N

N

Expressing access control policies with an event-based
approach

Pierre Konopacki, Marc Frappier, Régine Laleau

» To cite this version:

Pierre Konopacki, Marc Frappier, Régine Laleau. Expressing access control policies with an event-
based approach. [Research Report] TR-LACL-2010-6, LACL. 2010. hal-01224645

HAL Id: hal-01224645
https://hal.science/hal-01224645v1
Submitted on 16 Aug 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01224645v1
https://hal.archives-ouvertes.fr

UNIVERSITE
PARIS-EST
CRETEIL

VAL DE MARNE

Expressing access control policies with an event-based
approach

Pierre Konopacki Marc Frappier R égine Laleau

March 2010
TR-LACL-2010-6

Laboratoire d’Algorithmique, Complexit € et Logique (LACL)
Département d’Informatique
Université Paris 12 — Val de Marne, Faculé des Science et Technologie
61, Avenue du Général de Gaulle, 94010 Créteil cedexderan

Tel.: (33)(1) 45 17 16 47, Fax: (33)(1) 45 17 66 01

Laboratory of Algorithmics, Complexity and Logic (LACL)
University Paris 12 (Paris East)

Technical ReporTR-LACL-2010-6

P. Konopacki, M. Frappier, R. Laleau.
Expressing access control policies with an event-based approach

© P. Konopacki, M. Frappier, R. Laleau, March 2010.

Expressing access control policies with an event-based ajmach

Pierre Konopacki Marc Frappier R égine Laleau

Laboratory of Algorithmics, Complexity and Logic - UnivéssParis 12 (Paris East), France
Groupe de Recherche en Ingéniérie du Logiciel - Sherteradkiversity, Canada

{pierre.konopacki,laleg@ univ-paris12.fr
{pierre.konopacki,marc.frappig@usherbrooke.ca

Abstract

In this paper, we introduaes®sEec. This language is used to express access control policies in
information systems. Permissions and prohibitions areesged with a class diagrame3sec
also includes a process algebra. This process algebrasatipe/to express specific constraints
over permissions and prohibitions. Organizational camsts such as obligation and separation
of duty are also supported by process algebra. Separatdutptonstraints can be expressed at
a workflow process level. Standards such as RBAC or OrBAC eamskd to express the access
control policy, but their derivatives can also be use#3sec provide a formal language with
a high level of expressiveness to describe access contiioigso Keywords. Access Control,
Formal Security Methods, Security Models

1 Introduction

Information Systems (IS) are widely used in various ecomairand social areas. They contain pri-
vate and valuable data for their owners. In an IS securityisreed by many mechanisms, such as
secured protocols used between clients and servers or dretsegvers in a distributed architecture.
The most used architecture to develop IS is the Service @defwrchitecture (SOA). Many mecha-
nisms have also been developed to secure different comgsookan IS build with this architecture,
or to secure communication between those components [Ili{hdse tools deserve one purpose :
to enforce an access control (AC) policy. The AC policy is piaet of the security policy that deals
with authorizations granted to users. An AC policy badly niedi can lead to major issues for the
company that uses the IS : as an example we can cite banksghhtlliards since a trader used more
authorization that he should have been granted.

Security is an important goal for IS designers. In IS, dategrity is insured by aaccess control
(AC) policy which is implemented in the software and enforby mechanisms like encryption, se-
cure data transfer protocols and authentication proto&algthermore, in some domains, IS security
is regulated by laws. As an example, in the financial domaecan cite the Sarbane-Oxley law in
the United-States [23] and the Mer law in France [19]. In theesre area, we can cite the PIPEDA
law in Canada [13]. These laws aim to protect information dmyutating their access. Organisations
have to prove that the AC policy used by their IS comply witbsth laws. In this paper we propose a
new formal method which aims to model AC policies.

Our project is conducted with an industrial partner from blaeking industry in Canada. The
management of security policies in an industrial contex leghly complex task. Security policies

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach 2

are informally described using plain English and adhocdiarg, and then they are implemented into
concrete programs, in various components. Generally, Gdlicy is implemented directly in the
individual services, mixed with the business logic of theT8e traceability between the natural lan-
guage specification and the implementation code is hard botaia. Thus, modifying and validating
an AC policy is a hard task. A small change in AC policy may lgasike up to a month of effort for
implementation. With the current turmoil about securitythie industry, security policies are bound
to be frequently changed, which induces high maintenansts éor organisations.

Our goal is to streamline the management of AC policies. la gaper, we defin€s3sec
a simple, abstract, formal specification language to deschC policies. To describe the use of
EB3SEC we give some example of how common AC constraints can be ssguenes3sec. The
idea is to develop security filter based BB*SEC modeling. The first step to achieve this this goal is
to show a prototype of tool usings3sec. We choose to present an interpretor that usessisec
specification to grant or refuse incoming events.

The paper is structured as follows. Section 2 explains tbblpm addressed byssec. Sec-
tion 3 presents thee3sec language and the constraints that can be expressedds®asEc model.
The expressiveness of the language is illustrated with ample presented in 3.1. After a discussing
about choices during the modeling in 4, we present a possitjEementation of aEs3SEcinterpre-
tor in 5. In 6, we present future works relatede®*SEc, before comparings3secto other similar
tools in 7.

2 PROBLEM DEFINITION - PROBDEF

We aim to create a language to model AC policies. A lot of mésheith the same purpose already
exist. These methods have a state based approach [6]. Invabinds, expressing an AC constraint
only implies the current state of the system. Other methatisch are not state based, focuses on
a particular kind of constraint [18, 24]. Case studies demicAC policies used by our industrial
partners imply business processes and constraints ovensrdering. Due to the variety of con-
straints that can be found in the case studies, the languadrave to create must have a high level of
expressiveness.

