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Abstract—With most of formal methods, an initial formal
model can be refined in multiple steps, until the final refinement
contains enough details for an implementation. Most of the
time, this initial model is built from the description obtained by
the requirements analysis. Unfortunately, this transition from
the requirements phase to the formal specification phase is
one of the most painful steps and is still ambiguous. In fact,
building this initial model requires a high level of competence
and a lot of practice, especially as there is no well-defined
process to assist designers. For that purpose, we propose a goal-
based approach in which initial formal models (in Event-B)
are built incrementally driven by a goal-oriented requirements
engineering (GORE) paradigm.

Keywords-Requirements engineering, KAOS methodology,
Event-B method, KAOS refinement patterns.

I. INTRODUCTION

Formal methods have shown their ability to produce and
improve complex systems for large industrial problems such
as Paris metro line 14 [1] or Roissy Val [2] using the
B method [3]. However, a serious problem with formal
methods is the difficulty of using them. In fact, even if the
formal development chain from abstraction via refinement
to implementation is well understood, the major remaining
weakness in this chain is that there is no well-defined process
to assist designers in the building of the initial formal
specification. Most of the time, this initial model is built ”in-
tuitively” from the description obtained by the requirements
analysis and it requires a high level of competence and a lot
of practice. Therefore, it will be difficult to fully comprehend
the correspondence between requirements and initial formal
specifications, and the validation of these specifications is
very difficult mainly due to: (i) the inability for stakeholders
to understand formal models; (ii) the inability for designers
to link them with the initial requirements. It can result that
an initial formal model may not be a correct realization of
the requirements.

In this paper, we explore how to cope with this problem
using Goal Oriented Requirements Engineering (GORE)
approach [4] and the Event-B formal method [5]. The main
objective is that this combination helps software designers to
elaborate pertinent abstract Event-B specifications. The pro-
posed approach aims to build incrementally abstract Event-
B models from GORE goal models. Applying Requirements
Engineering (RE) methods at the very beginning of a design
process and before using formal methods can be interesting

since these methods provide a rich way of structuring and
documenting the entire requirements documents. Further-
more, whereas specifications allow us to answer the question
WHAT the system does, RE methods allow us to address the
WHY, WHO, WHEN questions. Among RE methods, Goal
Oriented Requirements Engineering (GORE) paradigm [4] is
particularly well-suited for requirements engineering since it
is nearer to the way human thinks and is easy to understand
by all stakeholders. Moreover, it offers some benefits in
terms of: (i) providing the rationale for requirements and
explaining them to stakeholders; (ii) reasoning on the system
boundaries; (iii) identifying the responsibilities.

This paper continues our previous work [6] with addi-
tional studies, results and proofs. It describes a work in
the framework of a research project, called TACOS [7],
aiming at combining requirements engineering methods with
formal methods. The remainder of this paper is organized
as follows. Section 2 overviews the KAOS and the Event-B
formal methods that are employed in the proposed approach.
Section 3 details our proposed approach that consists in
building the architecture of an Event-B specification from
a KAOS goal model. Sections 4, 5 and 6 present the Event-
B semantics of, respectively, the milestone, the AND and the
OR goal refinement patterns. Relevant issues and benefits are
discussed in Section 7. Section 8 presents the tool support
of the proposed approach. Related work are discussed in
Section 9. We conclude our paper in Section 10 with an
outline of future work.

II. BACKGROUND

In this section, we briefly introduce KAOS and Event-B.

A. KAOS method

KAOS (Keep All Objectives Satisfied) [8] is a goal-
based requirements engineering method. KAOS requires
the building of a data model in UML-like notation. A
goal defines an objective the system should meet, usually
through the cooperation of multiple agents such as devices
or humans. KAOS differentiates between goals and domain
properties that are descriptive statements about the envi-
ronment such as physical laws, organizational norms or
policies, etc. KAOS is composed of five complementary sub-
models related through inter-model consistency rules where
the central model is the goal model which describes the



goals of a system and its environment. The core of the
goal model consists of a refinement graph showing how
higher-level goals are refined (using the concept of refine-
ment patterns) into lower-level ones and, conversely, how
lower-level goals contribute to higher-level ones. Higher-
level goals are strategic and coarse-grained while lower-level
goals are technical and fine-grained (more operational in
nature). The goal model enables early forms of RE-specific
analysis such as risk analysis, conflict analysis, or evaluation
of alternative options.

