

| 〈boris, , , ,cancel( , )〉
| 〈chris,clerk, toronto, ,credit( , )〉

)∗

This process expression, contains a Kleene closure over a choice of three actions. Thus, each event
received must be compatible with one of this three action. The first action〈agatha,banker, , ,deposit( , )〉
describes that if the event is an instance ofdeposit, thus the role mentioned in the security envi-
ronment must bebanker and the user must beagatha. This pattern of permission, is the same
as those used in RBAC : permission to execute an action are given to a user playing a role. The
second action〈boris, , , ,cancel( , )〉 describes that if the event is an instance ofcancel, thus



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 6

the person mentioned in the security environment must beboris. This pattern of permission is
the same as those used in Bell et LaPadula [5] : permission aregiven to users. The third action
〈chris,clerk, toronto, ,credit( , )〉 describes that if the event is an instance ofcredit, thus the user,
the role and the organization mentioned in the security environment must be respectivelychris, clerk
andtoronto. This pattern of permission is the same as those used in OrBAC: permissions are given
to a user playing a role in a bank branch.

This PE shows the different ways that can be used in anEB3SECmodeling to express permission,
as a matter of fact it does not depict our running example. Now, we give a new process expression
calledpermissionB, that is a first PE that depict our running example. Going through the six rules
of our running example, we only keep in mind the three first rules. In fact, those three rules are the
only rules dealing with permissions. The three rules does not depend on the branch, but only on
roles played by users during the action. The first rule statesthat each clerk and each banker must be
allowed to perform the actiondeposit( . ) The second rule states that each banker and chief agency
must be allowed to perform actionsvalidate(a )nd cancel( . ) The third rule states that each banker
and clerk are allowed to perform the actioncredit( . ) We present those permissions, in PE called
permissionB.

permissionB( ) ,

(
〈adrian,clerk, , ,deposit( , )〉
〈boris,banker, , ,deposit( , )〉

| 〈boris,banker, , ,cancel( , )〉
| 〈calvin,chie f agency, , ,cancel( , )〉
| 〈boris,banker, , ,validate( , )〉
| 〈calvin,chie f agency, , ,validate( , )〉
| 〈boris,banker, , ,credit( , )〉
| 〈adrian,clerk, , ,credit( , )〉

)∗

In a sake of concision, we only instantiate one permission for each couple of role and action. As
a fact, we assume that there is more than one user of each role,so we have to add the substantial
number of lines for each user of the system.

In case studies provided by our industrial partner, we must keep in mind that the IS is used by
a great number of users. Thus, it becomes quickly tedious to express permissions for each user in a
process expression. In order to ease this task,EB3SEC provides a class diagram. As a fact, for each
security event received we have to check if it complies with at least one permission described in the
modeling. PE are not designed for this kind of task, as they are no ordering constraints over actions.
Thus the class diagram is used to defined class and relation useful to express permissions. So, for
each security event received we have to check if it complies with permissions expressed in the class
diagram.

In the following, we describe the kind of permissions we usedin our example, and thus how we
check the complying of security events with permissions described in the class diagram.

To describe the permission pattern used in our approach, we have have to keep in mind that they
have to be easily used with case studies provided by our industrial partner. A first approach would
have been to use a standard as RBAC [8] and used it. A first problem occurs, when we noticed that
the AC policy derived from the case studies has to deal with a geographic context : for example the
validation procedure of a check deposit differs from branches to branches if they are not grounded
in the same state. Furthermore, in other part of the case studies permissions granted to a role are



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 7

different if the role is played in branches of different states. To ease the modeling of permission we
used another AC model : OrBAC [?]. This model, includes the notion oforganization in the pattern
used to describe permissions. This pattern will be explained in the following.

Play

Permission

0..n

0..n

0..n

0..n

0..n

0..n

Prohibition

0..n

0..n

0..n

name

Role

name

User

name

limit

Branch

label

Action

Figure 1: Class diagram used to express OrBAC style permissions

In this diagram we have four entities. Their instances correspond to users, roles, actions and
branches used in our modeling. The relationPlay describes the role associated with users in branches.
The relationPermission expresses that permissions are given to roles in branches. This class diagram
has to be instantiated to express permissions for the three first rules of our running example.