In order to ease the modeling of these case studies, we mr@pd#ferent approach based on
events accepted by the system, but with keeping a formataspedo so, we want to express an AC
policy, by describing constraints it involves on eventsegted by the system.

3 MODELING ACCESS CONTROL POLICIES - MODACCCONT-
POL

In this section we present some notations and assumptieasinss3sec. The denotational seman-
tics of aneB3SEC specification is given by a relatioR defined on7 (mai n) x O, where7 (mai n)
denotes the traces acceptedniay n andO is the set of output events. The operational behaviour of
mai n is defined as follows. Létr ace denote the system trace, which is a list comprisedhbtl input
events accepted so far in the execution of the systemt: Let denote the right append of an input
evento to tracet, and let]] denote the empty trace.

trace:=[];
forever do
receive input event;
if mai n can acceptrace:: o then

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach 3

trace:=trace:: o;

send output everd such thattrace,0) € R;
else

send error message;

We assume that to execute an action in the system, a user misgded in. Thus, for each
events, we know the person trying to execute it, the roleghison played, the place and the time
it happened. We introduce the notion of security eventsciwharen-tuples. The last element of the
n-tuple is the event itself, the other elements containsesmbf some parameters. For this paper, we
choose to use 5-tuples :

o= (p,r,o,t,ev)

. The definition of the 5-tuple is given by :

(p,r,0,t,evt)with:
p € personid
andr € roleld
ando € orgld
andt € Timestamp
andlabel (evt) € action

In this definitionU ser.name() is the set containing all values available for users durirglogin
step ; by the same way we descriRel e.name(), Branch.name() andAction.label () which respec-
tively contain all the values of roles, organizations antibas. In our definition, we consider that the
time is represented by an integer which means the timestéihge onoment the action is performed.
As evt is an event we use the functidabel which return the name of the action instantiated, the
last part of a security event, is an instantiation of (thautrgmrameters of) an action. The signature of
an actiona is given by a declaration

a(ql:Tla"'aqn :Tn) : (qn+1:Tn+1a~me:Tm)

whereqy,...,q, are input parameters of typds, ..., T, andgn.1,...,0n are output parameters
of typesThi1,..., Tm- A Security event'p,r,o,t,a(ty,...,ty)) also constitutes an elementary process
expression. The special symbal ‘may be used as an actual parameter of an action, to denote an
arbitrary value of the corresponding type.

ComplexEB3SEC process expressions can be constructed from elementarggsr@xpressions
(instantiated actions) using the following operators:usege (), choice (), Kleene closure*), in-
terleaving (||), parallel composition|f, i.e.,, CSP’s synchronisation on shared actions), guase(),
process call, and quantification of choi¢& € T : ...) and interleaving|(X € T : ...). TheEB3SEC
notation is similar to CSP [15] but the main differences neB3sec and CSP are: iEB3SEC
allows one to use a single state variable, the system traq@edicates of guard statements (as we
shall see below); iijEB3sEC uses a single operator, concatenation (as in regular esipnsy, instead
of prefixing and sequential composition, which makes spetifins easier to read and write.

In the following we use this process algebra to express A@ipsl We give now the kind of
constraints that can be expressed in an AC policy modeled3aec. Those constraints will be more
precisely described in the following of the document.

Permission allows the execution of an action.

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach 4

Prohibition forbids the execution of an action.
Obligation forces the user to execute an action after an event

Separation of duty are used to forbid an execution of an action for a user aftevant.

Now, we discuss about each of these kinds of constraints; iatroducing a running example to
illustrate our discussion.

3.1 THE RUNNING EXAMPLE : THE CHECK DEPOSIT - RUNEX

Our industrial partner provides us some case studies to wmrk hese case studies deal with check
deposit in a bank branch. Thus, as in [4] and [22] we illust@ir work on check deposit example.

We consider here the following process of the check depédsisuming that the client already has
an account in the company, he brings a check to the brancheviecis affiliated. A bank employee
makes the check deposit effective in the IS. Thus, this deposld be canceled, or validate, in the
second case, the account of the client has to to be credited.

The main difference with [4] and [22] was to consider an asaamtrol policy over different
bank branches. As an example, permissions given to usedifment from each other depending
on where the branch is located. Considering a procedure exfkctieposit, generally it has to be
validated by a supervisor, the number of required validatidepends on the amount of the check
deposit, and this value fluctuates depending on the stateevithe procedure takes place. In order to
be more precise and understandable we stipulate in theviolljpaccess control rules taking place in
the example.

rule 1: Only clerk and banker are allowed to make check deposittafeec
rule 2: Only banker and chief agencies are allowed to cancel oraialid check deposit.
rule 3: Only clerk and banker are allowed to modify the amount of &tetount.

rule 4 : The validation or the cancellation of a deposit can not beedpnthe same person that did
the check deposit.

rule 5: Ifthe value of a check deposit exceed an amount, the chedsiepust be validated by two
different persons including the chief agency. In Quebeg @mount equals 10 000 $ whereas
in Ontario this amount equals 8 000 $.

rule 6 : The madification of the bank account of the customer must Ine thy the same employee
that did the check deposit effective.