KAOS provides a catalog of goal patterns that generalize
the most common goal configurations. Achieve Goals spec-
ifies a property that the system will achieve “some time in
the future”. Cease Goals disallow achievement “some time
in the future”. These two kinds of goals represent what are
currently called, functional goals. Maintain Goals specifies
a property that must hold “at all times in the future”. Avoid
Goals prescribes a property that must not hold “at all times
in the future”.

Goals in KAOS can be either “AND” or “OR” refined. A
goal is AND-refined into subgoals, such that the conjunction
of the subgoals is a sufficient condition to achieve the
parent goal. The OR-refinement associates a goal to a set of
alternative subgoals in which the achievement of the higher-
level goal requires the achievement of one of its subgoals.
KAOS offers a lot of refinement patterns that decompose
goals. These patterns can only be used in the context of
different tactics defined in KAOS such as the milestone-
driven tactics which consists in identifying milestone states
that must be reached to achieve the target predicate.

KAOS also provides a criterion for stopping the re-
finement process. If a goal can be assigned to the sole
responsibility of an individual agent, there is no need for
further goal refinement to occur. Operational goals (goals
that are assigned to agents) are the leaves of a goal graph.
Each leaf can be either a requirement (if it is assigned to an
agent of the system) or an expectation (if it is assigned to
an agent in the environment). The reader may refer to [8]
for a full description of these notions.

B. Event-B method

Event-B [5], an evolution of the classical B method [3],
is a formal method for modeling discrete systems by refine-
ment. An Event-B model can be described in terms of two
basic constructs:

• The context: it provides axiomatic properties of Event-
B models. It contains the static part of a model such
as carrier sets, constants, axioms and theorems. Car-
rier sets are similar to types but both, carrier sets
and constants, can be instantiated. Axioms describe
properties of carrier sets and constants. Theorems are
derived properties that can be proved from the axioms.
Proof obligations associated with contexts are straight-
forward: the stated theorems must be proved.

• The machine: it contains the dynamic part such as
variables, invariants, theorems, events and variants.
Variables v define the state of a machine. Possible state
changes are described by means of events. Each event
is composed of a guard G(t, v) and an action S(t, v),
where t are local variables the event may contain. The
guard states the necessary condition under which an
event may occur, and the action describes how the state
variables evolve when the event occurs. The correctness
of an Event-B model is defined by an invariant property
which every state in the system must satisfy. So, every
event in the system must be shown to preserve this
invariant. In order to verify this requirement, proof
obligations have been defined.

It is also important to indicate that the most important
feature provided by Event-B is its ability to stepwise refine
specifications. Refinement is a process that transforms an
abstract and non-deterministic specification into a concrete
and deterministic system that preserves the functionality
of the original specification. During the refinement, event
descriptions are rewritten to take new variables into account.
This is performed by strengthening their guards and adding
substitutions on the new variables. New events that only
assign the new variables may also be introduced. Proof
obligations (POs) are generated to ensure the correctness
of the refinement with respect to the abstract model: (i)
the guard strengthening ensures that the concrete guard
is stronger than the abstract one. In other words, it is
not possible to have the concrete version enabled whereas
the abstract one would not. The term ”stronger” means
that the concrete guard implies the abstract guard. (ii) the
correct refinement ensures that the concrete event transforms
the concrete variables in a way which does not contradict
the abstract event. Event-B is supported by several tools,
currently in the form a platform called Rodin [9].

III. FROM GOALS TO EVENT-B

A. Motivation

With a simple system with few requirements, there is
no problem for specifying it. However, the task becomes
difficult for a real-scale system, with a large number of re-
quirements, and a documentation which is often too verbose.
In such system, people have expressed frustration in trying to
use formal methods. Many reasons have been suggested for
this situation such as a claim that they require a high level
of competence and a lot of practice, especially to design
the initial specification. In such situation, people try to do
some kind of pseudo-programming instead of building an
initial formal model. This kind of design constitutes a serious
shortcoming because people are unable after to ensure
traceability with the requirements documents. So, the idea
encouraged by many researchers like J.R Abrial in [5] is to
completely rewrite requirements documents before starting