In a sake of readability, we used the name of each instance as akey. We keep in mind that this
method allows the example to be more readable. The classBranch is instanced for each branch of the
running example : Montreal and Toronto. The classAction is instantiated for each action aimed by
the AC policy : deposit, cancel, validate and credit. The classRole is instantiated for each role that
can be played in the IS : customer, clerk, banker and chief agency. The relationPlay is instantiated
to express role given to each role in a branch for an action. Inour example, permissions are the
same in both branch. But in case studies supplied by our partner, permissions differ from branches to
branches. The classUser is instantiated for each user of the system. The relationPlay is instanced in
order to expressed roles played users in branches.

Now, for each event received, we want to check if the securityenvironment corresponds to the
class diagram. To do so, we use a static predicate which is a first order logic predicate. And we have
to check if this predicate holds for each event received.

sp(p,r,o, t,e) =
〈p,r,o〉 ∈ Play

∧ 〈r,o,e〉 ∈ Permission

Permissions can be expressed by two ways : by using a class diagram or a process expression.
Our experience shows that the class diagram is generally used to express permissions that fit well
with the AC model express in the class diagram. Thus, processexpression are used for permissions
that are slightly exotic. For example, let suppose we have a superuser calleddamien that can execute
the actioncancel in both branches. To express this permission we could use this PE in addition to the
class diagram :

permissionC( ) ,

(
〈damien, , , ,cancel( , )〉



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 8

User
name
adrien
boris
calvin
daria
elisa
franck

Role
name
customer
clerk
banker
chief agency

Branch
name limit

Montreal 10 000$
Toronto 8 000$

Action
name
deposit
cancel
validate
credit

Play
User Role Organisation

adrian clerk Montreal
boris banker Montreal

calvin chief agency Montreal
daria clerk Toronto
elisa banker Toronto

franck chief agency Toronto
permission

role branch action
clerk Montreal deposit
clerk Montreal credit

banker Montreal deposit
banker Montreal cancel
banker Montreal validate
banker Montreal credit

chief agency Montreal cancel
chief agency Montreal validate

clerk Toronto deposit
clerk Toronto credit

banker Toronto deposit
banker Toronto cancel
banker Toronto validate
banker Toronto credit

chief agency Toronto cancel
chief agency Toronto validate

Figure 2: Instance of the class diagram used for the running example



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 9

)∗

As, we do not have any exotic rule in our example, we use the class diagram and the process
expression used for permission, is empty :

permission( ) ,

(
λ

)∗

Now, we use the same approach to show howEB3SECcan be used to express prohibitions.

3.3 PROHIBITION - PROHI

When setting a prohibition, we want to express security environments that are not allowed to execute
an action. To do so, we use the same approach as previously performed for permissions : we use
a process expression, to describe the pattern of security environment prohibited for each action. In
order to achieve, we must introduce a new operator.

• The guard denoted byp =⇒ a where p is a first order quantified logic predicate anda is a
process expression, allows one to executea only if the predicatep holds. If p does not hold,
thus nothing is done.

Now, we introduce a process expression corresponding to prohibition, and we explain it in the
following.

prohibitionA ( ) ,

(
| p ∈User.name() : p 6= elisa =⇒

〈p, , , ,cancel( )〉
| |o ∈ Branch.name() : o 6= Toronto =⇒

〈 , ,o, ,validate( )〉
)∗

This PE does not models our running example, it is only used toillustrate the concept of prohibi-
tion and the way they are modeled inEB3SEC. In this process we use guards to avoid explicit values
for some parameters of the security environment. In the firstpart, the prohibitions avoid the person
calledelisa to execute the actioncancel in all possible cases. In the second part we avoid the action
validate to be performed in Toronto.