In this example, we use four different actions which aegosit, cancel, validate credit. Those
actions have three arguments which refer to the customenumber of the check and the value of
the check deposit. In our model, we use integer for the valilkeocheck, this assumption could be
easily understand, as a value of a check has only two digits #ife coma. In this example, people
can play four different roles customer, clerk, banker andchief agency. We also assume that we
have at least two bank branches one in Montreal, QC and tlee mtfforonto, ON.

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach 5

3.2 PERMISSION

When giving a permission, we want to allow someone to do simgt but we want the security
environment to comply with a specific pattern. Thus, dealiitdy permission, means to establish
pattern for the security environment for each event. Bygpajtwe mean that in order to be executed,
an event must have a security environment that respect soeedis value.

The eB3sec language allows the modeler to express the AC policy he wisfi@is policy can
comply with an existing AC model as RBAC which is an ANSI start[8]. The modeler can also
use a hand made model. To model the running example, we usetoad method. In fact, the
example centralizes in a unique model AC policies of diffittmanches. However, AC policy used in
each branch is quietly similar to the others, it slightlyfelif To achieve this task we add to the RBAC
standard, the notion of organization which was first createtie OrBAC model P]. Generally by
organization, people think of AC constraints involved irb8mroblems. In the OrBAC model, it deals
with the location. As an example, it could be used to modétdiht branches of the system. In order
to be more readable, we use the téBnanch in our model in place obrganization. In comparison to
the RBAC standard, this notion bfanch/organization avoid us to multiply the number of instances
of actions and role. For example if we did not used this conaephad to create two different roles
for customer : one for each branch.

In order to express permissions, we have the 5-tuple, bueee to introduce four more operators.

e The Kleene closure writtehis used to iterate a process expression an arbitrary nunibieren

e The choice which is denoted Hyand expresses that one of two process expressions can be
executed.

e The quantified choice is a variant of the previous operatdrekia process expression depends
on the value a free variable, we can use a quantified choiceptess the fact we can execute
this process expression for a specific value of the free Mariae note it :|x € ens : a(x),
and it means thad(x) is executed with a specific value wtaken in the segns.

e The wildcard_ is a syntax shortcut used instead of a quantified choice. Aexample,a(-)
meang x € ens : a(x)

In our work, we consider that security events are not necgssarrect : in fact we have in our
modeling to verify that the user can for example play the iolthe bank branch, both given by the
security environment. Now, we introduce a process exmasgrmissionA and explain it.

permissionA() £
(
(agatha, banker, _, _, deposit(_, -))
| (boris,_,_,_,cancel(_,_))
| (chris,clerk,toronto, _, credit(_,-))

)*

This process expression, contains a Kleene closure oveieeotf three actions. Thus, each event
received must be compatible with one of this three actiore firet action(agatha, banker, _, _, deposit(-, -))
describes that if the event is an instancedeposit, thus the role mentioned in the security envi-
ronment must bdanker and the user must bagatha. This pattern of permission, is the same
as those used in RBAC : permission to execute an action aem @iva user playing a role. The
second action(boris, _,_, _,cancel(_,_)) describes that if the event is an instancecaficel, thus

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach 6

the person mentioned in the security environment musbdsés. This pattern of permission is
the same as those used in Bell et LaPadula [5] : permissiogieea to users. The third action
(chris, clerk,toronto, _, credit(-, -)) describes that if the event is an instancecrefit, thus the user,
the role and the organization mentioned in the securityrenaent must be respectivetiris, clerk
andtoronto. This pattern of permission is the same as those used in OrB&@missions are given
to a user playing a role in a bank branch.

This PE shows the different ways that can be used iBsfi$EC modeling to express permission,
as a matter of fact it does not depict our running example. ,Nogvgive a new process expression
calledpermissionB, that is a first PE that depict our running example. Goingugtothe six rules
of our running example, we only keep in mind the three firstsulln fact, those three rules are the
only rules dealing with permissions. The three rules dodgsdepend on the branch, but only on
roles played by users during the action. The first rule sthi@seach clerk and each banker must be
allowed to perform the actiodeposit(.) The second rule states that each banker and chief agency
must be allowed to perform actionalidate(a)nd cancel(.) The third rule states that each banker
and clerk are allowed to perform the actioredit(.) We present those permissions, in PE called
permissionB.

permissionB() £

(
(adrian, clerk, _, _, deposit(_,_))
(boris, banker, _, _, deposit(_, -))
(boris, banker, _, _, cancel(-,_))
(calvin, chief agency, _, _,cancel(_,_))
(boris, banker, _, _, validate(-, -))
(calvin,chief agency, , _,validate(_, _))
(boris, banker, _, _, credit(-, -))
(adrian, clerk, _, _, credit(_,_))

)*

In a sake of concision, we only instantiate one permissioeéeh couple of role and action. As
a fact, we assume that there is more than one user of eaclsoolge have to add the substantial
number of lines for each user of the system.

In case studies provided by our industrial partner, we maspkn mind that the IS is used by
a great number of users. Thus, it becomes quickly tediougpess permissions for each user in a
process expression. In order to ease this tasRsec provides a class diagram. As a fact, for each
security event received we have to check if it complies witleast one permission described in the
modeling. PE are not designed for this kind of task, as theynarordering constraints over actions.
Thus the class diagram is used to defined class and relatefol us express permissions. So, for
each security event received we have to check if it compliés permissions expressed in the class
diagram.

In the following, we describe the kind of permissions we ugedur example, and thus how we
check the complying of security events with permissiondeed in the class diagram.