any modeling. For that, requirements engineering methods
such GORE can be advantageous since they provide a rich
way of structuring and documenting the entire requirements
documents. These methods are nearer to the way human
thinks and are easy to understand by all stakeholders. In this
paper, we aim to explore GORE approach to guide software
designers in the elaboration of a pertinent abstract formal
specification. We have chosen KAOS as a GORE method
because in KAOS the emphasis was more on semi-formal
and formal reasoning about behavioral goals for derivation
of goal refinements, goal operationalizations, etc, while in
i* [10] for example (the other famous goal-oriented RE), the
emphasis was more on qualitative reasoning on soft goals.
Then, KAOS is particularly suitable to be transformed to
formal languages like Event-B. The choice of Event-B is
due to its similarity and complementarity with KAOS: (i)
both Event-B and KAOS have notions of refinement and
constructive approach; (ii) KAOS and Event-B (conversely
to the classical B) have the ability to model both the system
and its environment. Hence, these points offer the possibility
of using Event-B in the early phases of the development of
complex systems. This can help the designers in constructing
a mathematical simulation of the overall system.

In RE methods, two kinds of requirements can be identi-
fied. Functional requirements specify the functions that the
system-to-be must be able to perform and non-functional
requirements capture properties or constraints under which
the system-to-be must operate, such as performance, quality,
security concerns. Generally existing RE methods build
models where functional and non-functional requirements
are closely related. However, it appears in practice that
these two kinds of requirements do not evolve over time
in the same way and that functional requirements are more
stable than non-functional ones. This is why our proposed
method is based on the definition of three models. The
first one describes functional requirements and is the base
for deriving the skeleton of an Event-B specification. The
second one describes non-functional requirements. The last
one describes the impacts of non-functional requirements on
functional requirements and will serve thus in completing the
skeleton of the Event-B specification. In this paper, we focus
on the functional requirements model and the derivation of
formal specifications.

B. Achieve Patterns

To achieve our objective, we propose to give for each
KAOS functional goal refinement pattern, an Event-B refine-
ment structure. As mentioned in Section II.A, a functional
goal can be an Achieve goal or its dual variant (Cease
goal) [5]. An Achieve goal prescribes intended behaviors
where some target condition must sooner or later hold
whenever some other condition holds in the current system
state (this state is an arbitrary current one). An Achieve goal
in KAOS is denoted as follows: Achieve[TargetCondition

From CurrentCondition]. This notation has the following
informal temporal pattern where CurrentCondition prefix is
optional (said otherwise, it can be true):

[if CurrentCondition then] sooner-or-later
TargetCondition.

C. Transformation of KAOS Achieve Goals

If we refer to the concepts of guard and postcondition
that exist in Event-B, a KAOS goal can be considered as a
postcondition of the system, since it means that a property
must be established. The crux of our transformation is to
express each KAOS goal as an Event-B event, where the
action represents the achievement of the goal. Then, we will
use the Event-B refinement relation and additional custom-
built proof obligations to derive all the subgoals of the
system by means of Event-B events. Let us consider now
that the Achieve goal G is refined into two sub-goals G1

and G2 as shown in Figure 1. Refinements are denoted by a
bubble linking the parent goal with an arrow, and the child
goals with regular lines.

Figure 1. Example of KAOS goal model

Each level i (i ∈ [1..n]) is represented in the hierarchy
of the KAOS goal graph as an Event-B model Mi that
refines the model Mi−1 related to the level i-1. Moreover,
we represent each goal as an Event-B event where: (i) the
current condition of this goal is considered as the guard; (ii)
the then part encapsulates the target condition of this goal
(see Figure 2).

Up to now, the initialization part, variables and invariants
corresponding to their type, and contexts are manually
completed by the designer. It would be possible to derive
them from the object model in KAOS which contains every
concept used in the definition of goals in the goal model. As
this KAOS object model is an UML class diagram, the idea
therefore is to reuse for example the UML-B work defined
by [11], [12] that transforms a UML class diagram into a
B machine and its associated context. Another important
remark is that the invariants (that constraint the system) will
be further added in the obtained Event-B machines when
the non-functional goals (the KAOS Maintain goals) and
their impacts on functional goals [13] will be translated in



MACHINE Abstract M0 MACHINE First M1

REFINES Abstract M0

EvG ∆
= EvG1 ∆

=
when G-Guard when G1-Guard
then G-PostCond then G1-PostCond
end end

EvG2 ∆
=

when G2-Guard
then G2-PostCond
end

(a) Abstract Model M0 (b) Refinement Model M1

Figure 2. Overview of the Event-B models obtained from the KAOS goal
model

Event-B. This work is almost done and will be presented in
a further work.