Previously we have used the concept of permission to model the three first rules of our running
example. In the following we use the concept of prohibition to make this modeling. As a fact for
each role we have to express a prohibition for each action androle that are not explicitly written in
the example. As for permission we first begin with a PE.

prohibitionB ( ) ,

(
|r ∈ Role.name() : r 6= customer =⇒

〈 ,r, , ,deposit( , )〉
| 〈 ,r, , ,cancel( , )〉
| 〈 ,r, , ,validate( , )〉



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 10

prohibition
role branch action

customer Montreal deposit
customer Montreal cancel
customer Montreal validate
customer Montreal credit

clerk Montreal cancel
clerk Montreal validate

chief agency Montreal deposit
chief agency Montreal credit

customer Toronto deposit
customer Toronto cancel
customer Toronto validate
customer Toronto credit

clerk Toronto cancel
clerk Toronto validate

chief agency Toronto deposit
chief agency Toronto credit

Figure 3: Instance of the class diagram used for the running example

| 〈 ,r, , ,credit( , )〉
| |r ∈ Role.name() : r 6= clerk =⇒

〈 ,r, , ,cancel( , )〉
| 〈 ,r, , ,validate( , )〉

| |r ∈ Role.name() : r 6= chie f agency =⇒
〈 ,r, , ,deposit( , )〉

| 〈 ,r, , ,credit( , )〉
)∗

Still considering the fact that we are dealing with IS and a larger number of user, we choose to
express prohibition with the class diagram (ref). As a fact we assume that a prohibition is defined for
a role to execute an action in a branch. Here we finish to instantiate the class diagram by giving the
instance of the classProhibition.

Our goal is to enforce this prohibition expressed by a class diagram. To do so, we slightly change
the static predicate in order to care about the relationProhibition.

sp(p,r,o, t,e) =
〈p,r,o〉 ∈ Play

∧ 〈r,o,e〉 ∈ Permission
∧ 〈r,o,e〉 6∈ Prohibition

Then the process expression corresponding to prohibition is transformed in the empty PE. In the
system, we want that both permissions and prohibitions are applied simultaneously. Thus, we use a
specific process expression calledmain that represents the global behaviour of the AC policy.

3.4 A FIRST VERSION OF THE MAIN PROCESS EXPRESSION - MAIN1

In the main expression, we want that all aspects (i.e.:permissions, prohibitions . . . ) are applied si-
multaneously to all event received by the IS. In the following we will introduce a first version of the
main process expression. This version will allows permissions and prohibitions to be checked for
each received event. To do so, we introduce a new operator.



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 11

• The parallel operator depicted asa‖ b allows one to execute two actions without specifying the
order in which they have to be executed.

main ( ) ,

permission( )
‖

prohibition ( )

In other words, we can say that the process expressionpermission andprohibition have to be
executed, but they must synchronise on actions they have in common. We give there a few examples
of events which are accepted or not, and the reason it is so.

• 〈adrian,banker,Montreal,deposit(zoe,124 )〉 is not accepted : In fact, adrian is not allowed to
be a banker in Montreal

• 〈boris,banker,Montreal,deposit(zoe,24 )〉 is allowed : In fact it refers only to permission and
not to prohibition, as it complies with permissions modeled, the security event is accepted.

• 〈adrian,clerk,Montreal,deposit(yves,123 )〉 is allowed : In fact, it appears inPermissionand
prohibition and complies with both of them.

When an event is globally refused bymain, the state of both process expressionpermissionand
prohibition does not change.

3.5 OBLIGATION

In AC policy, the notion ofobligation is an organizational constraint that apply to user. As an example,
we can express an obligation for a user to execute an action ofacknowledgement after performing an
action. Typically, it is the kind of constraint expressed inthe sixth rule. Sometimes, the obligation
takes effect between the user who performed the first action,and a member of a group which contains
the first user for the performing of the second action.

In EB3SEC, an obligation explains that two security events of the trace are linked together by the
value of the requester of the security event. To express an obligation we use process expressions (PE)
containing these operators in addition to operators previously explained.