To describe the permission pattern used in our approachawe ftave to keep in mind that they
have to be easily used with case studies provided by our tiniaugartner. A first approach would
have been to use a standard as RBAC [8] and used it. A firstgmobkcurs, when we noticed that
the AC policy derived from the case studies has to deal withagaphic context : for example the
validation procedure of a check deposit differs from brascto branches if they are not grounded
in the same state. Furthermore, in other part of the caséestpérmissions granted to a role are

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach 7

different if the role is played in branches of different etat To ease the modeling of permission we
used another AC model : OrBAQC] This model, includes the notion ofganization in the pattern
used to describe permissions. This pattern will be expthinghe following.

Prohibition

[,

Figure 1: Class diagram used to express OrBAC style peromssi

In this diagram we have four entities. Their instances spwed to users, roles, actions and
branches used in our modeling. The relatRbay describes the role associated with users in branches.
The relationPermission expresses that permissions are given to roles in branchésclass diagram
has to be instantiated to express permissions for the thieteuies of our running example.

In a sake of readability, we used the name of each instanc&keyg aVe keep in mind that this
method allows the example to be more readable. The Blasxh is instanced for each branch of the
running example : Montreal and Toronto. The cldgtion is instantiated for each action aimed by
the AC policy : deposit, cancel, validate and credit. ThegRole is instantiated for each role that
can be played in the IS : customer, clerk, banker and chigi@gerhe relatiorPlay is instantiated
to express role given to each role in a branch for an actionoumexample, permissions are the
same in both branch. But in case studies supplied by ourgragiermissions differ from branches to
branches. The claddser is instantiated for each user of the system. The reld®iay is instanced in
order to expressed roles played users in branches.

Now, for each event received, we want to check if the sec@rityironment corresponds to the
class diagram. To do so, we use a static predicate which istafiter logic predicate. And we have
to check if this predicate holds for each event received.

sp(p,r,0,t,e) =
(p,r,0) € Play
A (r,0,€) € Permission

Permissions can be expressed by two ways : by using a clagsulisor a process expression.
Our experience shows that the class diagram is generally tosexpress permissions that fit well
with the AC model express in the class diagram. Thus, proegs®ession are used for permissions
that are slightly exotic. For example, let suppose we hawgarsiser calledamien that can execute
the actioncancel in both branches. To express this permission we could us@thiin addition to the
class diagram :

permissionC() £

(

(damien, _, _, _,cancel(_,_))

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach

User
name Role
adrien name
boris customer
calvin clerk
daria banker
elisa chief agency
franck
Action
Branch “name
name limit deposit
Montreal 10 000$ cancel
Toronto 8 000% validate
credit
Play
User Role Organisation
adrian clerk Montreal
boris banker Montreal
calvin chief agency = Montreal
daria clerk Toronto
elisa banker Toronto
franck chief agency Toronto
permission
role branch action
clerk Montreal deposit
clerk Montreal credit
banker Montreal deposit
banker Montreal cancel
banker Montreal validate
banker Montreal credit
chiefagency Montreal cancel
chief agency Montreal validate
clerk Toronto deposit
clerk Toronto credit
banker Toronto deposit
banker Toronto cancel
banker Toronto validate
banker Toronto credit
chiefagency Toronto cancel
chiefagency Toronto validate
Figure 2:

Instance of the class diagram used for the runniamele

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach 9

)*

As, we do not have any exotic rule in our example, we use thesalgagram and the process
expression used for permission, is empty :

permission() £

(
)*

Now, we use the same approach to show IEBRSEC can be used to express prohibitions.

A

3.3 PROHIBITION - PROHI

When setting a prohibition, we want to express securityrenments that are not allowed to execute
an action. To do so, we use the same approach as previoustyrped for permissions : we use
a process expression, to describe the pattern of secusitsoement prohibited for each action. In
order to achieve, we must introduce a new operator.

e The guard denoted bp —> a where p is a first order quantified logic predicate aads a
process expression, allows one to exeautmly if the predicatep holds. If p does not hold,
thus nothing is done.

Now, we introduce a process expression corresponding tahgtion, and we explain it in the
following.

prohibitionA () £
(
|peUser.name() : p+#elisa=—
<p7)Ty Cancel(_)>
| |oe Branch.name() : 0 # Toronto =
(,-,0,_,validate(-))

)*

This PE does not models our running example, it is only usdtlisirate the concept of prohibi-
tion and the way they are modeledds3sEc. In this process we use guards to avoid explicit values
for some parameters of the security environment. In thepadt, the prohibitions avoid the person
calledelisa to execute the actiocancel in all possible cases. In the second part we avoid the action
validate to be performed in Toronto.

Previously we have used the concept of permission to modedhttee first rules of our running
example. In the following we use the concept of prohibitiomtake this modeling. As a fact for
each role we have to express a prohibition for each actiorr@edhat are not explicitly written in
the example. As for permission we first begin with a PE.

prohibitionB () £
(
|r € Role.name() : r # customer —-
(.., -, deposit(, -))
| (L F- o cancel(,)
| (.1, validate(,-))

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach 10

prohibition
role branch action
customer Montreal deposit
customer Montreal cancel
customer Montreal validate
customer Montreal credit
clerk Montreal cancel
clerk Montreal validate
chief agency Montreal deposit
chief agency Montreal credit
customer Toronto deposit
customer Toronto cancel
customer Toronto validate
customer Toronto credit
clerk Toronto cancel
clerk Toronto validate
chiefagency Toronto deposit
chief agency Toronto credit

Figure 3: Instance of the class diagram used for the runniamele

| (,r,_,_credit(_,_))
| |reRolename() : r #clerk =
(_,r,-,_,cancel(,-))
| (.1, validate(,-))
| |r € Rolename() : r # chiefagency —
(_,r,_,_,deposit(_,-))
| (,r,_,_credit(_,_))
)*

Still considering the fact that we are dealing with IS andrgda number of user, we choose to
express prohibition with the class diagram (ref). As a fagtassume that a prohibition is defined for
a role to execute an action in a branch. Here we finish to itiatarthe class diagram by giving the
instance of the claddrohibition.