One may wonder how the temporal characteristic (”sooner
or later” keyword) is expressed in our Event-B models,
as this should imply to specify the concept of time. J.R
Abrial [14] explains that the time dimension does need to
be explicitly considered at the most abstract levels of a spec-
ification, and advocates to use events themselves to express
this dimension. Thus, in Event-B, each observable event is
so small (atomic) that its execution can be considered to
take no time, and then only one event can take place within
one unit of time. Consequently, when the unit is large, the
corresponding time is very abstract, and when the unit is
small, the corresponding time is very concrete. In other
words, time is stretched when moving from an abstraction to
its refinement. This stretching reveals some ”time details”,
some new events. This idea is shared by the authors of [15]
when they describe the concept of ”Time Bands”. Therefore,
this idea of time granularity suits well to the definition of
an Achieve goal. However, if deadlines were associated with
such a goal, we would be obliged to introduce new variables
to model time. This point will be considered in future work
when non-functional goals will be translated.

D. Example

Let us take a simple example of transformation extracted
from [16], [17] that describe the Event-B specification
of a localization software component using our proposed
approach. This excerpt shows the Event-B counterpart
of the high-level of the KAOS goal model related to a
localization component. This high-level contains only one
goal which is this strategic goal G, defined informally as
follows:

Goal G: Achieve [LocalizeVehicle]
InformalDef: The vehicle must be localized.

We associate an Event-B model Localization, in Figure 3,
to this most abstract level of the hierarchy of the KAOS
goal graph. In this Event-B model, we will have an event

MACHINE Localization
SEES TypeSets
VARIABLES

estimated loc

INVARIANTS
inv1 : estimated loc ∈ LATITUDE × LONGITUDE

EVENTS
Initialisation

begin
act1 : estimated loc := null 7→ null

end
Event LocalizeVehicle =̂

begin
act1 : estimated loc :∈ (LATITUDE \ {null})×

(LONGITUDE \ {null})
end

END

Figure 3. An Example of the Event-B transformation

called LocalizeVehicle that will translate the goal G; i.e. it
describes the “property” of the goal G, in terms of general-
ized substitutions. Localizing a vehicle consists in obtaining
an estimated loc which is a pair of latitude and longitude.
At this level of abstraction, it is not necessary to precise the
way this information is calculated. Thus, we use the non-
deterministic generalized substitution through the symbol
:∈ which specifies an unbounded choice. So, estimated loc
can take any value in the sets (LATITUDE \ {null}) and
(LONGITUDE \ {null}). The null value serves just to
initialize the system through the initialization event. Notice
that at this abstraction level, the event LocalizeVehicle can
always occur. Hence, its guard is always true. Sets in
uppercase are abstract sets used to type the variables. They
are described in the Event-B context TypeSets (see [16],
[17]).

In the next sections, we propose an Event-B transforma-
tion rule for each KAOS refinement pattern associated to
Achieve goals. Based on the classical set of inference rules
from Event-B [5], we have identified the systematic proof
obligations for each KAOS goal refinement pattern. In that
aim, the following outline will be used for describing each
refinement pattern:

1) Description of the KAOS pattern: We give a short
informal definition of the KAOS goal refinement pat-
tern.

2) Transformation to Event-B: We propose here to
transform the KAOS goal refinement pattern to Event-
B as follows:

a) Formal definition: We present the Event-B se-
mantics given to each KAOS goal pattern.

b) Proof obligations identification: We present just
some informal arguments defining exactly what
we have to prove for each KAOS goal refinement
pattern. A formal argumentation of the identified
proof obligations is detailed in [17].



IV. THE MILESTONE GOAL REFINEMENT PATTERN

A. Description of the KAOS pattern

The milestone goal refinement pattern [8] refines an
Achieve goal by introducing intermediate milestone states
G1, ..., Gn for reaching a state satisfying the target condition
(denoted by G-PostCond) from a state satisfying the cur-
rent condition (denoted by G-Guard) as shown in Figure 4
(with just two sub-goals).

Figure 4. Milestone goal refinement pattern

The first sub-goal G1 is an Achieve goal with the mile-
stone condition as target condition; it states that sooner or
later the milestone condition (denoted by G1-PostCond)
must hold if the specific current condition G1-Guard (which
can be stronger than the current condition G-Guard of the
parent goal) holds in the current state. The second sub-goal
is an Achieve goal as well; it states that sooner or later
the specific target condition G2-PostCond (which can be
stronger than the target condition G-PostCond of the parent
goal) must hold if the specific milestone condition G2-
Guard (derived from G1-PostCond) holds in the current
state.