• The sequence denoted bya�b allows one to execute the process expressionb after the execution
of the process expressionb

• The interleaving denoted bya9b allows process expressionsa andb to be executed in parallel
without any synchronisation, even if they have common actions.

• The quantified interleaving is denoted by9 p ∈ ens : exp( p ). It corresponds to the interleaving
of process expressionsexp( p ) for all values ofp contained in the setens.

In our running example the sixth rule is an example of obligation. We introduce a new process
expression that model this rule.

obligation ( ) ,

9c ∈User.name() : 9d ∈ int : 9m ∈ int :
| p ∈User.name() :



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 12

( 〈p, , , ,deposit(c,d,m )〉
� 〈p, , , ,credit(c,d,m )〉)∗

This PE models the sixth rules. In fact, as argument are explicitly written in deposit andcredit,
in the trace of the system, these actions are executed for particular value of a customer, a check number
and an amount of a check. Now we suppose that the security event 〈adrian,clerk,Montreal,deposit(zoe,1,23 )〉
is already executed. Thus, a security event corresponding to the eventcredit(zoe,1,23 ) can not be
performed unless the requester is adrian.

Our PE only express that the two actions have to be done by the same user. But as a fact the
system can not physically force the user to perform the second action after executing the first one. A
way to enforce the obligation is to forbid any action for the user after he executed the first one. We
show another PE modeling obligation this way.

obligationP( ) ,

9c ∈User.name() : 9d ∈ int : 9m ∈ int :
| p ∈User.name() :

( 〈p, , , ,deposit(c,d,m )〉
� ( 〈p, , , ,credit(c,d,m )〉

| FALSE =⇒ 〈p, , , , ,deposit( , , )〉
| FALSE =⇒ 〈p, , , , ,cancel( , , )〉
| FALSE =⇒ 〈p, , , , ,validate( , , )〉)∗

In this PE, after performing the actiondeposit, the user have the choice between four actions.
Three of this four actions are blocked by a guard that will never hold. Thus, the user can perform
only the actiondeposit for the check deposit he performed. As it is not mentioned that other action
are disabled during the obligation we use the first PE for our modeling.

3.6 A REFINEMENT OF THE MAIN PROCESS EXPRESSION

As we have described new constraints on our system, we have tointegrate them in the main process
expression that describes the global AC policy behaviour.

We put the process expressionobligation in parallel withpermissionandprohibition .

main ( ) ,

permissions( )
‖

prohibition ( )
‖

obligation ( )

3.7 SEPARATION OF DUTY

SoD (Separation of duty) is a security requirement that divide a task in subtasks and rely the execution
of these subtasks to different users [7]. Thus, the securityof the process has less chances to be
corrupted by a single user who could execute all the subtasksby himself.



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 13

In RBAC, the problem of SoD is generally statically resolved: the permission of executing sub-
tasks are given to different roles, and users are not allowedto play conflicting roles. We can use these
approach inEB3SECby checking the instance of the class diagram.

Another approach used to solve SoD is called dynamic SoD. Fortwo actions, with SoD con-
straints, dynamic SoD forbid the user to execute the second action, once the first action is executed.
To achieve dynamic SoD, the method used must keep an instanceof tasks already performed. In,
EB3SEC, instances of workflows and their executions are saved by thePE. This will be shown in the
following.

Fourth and fifth rules deal with SoD constraints. We give in the following a PE modeling these
constraints and then we explain them.

separation( ) ,

9c ∈User.name() : 9d ∈ int : 9m ∈ int :
| p ∈User.name() : | p′ ∈User.name() :