Our goal is to enforce this prohibition expressed by a clésgrdm. To do so, we slightly change
the static predicate in order to care about the relaBimhibition.

sp(p,r,o,t,e) =
(p,r,0) € Play
A (r,0,€) € Permission
A (r,0,€) ¢ Prohibition

Then the process expression corresponding to prohibisidransformed in the empty PE. In the
system, we want that both permissions and prohibitions jgpéeal simultaneously. Thus, we use a
specific process expression calledin that represents the global behaviour of the AC policy.

3.4 AFIRST VERSION OF THE MAIN PROCESS EXPRESSION - MAIN1

In the main expression, we want that all aspecss:permissions, prohibitions ...) are applied si-
multaneously to all event received by the IS. In the follogvime will introduce a first version of the
main process expression. This version will allows permoissiand prohibitions to be checked for
each received event. To do so, we introduce a new operator.

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach 11

e The parallel operator depicted @§ b allows one to execute two actions without specifying the
order in which they have to be executed.

main() £
permission()

|
prohibition ()

In other words, we can say that the process expregsomission and prohibition have to be
executed, but they must synchronise on actions they havenimon. We give there a few examples
of events which are accepted or not, and the reason it is so.

e (adrian, banker, Montreal ,deposit(zoe, 124)) is not accepted : In fact, adrian is not allowed to
be a banker in Montreal

e (boris, banker, Montreal ,deposit(zoe, 24)) is allowed : In fact it refers only to permission and
not to prohibition, as it complies with permissions modekb@ security event is accepted.

e (adrian,clerk,Montreal ,deposit(yves, 123)) is allowed : In fact, it appears iRermissionand
prohibition and complies with both of them.

When an event is globally refused main, the state of both process expressp@mmmissionand
prohibition does not change.

3.5 OBLIGATION

In AC policy, the notion obbligation is an organizational constraint that apply to user. As amgie,
we can express an obligation for a user to execute an actiackobwledgement after performing an
action. Typically, it is the kind of constraint expressedhe sixth rule. Sometimes, the obligation
takes effect between the user who performed the first acimtha member of a group which contains
the first user for the performing of the second action.

In EB3SEC, an obligation explains that two security events of thedrae linked together by the
value of the requester of the security event. To express léigatibn we use process expressions (PE)
containing these operators in addition to operators poslyoexplained.

e The sequence denoted &yb allows one to execute the process expreskiafter the execution
of the process expressidn

e The interleaving denoted k|| b allows process expressioagndb to be executed in parallel
without any synchronisation, even if they have common astio

e The quantified interleaving is denoted iy € ens : exp(p). It corresponds to the interleaving
of process expressiomxp(p) for all values ofp contained in the sains.

In our running example the sixth rule is an example of obiayat We introduce a new process
expression that model this rule.

obligation () £
llceUser.name() : [[|[deint: [[meint :
| p € User.name() :

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach 12

(<p7 -y depOSIt(C7d7 m)>
(P, -, credit(c,d, m)))"

This PE models the sixth rules. In fact, as argument are @#plivritten in deposit and credit,
in the trace of the system, these actions are executed fixydar value of a customer, a check number
and an amount of a check. Now we suppose that the security @en, clerk, Montreal , deposit(zoe, 1,23))
is already executed. Thus, a security event correspondiriget eventredit(zoe, 1,23) can not be
performed unless the requester is adrian.

Our PE only express that the two actions have to be done byatie siser. But as a fact the
system can not physically force the user to perform the skaction after executing the first one. A
way to enforce the obligation is to forbid any action for ttemuafter he executed the first one. We
show another PE modeling obligation this way.

obligationP () £
lceUser.name() : [[|[deint: [[meint :
| p € User.name() :
((p,-,-,deposit(c,d,m))
((p,-,- -, credit(c,d,m))

| FALSE = (p, -, -, -, -, deposit(_, -, _))
| FALSE = (p, -, -,-,,cancel(_,_,))
| FALSE = (p, -, , , -, validate(_,_,_)))*

In this PE, after performing the actiateposit, the user have the choice between four actions.
Three of this four actions are blocked by a guard that willardwld. Thus, the user can perform
only the actiondeposit for the check deposit he performed. As it is not mentioned dki@er action
are disabled during the obligation we use the first PE for codeting.

3.6 A REFINEMENT OF THE MAIN PROCESS EXPRESSION

As we have described new constraints on our system, we hamtegrate them in the main process
expression that describes the global AC policy behaviour.
We put the process expressiobligation in parallel withpermissionandprohibition .

main() £
permissiony()
|

prohibition ()

obligation ()

3.7 SEPARATION OF DUTY

SoD (Separation of duty) is a security requirement thatiéia task in subtasks and rely the execution
of these subtasks to different users [7]. Thus, the secuofitthe process has less chances to be
corrupted by a single user who could execute all the subtaskémself.

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach 13

In RBAC, the problem of SoD is generally statically resolvatie permission of executing sub-
tasks are given to different roles, and users are not alldapthy conflicting roles. We can use these
approach ireB3secby checking the instance of the class diagram.