B. Transformation to Event-B

Since the satisfaction of all the KAOS sub-goals (accord-
ing to a specific order) implies the satisfaction of the parent
goal, the abstract event EvG is refined by the sequence of
all the new events (EvG1, EvG2).

1) Formal definition: In Event-B, often the information
about such events sequencing has to be embedded into
guards and event actions with the downside of extra model
variables. We present here another solution (without extra
model variables) by proposing a syntactic extension of the
Event-B refinement proof rule in order to provide a way to
refine an abstract event by a sequence of new events. Hence,
the abstract event EvG is refined as follows:

(EvG1 ; EvG2) Refines EvG

2) Proof obligations identification: We are going to give
systematic rules defining exactly what we have to prove
for this pattern in order to ensure that the sequence of
concrete events EvG1;EvG2 indeed refines its abstraction.

In fact, in addition to the feasibility proof obligation1, this
kind of refinement requires to discharge these different proof
obligations2:

• The ordering constraint expresses the ”milestone” char-
acteristic between the Event-B events.

G1-PostCond ⇒ G2-Guard (PO1)
• The guard strengthening ensures that the concrete guard

of the sequence (the guard of the first event in the
sequence) implies the abstract guard.

G1-Guard ⇒ G-Guard (PO2)
• The correct refinement ensures that the sequence (the

action of the last event in the sequence) transforms the
concrete variables in a way which does not contradict
the abstract event.

G2-PostCond ⇒ G-PostCond (PO3)

V. THE AND GOAL REFINEMENT PATTERN

A. Description of the KAOS pattern

An Achieve goal G is AND refined into two (or more)
sub-goals if the conjunction of the sub-goals is sufficient to
establish the satisfaction of the parent goal G as shown in
Figure 5 (with just two sub-goals).

Figure 5. AND goal refinement

In Figure 5, the AND-refinement link expresses that the
goal G is satisfied by satisfying the goal G1 and the goal
G2.

Restriction: In KAOS nothing is said on the execution
order of the different sub-goals. The transformation to Event-
B reveals that this can constitute a serious problem when
these sub-goals manipulate shared variables. Let us explain
more this problem by supposing that a shared variable x is
modified by two sub-goals (G1 and G2). G1 increases x by
3 and G2 divides x by 2. Hence, it is clear that the execution
order of the two sub-goals is important. To completely
avoid this problem, a sufficient condition is to force a AND
refinement to manipulate only disjoint set of variables. This

1It ensures that each event must also be feasible, in a sense that an
appropriate new state v′ must exist for some given current state v.

2These different proof obligations must be in practice considered under
an additional hypothesis containing a model invariant I , a gluing invariant
J and a collection P of axioms constraining constants and sets.



strong solution is quite close to other solutions adopted by
a lot of researchers such as J.R Abrial [3] with the parallel
behavior concept. If there is a AND refinement with shared
variables, we propose to transform this form of AND into
a “milestone” refinement, and then to explicitly specify the
order of modifications on the shared variables.

B. Transformation to Event-B

As for the milestone goal refinement pattern, the satis-
faction of all the KAOS sub-goals implies the satisfaction
of the parent goal. However, the execution of these new
events must not necessary follows a specific order. Hence,
our idea (inspired from Process Algebra [18]) is that these
events (EvG1 , EvG2) are executed in an arbitrary order:
either EVG1;EVG2 or EVG2;EVG1. This corresponds to
the semantics of the interleave operator in process algebra.

1) Formal definition: We propose a syntactic extension
of the Event-B refinement proof rule in order to refine an
abstract event by the interleaving of all the new events as
follows:

(EvG1 ||| EvG2) Refines EvG

2) Proof obligations identification: We are going to
give systematic rules defining exactly what we have to
prove in order to ensure that the interleaving of concrete
events indeed refines its abstraction. In fact, we have to
prove three different lemmas (of course in addition to the
feasibility proof obligation):

• The guard strengthening ensures that the concrete guard
is stronger than the abstract guard of EvG. The concrete
guard of EvG1 ||| EvG2 can be either G1-Guard (if
we execute EvG1 at first) or G2-Guard (if we execute
EvG2 at first). Consequently, we have to prove that:

G1-Guard ⇒ G-Guard (PO1)
G2-Guard ⇒ G-Guard (PO2)

• The correct refinement ensures that the interleaving
of concrete events EvG1 ||| EvG2 transforms the
concrete variables in a way which does not contradict
the abstract event.
(G1-PostCond ∧G2-PostCond) ⇒ G-PostCond

(PO3)

VI. THE OR GOAL REFINEMENT PATTERN

A. Description of the KAOS pattern

An Achieve goal G is OR refined into two sub-goals G1

and G2 if only either (not both) of its sub-goals is achieved.
A typical OR is shown in Figure 6 (with just two sub-goals).