( 〈p, , , ,deposit(c,d,m )〉
� p 6= p′ =⇒

〈p′, , , ,validate(c,d,m )〉
| 〈p′, , , ,cancel(c,d,m )〉)∗

9
9c ∈User.name() : 9d ∈ int : 9m ∈ int :

| p ∈User.name() : |o ∈ Branch.name() : | p′ ∈User.name() :
( 〈p, ,o, ,deposit(c,d,m )〉
� m > o.limit =⇒

p 6= p′∧ p 6= p′′∧ p′ 6= p′′ =⇒
〈p′, , , ,validate(c,d,m )〉
‖ 〈p′′,chie f agency, , ,validate(c,d,m )〉

| m ≤ o.limit =⇒ λ
)∗

In the first part of this PE, we expressed the fourth rule. We used a quantification overp andp′ in
order to achieve that the executer ofdeposit andvalidate or cancel must be different. Furthermore, we
made a quantification overc, d andm to explicitly describe our workflow process. In fact, since the
argument are explicitly written, the user who did thedeposit for a check can stillvalidate or cancel
another check.

The second part of the PE models the fifth rule. For checks thatvalue exceed the branch limit we
must make twovalidate. Other wise theλ reminds that there is no special procedure to execute and
only the fourth rule applies. The constraint used in this example for the check value is modeled in the
PE by the expressionm > o.limit used in a guard. Furthermore, we still explicitly write the arguments
of the actions in order to model workflows. Thus, the user who make adeposit can still make acancel
or avalidate for another check.

In EB3SEC, SoD constraints are defined at a workflow process level. As anexample, for a user
making the deposit of a check can still do other deposit but won’t be able to make the validate or the
cancel for the check for which he made the deposit. We illustrate this on the first part of the SoD :
separationP.

separationP( ) ,

9c ∈User.name() : 9d ∈ int : 9m ∈ int :
| p ∈User.name() : | p′ ∈User.name() :



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 14

( 〈p, , , ,deposit(c,d,m )〉
� p 6= p′ =⇒

〈p′, , , ,validate(c,d,m )〉
| 〈p′, , , ,cancel(c,d,m )〉)∗

We suppose now we received the security event〈adrian,clerk,Montreal,1234,deposit( zoe,1,123 )〉.
We apply the transition rules toseparationPand show what it becomes :

separationP’( ) ,

9c ∈User.name()\{zoe} : 9m ∈ f loat\{123} :
| p ∈User.name() : | p′ ∈User.name() :

( 〈p, , , ,deposit(c,m )〉
� p 6= p′ =⇒

〈p′, , , ,validate(c,m )〉
| 〈p′, , , ,cancel(c,m )〉)∗

9
([c := zoe,d := 1,m := 123,u := adrian])| p ∈User.name() : | p′ ∈User.name() :

( 〈p, , , ,deposit(c,d,m )〉
� p 6= p′ =⇒

〈p′, , , ,validate(c,d,m )〉
| 〈p′, , , ,cancel(c,d,m )〉)∗

This PE shows that, by now, the user adrian can not executevalidate, neithercancel for the check
deposit 1. But the user adrian can still do other check deposit and cancel or validate other check
deposit.

3.8 A NEW REFINEMENT OF THE MAIN PROCESS EXPRESSION

As SoD is a component of our AC policy we want to incorporate itthe main process expression. We
achieve this by using a parallel with the older version ofmain

main ( ) ,

permissions( )
‖

prohibition ( )
‖

obligation ( )
‖

separation( )

4 DISCUSSION OF OUR MODELING

The first point we want to discuss about is the equivalence of using a PE or the class diagram to
describe permissions and prohibitions. Prohibitions and permissions have to be checked for each
security event received. Using PE or a static predicate withthe class diagram are totally equivalent
on a formal point of view. But, our experience shows that using the class diagram make the modeling



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 15

more readable for human. On an implementation point of view,our goal is to use an interpretor to
execute PEs with an access to a database in order to keep an updated version of the instance of the
class diagram. As we aim to secure IS involving large number of users, we think that using static
predicates could be a way to optimize the execution of the interpreter. But PEs can still be used.

In this paper we described how to use permissions and prohibition. But we never force someone
to use both in the same model. As permissions and prohibitions that can be found in requirements can
be tedious to understand, we think that using both permissions and prohibitions can lead to deadlock.