Another approach used to solve SoD is called dynamic SoDiworactions, with SoD con-
straints, dynamic SoD forbid the user to execute the secotioha once the first action is executed.
To achieve dynamic SoD, the method used must keep an instdriasks already performed. In,
EBSSEC, instances of workflows and their executions are saved bPEheThis will be shown in the
following.

Fourth and fifth rules deal with SoD constraints. We give ia fibllowing a PE modeling these
constraints and then we explain them.

separation() =
lceUsername() : ||d€int: ||[meint :
|peUser.name() : |p' € User.name() :
((p,-,-,deposit(c,d,m))
p#p =
(p',,,_,validate(c,d, m))
| (p/,-,-,-,cancel(c,d,m)))*
If
llceUser.name() : [[|[deint: [[meint :
|p€User.name() : |oe Branch.name() : | p' € User.name() :
((p,-,0,_,deposit(c,d,m))
m> o.limit —
pEPAPAEP' AP #P =
(p,-,-,-,validate(c,d, m))
|| (p”,chiefagency, _, _, validate(c,d, m))
| m<o.limit=A

)*

In the first part of this PE, we expressed the fourth rule. Vgl@squantification ovgoandp’ in
order to achieve that the executereposit andvalidate or cancel must be different. Furthermore, we
made a quantification over d andmto explicitly describe our workflow process. In fact, sinbe t
argument are explicitly written, the user who did theposit for a check can stillalidate or cancel
another check.

The second part of the PE models the fifth rule. For checksvtiiae exceed the branch limit we
must make twwalidate. Other wise theé\ reminds that there is no special procedure to execute and
only the fourth rule applies. The constraint used in thiswepie for the check value is modeled in the
PE by the expressiom > o.limit used in a guard. Furthermore, we still explicitly write tliglaments
of the actions in order to model workflows. Thus, the user wlgeradeposit can still make aancel
or avalidate for another check.

In EB3SEC, SoD constraints are defined at a workflow process level. Asxample, for a user
making the deposit of a check can still do other deposit but'tiae able to make the validate or the
cancel for the check for which he made the deposit. We ibitstthis on the first part of the SoD :
separationP.

separationP() £
llceUser.name() : [[|[deint: [[meint :
|peUser.name() : |p' € User.name() :

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach 14

(<p7 -y depOSIt(C7d7 m)>

p#p =
(p,-,-,-,validate(c,d, m))
| (p/,-,,-,cancel(c,d,m)))*

We suppose now we received the security eyaditian, clerk, Montreal , 1234 deposit(zoe, 1,123)).
We apply the transition rules &eparationPand show what it becomes :

separationP’() £
|lc € User.name()\{zoe} : ||me float\ {123} :
|peUser.name() : | p € User.name() :

((p,-,-,-,deposit(c,m))

p#p =
(P, -, -,validate(c,m))
| <p/7_7 - CanCB'(C, m)>)>‘<

(c:=2z0e,d :=1,m:=123 u:= adrian])| pe User.name() : |p € User.name() :
(<p7 =)=y depOSit(C7 d7 m)>

p#p =
(p,-,-,-,validate(c,d, m))
| (p,-,-,-,cancel(c,d,m)))*

This PE shows that, by now, the user adrian can not exealiiate, neithercancel for the check
deposit 1. But the user adrian can still do other check deposl cancel or validate other check
deposit.

3.8 ANEW REFINEMENT OF THE MAIN PROCESS EXPRESSION

As SoD is a component of our AC policy we want to incorporathét main process expression. We
achieve this by using a parallel with the older versiomafin

main() £
permissiony)

prohibition ()
obligation ()

separation()

4 DISCUSSION OF OUR MODELING

The first point we want to discuss about is the equivalencesiofgua PE or the class diagram to
describe permissions and prohibitions. Prohibitions agenssions have to be checked for each
security event received. Using PE or a static predicate thighclass diagram are totally equivalent
on a formal point of view. But, our experience shows thatgisive class diagram make the modeling

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach 15

more readable for human. On an implementation point of viw,goal is to use an interpretor to
execute PEs with an access to a database in order to keep atedipgrsion of the instance of the
class diagram. As we aim to secure IS involving large numlbersers, we think that using static
predicates could be a way to optimize the execution of trerfpnéter. But PEs can still be used.

In this paper we described how to use permissions and ptiambiBut we never force someone
to use both in the same model. As permissions and prohibitizet can be found in requirements can
be tedious to understand, we think that using both permiissdad prohibitions can lead to deadlock.

The concept obranch used in our class diagram is very powerful on case studiegdso by our
partner. In thepermissionandprohibition it was not very useful, but it helped a lot when we had to
model constraints over SoD.

The way we used to model the example, was directed by the faetamted to show how someone
can modepermissions, prohibitions, obligations andSoD in EB3SEC. We also use another approach
that consists to product a PE for each rule of the requirement

Using PEs ires3secallows one to product a AC model that contains SoD and olidigatrules,
that are really accurate. As an example, we were able to ex@aD rules with constraints and taking
into account workflow processes.