In each sub-goal, a sub-goal target condition must be
reached in order to reach the target condition G-PostCond
of the parent goal. Notice that this goal refinement pattern
introduces a certain kind of bounded non-determinism that
will be resolved further in the implementation phase.

Figure 6. OR goal refinement pattern

B. Transformation to Event-B

1) Formal definition: Since the satisfaction of exactly one
KAOS sub-goal implies the satisfaction of the parent goal,
we propose to refine the abstract event EvG as follows:

(EvG1 XOR EvG2) Refines EvG

2) Proof obligations identification: We are going to give
systematic rules defining exactly what we have to prove in
order to ensure that each concrete event (EvG1 or EvG2)
indeed refines its abstraction.

• The guard strengthening ensures that the concrete guard
(G1-Guard or G2-Guard) is stronger than the abstract
guard of EvG.

G1-Guard ⇒ G-Guard (PO1)
G2-Guard ⇒ G-Guard (PO2)

• The correct refinement ensures that each concrete event
(EvG1 or EvG2) transforms the concrete variables in a
way which does not contradict the abstract event EvG.

G1-PostCond ⇒ G-PostCond (PO3)
G2-PostCond ⇒ G-PostCond (PO4)

• The ”exclusive” characteristic ensures that only one
event (either EvG1 or EvG2) but not both can be
executed. Hence, the execution of one event forbids the
other event to be fired.

G1-PostCond ⇒ ¬G2-Guard (PO5)
G2-PostCond ⇒ ¬G1-Guard (PO6)

Most of these proof obligations could be discharged by the
current version of the Rodin automatic theorem prover [9].
In fact, this Event-B refinement semantics is quite close to
the same one proposed by Rodin if we consider that each
event refines the abstract event EvG.

VII. DISCUSSION AND BENEFITS

One may wonder whether the transformation of KAOS
target conditions as Event-B postconditions is adequate,
since the execution of Event-B events is not mandatory. In
accordance with the Event-B semantics, all events whose
guard is true can be performed and there is necessarily
one that will be performed. The choice between all these
permitted events is made non-deterministically. However,



when deriving an Event-B specification from a goal model
containing refinement following the milestone pattern that is
interfered with other refinement patterns (see [19]), temporal
ordering constraints between events need to be taken into
account and have to be therefore necessarily and explicitly
contained in the specification of events, for example in
the guard. Then, model-checking techniques can be used.
More generally, we use model-checking techniques to prove
properties that contain temporal operators. Hence, our idea
is to mix local proof obligations (generated by the Event-
B prover) with proofs generated by a model-checker like
ProB [20]. Recently, an interesting work-in-progress [21]
presents an extension of Event-B with a mechanism to
reason about event ordering based only on theorem proving
and consequently it avoids state number explosion problem
caused by model-checking. A number of proof obligations
are generated when flows are attached to an Event-B model.
The discharging of these proof obligations demonstrates the
unfailing progress of a model through the events of a flow
expression. Moreover, the author of [21] affirms that this
control flow technique may also help to ensure a deadlock
freeness, liveness and reachability properties of an Event-B
model. Therefore, it would be benefit for us to explore this
technique in order to verify the temporal ordering constraints
between events without using model-checking techniques.

The proposed goal-based approach (KAOS) can guide
software designers in the elaboration of pertinent abstract
formal specifications since: (i) the visual dimension of
KAOS (boxes, arrows...) allows people to better understand
requirements and consequently to better design a faithful
formal specification; (ii) GORE helps designers to structure
an Event-B specification and to choose the right moment
to introduce the different Event-B events; (iii) the usage of
GORE methods help designers to correctly built guards of
each Event-B event; (iv) finally, GORE methods encourage
designers to consider both the system and its environment.
This is an important point and this is exactly the aim of
Event-B.

Once the abstract Event-B specification has been obtained
from the whole KAOS goal model, the design of the
software-to-be can begin. In other words, the B refinement
process toward an implementation can begin. An interesting
result is that the obtained abstract Event-B specification
describes the properties that the final program must fulfill;
i.e. it describes the way by which we can eventually judge
that the final program is correct. This creates a better
confidence in the development process and can help people
who wants to certificate their product or software.