The concept ofbranch used in our class diagram is very powerful on case studies provided by our
partner. In thepermissionandprohibition it was not very useful, but it helped a lot when we had to
model constraints over SoD.

The way we used to model the example, was directed by the fact we wanted to show how someone
can modelpermissions, prohibitions, obligations andSoD in EB3SEC. We also use another approach
that consists to product a PE for each rule of the requirement.

Using PEs inEB3SECallows one to product a AC model that contains SoD and obligations rules,
that are really accurate. As an example, we were able to express SoD rules with constraints and taking
into account workflow processes.

5 IMPLEMENTATION

Security kernel

Security policy specification

Class 
diagram

Attribute 
definition

Process 
expression

EB3TGEB3GG

EB3PAI

Error 
message 
generator

Guard 
evaluator

Update 
program

DB 

schema

DB

Input/Output Generate Execute

Figure 4: Architecture of the PDP

The EB3SEC language uses the same process algebra than theEB3 method, with adding the notion
of security environment.EB3 is implemented in a platform called APIS that allow its interpretation.
Components of this platform can be reused to create a Policy Decision Point (PDP), which can be
used in an SOA architecture. Figure 4 illustrates the architecture of the PDP. It is based on the
APISplatform and reuses some of its components.EB3PAI [9, 10] is an interpreter forEB3 process
expressions. It can be used to runEB3SEC process expressions by translating security actions into
normal actions. Process expressions can contain predicates referring to attributes of the requirements
class diagram and the security class diagram. We suppose that each class diagram is implemented in
its own relational database. To implement the security class diagram, we useEB3TG [12] to generate a
relational database schema and update programs to implement attribute definitions. Update programs
are used byEB3PAI to maintain the database in a consistent state while security events are executed.
The moduleEB3GG [17] is used to generate aguard evaluator program which contains procedures



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 16

that are used byEB3PAI to determine if a guard holds. It generates SQL requests on the database to
obtain attribute values of entities. These procedures can refer to security database and the IS database.
If an event is refused byEB3PAI, theerror message generator [20] is used to generate an adapted error
message.

EB3PAI can execute arbitrary process expressions and uses an object-oriented database (OODB)
to persistently store the state of process expressions. It can efficiently execute quantified expressions
over arbitrary large sets (both choice and interleave) by using optimization techniques [9, 10]. Its
main weaknesses are that its OODB is rather slow and its execution cannot be easily distributed
over several processors. For high throughput banking applications, this is not sufficient. Hence, we
are currently working on a new process algebra interpreter which will be restricted to deterministic
and optimizable process expressions. These process expressions can be translated into an algebraic
state transition diagram (ASTD) [11]. The execution of an ASTD is easier to distribute over several
processors, thereby exploiting parallelism in the processing of events. The state of an ASTD is more
compact than the one used inEB3PAI and can be easily stored into a relational database. The use
of ASTDs will also enable the use of state-based techniques like B and Event-B to prove properties
about a security policy.

6 FUTURE WORK

The next step in our work will be to include the capabilities of making model checking overEB3SEC

models. AsEB3SEC is very similar toEB3 we plan to reuse results and tools developed forEB3. As a
result, Alloy will surely be the tools we will use. The first step will be to transformEB3SEC models
into Alloy model. The first step will be to define how to transform the static part of anEB3SECmodel
(i.e. : class digram, permissions and prohibitions) into analloy model. At this step we will be able
to verify the consistency between permissions rules and prohibition rules. After, we will need to
transform the dynamic part (i.e. : obligation, SoD and more generally all PEs) in an Alloy model.
Thus, we will be able to verify that dynamic and static parts are coherent.

Furthermore, if the functional part of the IS is also formally modeled we will be able to check the
coherence between the functionnal and the security parts.

The implementation previously presented is also a fuure work. In order to integrate tools of the
APIS platform forEB3SEC we plan to develop a prototype made in OCaml and SQL. In the project
lead with our industrial partner, we plan to implement a platform based onEB3SEC and usable in a
real life platform. This platform has to be integrated in an SOA architecture.