5 IMPLEMENTATION

Security policy specification
Process Class Attribute

expression diagram definition
/
¥ L 4
| EB3GG | | EBTG |
— - .
Guard Update
evaluator program
N
\\
L EB%PAI 2
N
Error
message
generator
Security kernel
—» Input/Output ----O Generate — > Execute

Figure 4: Architecture of the PDP

The eB3sEC language uses the same process algebra thamsthmethod, with adding the notion
of security environmentes? is implemented in a platform called APIS that allow its iptetation.
Components of this platform can be reused to create a Pokgysidn Point (PDP), which can be
used in an SOA architecture. Figure 4 illustrates the agchite of the PDP. It is based on the
Apisplatform and reuses some of its componeres3pAl [9, 10] is an interpreter foEB® process
expressions. It can be used to rBBSSEC process expressions by translating security actions into
normal actions. Process expressions can contain preslic@ring to attributes of the requirements
class diagram and the security class diagram. We suppdsedtia class diagram is implemented in
its own relational database. To implement the securitysalésgram, we uses®TG [12] to generate a
relational database schema and update programs to imdlettrioute definitions. Update programs
are used byB3PAI to maintain the database in a consistent state while sg@wénts are executed.
The moduleeB3GG [17] is used to generateguard evaluator program which contains procedures

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach 16

that are used bgs3pal to determine if a guard holds. It generates SQL requestseddtabase to
obtain attribute values of entities. These proceduresaf@nto security database and the IS database.
If an event is refused bgs3pPAl, theerror message generator [20] is used to generate an adapted error
message.

EB3PAI can execute arbitrary process expressions and uses am-ofifgted database (OODB)
to persistently store the state of process expressionanléfficiently execute quantified expressions
over arbitrary large sets (both choice and interleave) liygusptimization techniques [9, 10]. Its
main weaknesses are that its OODB is rather slow and its #®acdgannot be easily distributed
over several processors. For high throughput banking egdfins, this is not sufficient. Hence, we
are currently working on a new process algebra interpretéctwwill be restricted to deterministic
and optimizable process expressions. These process sixm®san be translated into an algebraic
state transition diagram (ASTD) [11]. The execution of anlBSs easier to distribute over several
processors, thereby exploiting parallelism in the praogssf events. The state of an ASTD is more
compact than the one used @@3PAl and can be easily stored into a relational database. The use
of ASTDs will also enable the use of state-based technigkedBl and Event-B to prove properties
about a security policy.

6 FUTURE WORK

The next step in our work will be to include the capabilitiésrmking model checking overs3sec
models. AseB3sECis very similar toEB® we plan to reuse results and tools developed:fot. As a
result, Alloy will surely be the tools we will use. The firsegtwill be to transformnEB3sec models
into Alloy model. The first step will be to define how to transfothe static part of aae>sec model
(i.e. : class digram, permissions and prohibitions) intaboy model. At this step we will be able
to verify the consistency between permissions rules antilpitin rules. After, we will need to
transform the dynamic part (i.e. : obligation, SoD and magaeagally all PEs) in an Alloy model.
Thus, we will be able to verify that dynamic and static parts@herent.

Furthermore, if the functional part of the IS is also formatiodeled we will be able to check the
coherence between the functionnal and the security parts.

The implementation previously presented is also a fuur&wior order to integrate tools of the
APIS platform foreB3sec we plan to develop a prototype made in OCaml and SQL. In thegro
lead with our industrial partner, we plan to implement afplah based ores3sec and usable in a
real life platform. This platform has to be integrated in @ Sarchitecture.

7 RELATED WORK

In order to compare related work, we use the approach destrifil]. This approach describes a
framework that allows one to express characteristics of Aglleh This approach leads to thirty
different comparison points encompassed in eight categiors we present here only tee3sec
language and not the fultB3sEC project led with our industrial partner, we only mention avfe
comparison points and categories. We apply this approadurtavork and then to other related
work:

¢ In [3], the authors show a method aiming to solve AC problesnmbluding a RBAC model in
the UML design design of the application

¢ In [4], the authors show a method helping to create a langtagepress SoD express in CSP
with an RBAC model in order to be used with an enforcementtpoin

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach 17

e [21] proposes a non formal language to express AC policiefadt the problem is that contra-
dictory decision can be taken for a request by the same pdieyeral works as [16] presents
a formalisation of policies expressed in XACML in order talthe problem. [2] presents a
profile made in XACML of the RBAC model including mechanisroause SoD. In the follow-
ing, we consider this set of works as a unique work called XAGdnsidered as formal and
able to express SoD. Here, the SoD is used for a session duhioly a user can not trigger
conflicting role in the same time.

Now, we deal with the few comparison points from (ref ORKA).

7.1 model specification

The first point to consider in this category is the level oftedagion that can be used in the model.
With EB3sEC or [4], we deal with a high level of abstraction, for exampieai SOA architecture we
deal with web-services. In [3] amd XACML, we deal with objectd operation that are implemented
in the code of the software.

In [4], XACML and EB3sEc the underlying model of the specification is formal. Howeifer
we consider the XACML with only the standard it is non formdieveas [3] is structured and semi-
formal; it is structured as it is using schemas and UML notand semi-formal as it is using for
example first order predicates to express constraints fonipsions.

All of these four method have the same purposed : they aretoseaforce a AC policy in a IS.
They also tends to have the same using area : IS built on a Sé#emture.

In [4], [3] and XACML the underlying model of the specificatias a RBAC model. In other
word, AC authorizations have to comply with the RBAC modeil.EB3SEC, the underlying model,
is chosen by the person who models the policy. In this paperchwose a model derived from the
OrBAC methods, but in other cases we could use a RBAC modehong made model designed to
ease the modeling step.