Another interesting result is that the obtained Event-B
specification allows to give KAOS goal model a precise
semantics just as existing translations from UML specifi-
cations into B specifications give a formal semantics to
class diagrams or state diagrams [11], [12]. This point
offers the possibility to prove some properties of consistency

on the goal model by discharging the proof obligations
derived by the Event-B refinement process. Indeed, if we can
discharge for instance the proof obligations of refinement
of an event EvG by either EvG1 or EvG2 it means that
the OR decomposition of goal G is correct. Otherwise, it
means either that one or more expressions of the events
(EvG, EvG1, EvG2) are not correct or that sub-goals
are missing or that the goal refinement pattern is false.
However, we can never ensure that the expression of the
Event-B event corresponds exactly to the expression of the
related goal since this latter is informal. For that, we can
use an animation technique to validate the derived formal
specification against original customers’ requirements. This
animation step not only indicates deviations from original
requirements right on the spot but also helps fixing some
specification errors. The reader can refer to [19] for more
details. For that, ProB [20] may be a very useful validation
tool since its automated animation facilities allow users to
animate their specifications; i.e. gain confidence in their
specifications.

VIII. TOOL SUPPORT

An implementation, called SysKAOS2EventB plug-in, of
the proposed approach has been elaborated using model-to-
model transformation technologies. The developed tool is
an initial step towards the development of a more complete
tooling that allows the generation of an Event-B speci-
fication from requirements structured in the KAOS goal
model. One of our priorities is that the tool supporting our
approach must be open source developed using also others
existing open source tools. However, the KAOS mother
tool Objectiver3 allowing the design of KAOS models is a
proprietary tool. For that, an open source support tool [13]
has been already developed based on the Topcased open
platform [22] where the complete meta-model of KAOS
goal model is defined as an extension of SysML [23].
This results on a new SysML profile, called SysML/KAOS,
where all KAOS goal model concepts are integrated with
the SysML requirements concepts. Topcased [22] is an
open source software toolkit project integrated into Eclipse
IDE. It is part of the MDE (Model Driven Engineering)
process, which consists in developing tools on the basis of
models. The advantage of Topcased is that it allows the
creation of a proprietary meta-model editor using the EMF
technology [24]. Once the SysML/KAOS goal diagram (the
.sys diagram) is created, SysKAOS2EventB plug-in builds a
Rodin project from this goal diagram (precisely from its .xmi
counterpart). This is available by a right click on the project
explorer of Topcased platform, pointing a SysML/KAOS
goal model. SysKAOS2EventB plug-in creates a new Rodin
project (with different MACHINE components) obtained

3http://www.objectiver.com/



by applying the transformation rules defined in this pa-
per. SysKAOS2EventB plug-in was developed in Eclipse
using a model-driven approach. It is based on the Event-
B EMF framework [25] that provide an EMF based front-
end to the Rodin platform [9]. As shown in Figure 7,
SysKAOS2EventB development approach includes two main
steps:

Figure 7. An overview of the SysKAOS2EventB plug-in

1) The objective of the first step is to transform the source
xmi file (related to the SysML/KAOS goal diagram)
to a target xmi file (related to the Rodin project).
To this end, we have chosen ATLAS Transformation
Language (ATL) [26] which is a language and a
software environment well-suited for programming
various transformations on trees/terms. An ATL trans-
formation program defines how source elements are
matched to target elements using both declarative and
imperative rules. Both input and output meta-models
of the ATL transformation are expressed in .ecore files
which is a meta-model defined in the Eclipse EMF
framework [24]. For our plug-in, we use two meta-
models: one for SysML/KAOS language [23] and the
second one for the Event-B language [25]. In fact, our
program takes as input a KAOS model conform to the
SysML/KAOS meta-model and produces an Event-B
project conform to the Event-B meta-model.

2) The obtained xmi file (that contains the Event-B
project) cannot be directly opened by Rodin platform.
For that, the second step consists in performing a sim-
ple XSLT transformation4 in order to obtain multiple
xmi files where each one corresponds to one Event-
B model. Each obtained xmi file is then loaded in
Rodin [9] as a .bum file, thanks to the Rose Editor
plug-in [25].

4http://www.w3.org/TR/xslt20/

Since the Rodin platform [9] will be used as input of the
obtained Rodin project, we can now explore all the features
offered by Rodin such, the prover or the ProB model-
checker and animator [20]. SysKAOS2EventB plug-in is an
initial step towards the development of a complete tool for
narrowing the gap between the requirements analysis phase
and the specification phase. This plug-in have enabled us to
experiment different case studies. These experimentations
confirm that GORE methods provide a possible way of
building and structuring formal specifications.