7 RELATED WORK

In order to compare related work, we use the approach describe in [1]. This approach describes a
framework that allows one to express characteristics of AC model. This approach leads to thirty
different comparison points encompassed in eight categories. As we present here only theEB3SEC

language and not the fullEB3SEC project led with our industrial partner, we only mention a few
comparison points and categories. We apply this approach toour work and then to other related
work:

• In [3], the authors show a method aiming to solve AC problems by including a RBAC model in
the UML design design of the application

• In [4], the authors show a method helping to create a languageto express SoD express in CSP
with an RBAC model in order to be used with an enforcement point



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 17

• [21] proposes a non formal language to express AC policies. In fact the problem is that contra-
dictory decision can be taken for a request by the same policy. Several works as [16] presents
a formalisation of policies expressed in XACML in order to avoid the problem. [2] presents a
profile made in XACML of the RBAC model including mechanisms to use SoD. In the follow-
ing, we consider this set of works as a unique work called XACML considered as formal and
able to express SoD. Here, the SoD is used for a session duringwhich a user can not trigger
conflicting role in the same time.

Now, we deal with the few comparison points from (ref ORKA).

7.1 model specification

The first point to consider in this category is the level of abstraction that can be used in the model.
With EB3SEC or [4], we deal with a high level of abstraction, for example in a SOA architecture we
deal with web-services. In [3] amd XACML, we deal with objectand operation that are implemented
in the code of the software.

In [4], XACML and EB3SEC the underlying model of the specification is formal. Howeverif
we consider the XACML with only the standard it is non formal whereas [3] is structured and semi-
formal; it is structured as it is using schemas and UML notation and semi-formal as it is using for
example first order predicates to express constraints for permissions.

All of these four method have the same purposed : they are usedto enforce a AC policy in a IS.
They also tends to have the same using area : IS built on a SOA architecture.

In [4], [3] and XACML the underlying model of the specification is a RBAC model. In other
word, AC authorizations have to comply with the RBAC model. In EB3SEC, the underlying model,
is chosen by the person who models the policy. In this paper, we choose a model derived from the
OrBAC methods, but in other cases we could use a RBAC model or ahome made model designed to
ease the modeling step.

7.2 Policy expressiveness

[3] allows one to express permissions with constraints on the model. [4] allows one to express per-
mission and SoD constraints at the workflow level. XACML allows one to express permissions,
prohibitions and Sod constraints on the model.EB3SEC allows one to to express permissions and
prohibitions with constraints, obligations and Sod at a workflow level on the model.

In EB3SECand [4] the model includes workflow routing concepts such as serialization, selection,
iteration, and parallelization of steps and is able to control the order of events in a fine-grained manner.

In this paper we present only theEB3SEClanguage. Thus, we do not mention the other comparison
point of [1] which deals with our future work or with other parts of our project. Compared to the three
other methods,EB3SEC seems to be a language more powerful in term of expressiveness : In fact, it
had the particularity of allowing the modeler to use a standard model or a home made model and also
to allow him to express different constraints as permissions, prohibitions, obligations and SoD on a
finned grained level. All of these constraints are not allowed at the same time by a unique method at
a time.

References

[1] Christopher Alm, Michael Drouineaud, Ute Faltin, Karsten Sohr, and Ruben Wolf. A classi-
fication framework designed for advanced role-based accesscontrol models and mechanisms.
Technical report, Technologie-Zentrum Informatik BremenUniversity, 2009.



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 18

[2] A Anderson.XACML Profilefor RoleBasedAccessControl(RBAC). OASIS Standard, 2004.

[3] David Basin, Jürgen Doser, and Torsten Lodderstedt. Model driven security: From uml models
to access control infrastructures.ACM Trans.Softw.Eng.Methodol., 15(1):39–91, 2006.