7.2 Policy expressiveness

[3] allows one to express permissions with constraints emtlodel. [4] allows one to express per-
mission and SoD constraints at the workflow level. XACML altoone to express permissions,
prohibitions and Sod constraints on the modek3sec allows one to to express permissions and
prohibitions with constraints, obligations and Sod at akffow level on the model.

In EB3sEC and [4] the model includes workflow routing concepts sucheaisiization, selection,
iteration, and parallelization of steps and is able to adtitre order of events in a fine-grained manner.

In this paper we present only te@*seclanguage. Thus, we do not mention the other comparison
point of [1] which deals with our future work or with other p&of our project. Compared to the three
other methodseB3sEc seems to be a language more powerful in term of expressiseriadact, it
had the particularity of allowing the modeler to use a stath@d@aodel or a home made model and also
to allow him to express different constraints as permissi@nohibitions, obligations and SoD on a
finned grained level. All of these constraints are not alldaethe same time by a unique method at
atime.

References

[1] Christopher Alm, Michael Drouineaud, Ute Faltin, KanstSohr, and Ruben Wolf. A classi-
fication framework designed for advanced role-based acmagsol models and mechanisms.
Technical report, Technologie-Zentrum Informatik Brentdmiversity, 2009.

[2]
[3]

[4]

[5]

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach 18

A Anderson.XACML Profilefor Role BasedAccessControl(RBAC). OASIS Standard, 2004.

David Basin, Jurgen Doser, and Torsten Lodderstedtd@idriven security: From uml models
to access control infrastructure8CM Trans.Softw. Eng.Methodol., 15(1):39-91, 2006.

David A. Basin, Samuel J. Burri, and Gunter Karjoth. Rymic enforcement of abstract separa-
tion of duty constraints. In Michael Backes and Peng Ningpesi ESORICS, volume 5789 of
LectureNotesin ComputerScience, pages 250-267. Springer, 2009.

D.E. Bell and L.J. LaPadula. Secure computer systemghéfaatical foundations and model.
reconstruction &lectronique 2547 v2, MITRE Corporatib®73.

[6] A.Abou El Kalamet al. Organization based access control4tnintl. IEEEWorkshopPolicies

[7]

for DistributedSystemsandNetworks, pages 120-130, Como, Italy, 2003. IEEE Press.

David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chamabuli. Role-BasedAccess
Control. Artech House, Inc., Norwood, MA, USA, 2003.

[8] American National Standard Institute (ANSI) for Infoation TechnologyRole BasedAccess

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Control. ANSI INCITS 359-2004, februar 2004.

B. Fraikin and M. Frappier. Efficient symbolic executioflarge quantifications in a process
algebra. In Jim Woodcock and Jin Song Dong, edittesEM 2007, volume 4789 ofNCS,
pages 327-344. Springer Berlin/Heidelberg, November 2007

B. Fraikin and M. Frappier. Efficient symbolic compudstt of process expressionScienceof
ComputerProgramming, 74(9):723-753, July 2009.

M. Frappier, F. Gervais, R. Laleau, B. Fraikin, and RD@&his. Extending statecharts with
process algebra operators. Ihmovationsin Systemsand SoftwareEngineering, pages 285—
292, London, UK, august 2008. Springer London.

F. Gervais, M. Frappier, and R. Laleau. Generatingtiaial database transactions frara®
attribute definitions. 8(3):423-445, July 2009.

Camadian Government. Personal information protacttmd electronic documents act.

CanadiariLaw, April 2000.

Carlos Gutiérrez, Eduardo Fernandez-Medina, anddvRiattini. Towards a process for web
services securityJournalof ResearctandPracticein Information Technology, 38(1), 2006.

C.A.R. Hoare.CommunicatingSequentiaProcesses. Prentice-Hall, 1985.

Vladimir Kolovski, James Hendler, and Bijan Parsia. ayzing web access control policies.
In WWW '07: Proceedingf the 16th internationalconferenceon World Wide Web, pages
677—-686, New York, NY, USA, 2007. ACM.

P. Konopacki. Synthése automatique de guarde EB3taviashesis, Université de Sherbrooke,
2008.

Peng Liu and Zhong Chen. An access control model for veetices in business process. i
'04: Proceeding®f the 2004 IEEE/WIC/ACM InternationalConferenceon Web Intelligence,

pages 292-298, Washington, DC, USA, 2004. IEEE Computee§oc

P. Konopacki, R. Laleau, M. Frappier. Expressing accessaaoolicies with an event-based approach 19

[19] Francis Mer. loi de sécurité financierdournalOfficiel, (177), january 2003.

[20] J. Milhau, B. Fraikin, and M. Frappier. Automatic Geaton of Error Messages for the Sym-
bolic Execution ofes® Process Expressions. IntegratedFormalMethods: 7th International
ConferencelFM 2009,DisseldorfGermanyfFebruaryl 6-19,2009,Proceedings, volume 5423
de LNCS, pages 337-351. Springer Berlin/Heidelberg, 2009.

[21] T Moses.eXtensibleAccessControlMarkupLangaggXACML) Version2.0. OASIS Standard,
2005.

[22] R. Sandhu. Transaction control expressions for séiparaf duty. In4th AerospaceComputer
SecurityApplication Conference, pages 282—-286, 1988.

[23] Paul Sarbanes and Mike Oxley. Sarbanes-oxleyRuhlicLaw, (116):107-204, 2002.

[24] Emin Gun Sirer and Ke Wang. An access control languag&€b services. ISACMAT '02:
Proceedingsf the seventhACM symposiunon Accesscontrolmodelsandtechnologies, pages
23-30, New York, NY, USA, 2002. ACM.