[4] David A. Basin, Samuel J. Burri, and Günter Karjoth. Dynamic enforcement of abstract separa-
tion of duty constraints. In Michael Backes and Peng Ning, editors, ESORICS, volume 5789 of
LectureNotesin ComputerScience, pages 250–267. Springer, 2009.

[5] D.E. Bell and L.J. LaPadula. Secure computer systems: Mathematical foundations and model.
reconstruction électronique 2547 v2, MITRE Corporation,1973.

[6] A. Abou El Kalamet al. Organization based access control. In4thIntl. IEEEWorkshopPolicies
for DistributedSystemsandNetworks, pages 120–130, Como, Italy, 2003. IEEE Press.

[7] David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-BasedAccess
Control. Artech House, Inc., Norwood, MA, USA, 2003.

[8] American National Standard Institute (ANSI) for Information Technology.RoleBasedAccess
Control. ANSI INCITS 359-2004, februar 2004.

[9] B. Fraikin and M. Frappier. Efficient symbolic executionof large quantifications in a process
algebra. In Jim Woodcock and Jin Song Dong, editors,ICFEM 2007, volume 4789 ofLNCS,
pages 327–344. Springer Berlin/Heidelberg, November 2007.

[10] B. Fraikin and M. Frappier. Efficient symbolic computation of process expressions.Scienceof
ComputerProgramming, 74(9):723–753, July 2009.

[11] M. Frappier, F. Gervais, R. Laleau, B. Fraikin, and R. St-Denis. Extending statecharts with
process algebra operators. InInnovationsin SystemsandSoftwareEngineering, pages 285–
292, London, UK, august 2008. Springer London.

[12] F. Gervais, M. Frappier, and R. Laleau. Generating relational database transactions fromEB3

attribute definitions. 8(3):423–445, July 2009.

[13] Camadian Government. Personal information protection and electronic documents act.
CanadianLaw, April 2000.

[14] Carlos Gutiérrez, Eduardo Fernández-Medina, and Mario Piattini. Towards a process for web
services security.Journalof ResearchandPracticein InformationTechnology, 38(1), 2006.

[15] C.A.R. Hoare.CommunicatingSequentialProcesses. Prentice-Hall, 1985.

[16] Vladimir Kolovski, James Hendler, and Bijan Parsia. Analyzing web access control policies.
In WWW ’07: Proceedingsof the 16th internationalconferenceon World Wide Web, pages
677–686, New York, NY, USA, 2007. ACM.

[17] P. Konopacki. Synthèse automatique de guarde EB3. Master’s thesis, Université de Sherbrooke,
2008.

[18] Peng Liu and Zhong Chen. An access control model for web services in business process. InWI
’04: Proceedingsof the 2004IEEE/WIC/ACM InternationalConferenceon Web Intelligence,
pages 292–298, Washington, DC, USA, 2004. IEEE Computer Society.



P. Konopacki, R. Laleau, M. Frappier. Expressing access control policies with an event-based approach 19

[19] Francis Mer. loi de sécurité financière.JournalOfficiel, (177), january 2003.

[20] J. Milhau, B. Fraikin, and M. Frappier. Automatic Generation of Error Messages for the Sym-
bolic Execution ofEB3 Process Expressions. InIntegratedFormalMethods:7th International
Conference,IFM 2009,Düsseldorf,Germany,February16-19,2009,Proceedings, volume 5423
de LNCS, pages 337–351. Springer Berlin/Heidelberg, 2009.

[21] T Moses.eXtensibleAccessControlMarkupLangage(XACML) Version2.0. OASIS Standard,
2005.

[22] R. Sandhu. Transaction control expressions for separation of duty. In4th AerospaceComputer
SecurityApplicationConference, pages 282–286, 1988.

[23] Paul Sarbanes and Mike Oxley. Sarbanes-oxley act.PublicLaw, (116):107–204, 2002.

[24] Emin Gün Sirer and Ke Wang. An access control language for web services. InSACMAT ’02:
Proceedingsof theseventhACM symposiumonAccesscontrolmodelsandtechnologies , pages
23–30, New York, NY, USA, 2002. ACM.