IX. RELATED WORK

Our proposed approach aims at obtaining an abstract
Event-B specification driven by KAOS goal models. In the
sequel, we outline a number of approaches that have tried
to bridge the gap between KAOS requirements model and
formal methods. With the best of our knowledge, they are
the only work that deal with such a problematic.

KAOS provides an optional formal assertion layer for the
specification of goals in Real-Time Linear Temporal Logic
(RT-LTL). This formalization step [8], [27] allows to verify
formally the completeness, minimality and consistency of
goal refinements. The completeness and minimality condi-
tions for instance can be checked via model checking [28].
Even if such checking is important in order for example
to detect missing subgoals in incomplete requirements, the
use of this kind of logic cannot fill in the gap between
requirements and the later phases of development. Conse-
quently, it is difficult to validate specifications with regard
to requirements even if they have been expressed with RT-
LTL. Moreover, our proposed approach can be seen as an
Event-B formalization of KAOS goal model based on a proof
technique. Therefore it does not suffer from the state number
explosion problem occurring in classical model checking on
which [8], [27] is based.

The authors of [29] provides means for transforming the
security requirements model built with KAOS to an equiv-
alent one in B. This abstract B model is then refined using
non-trivial B refinements that generate design specifications
conforming to the initial set of security requirements. The
authors consider each operational goal and each KAOS
operation as a B operation. Also, they consider that each
KAOS object, related to the operational goals, is B machine.
So, The relationship among objects is captured using the
B machine imports, includes, uses, and sees clauses that
allow one B machine to relate to or compose other B
machines. KAOS domain properties are transformed to B
invariants or pre-conditions related to the corresponding
B operations. The authors introduce the concept of goal
achievement which is reflected through the return values of
the B operations that model KAOS goals. Hence, each B
operation corresponding to an operational goal returns a flag
indicating whether the goal implemented in this operation
has been achieved or not.



The work of [30] associates a B machine to each KAOS
agent since agents are the active entities able to perform op-
erations. For that, all the KAOS operations that an agent has
to perform are represented by B operations. Moreover, all
Maintain goals under the agent responsibility are translated
as invariants of the corresponding B machine. We can also
point out a work [31] proposing an automatically generator
that transforms an extend KAOS model into VDM++ spec-
ifications. The generator connects operations in KAOS to
those in VDM++, and entities in KAOS to objects or types
in VDM++. The generated specification contains implicit
operations consisting of pre- and post-conditions, inputs, and
outputs of operations. However, this generated specifications
require software developers to add the body of operations in
order to create explicit specifications.

The GOPCSD (Goal-oriented Process Control System
Design) tool [32] is an adaptation of the KAOS method
that serves to analyze the KAOS requirements and generate
B formal specifications. The tool is used to construct the
application requirements in the form of goal-models by
interacting with the user and importing library templates.
Then, the requirements are checked to enable the system
engineer to debug and correct them. Finally, the require-
ments will be translated to B specifications. The generated
specifications can be refined and translated to executable
code by a software engineer. Recently, [33] presents a con-
structive verification-based approach that consists in linking
requirements, expressed as linear temporal logic formulae,
to a system specification expressed as an Event-B machine
extended with the notion of obligations [34]. The source
requirements are included as verification assertions that
can be model-checked by tools like ProB [20], showing
that the proposed specification indeed meets the system
requirements.

Nevertheless, the reconciliation presented by all of these
works remains partial because they don’t consider all the
parts of the KAOS goal model but only the requirements
(operational goals). Consequently, the formal model does
not include any information about the non-operational goals
and, more important, the type of goal refinement. Yet, non-
operational goals play an important role for requirements
completeness and pertinence and provide for example the
rationale for the requirements that operationalize them. In
this paper, we have explored how to cope with this problem
using an approach that transform the whole KAOS goal
model to abstract Event-B models. Our approach can be
considered as complementary to existing ones.

X. CONCLUSION AND FURTHER WORK

This paper presents an attempt to couple goal-oriented
requirements specification with formal design specification
to guide the software development in a constructive and
provable way. This constructive approach driven by goals
shows that it is possible to build abstract Event-B models

driven by a GORE approach. Furthermore, what we present
can be very useful in practice to systematically verify
that all KAOS requirements are represented in the Event-
B model. The reader can refer to [16], [17] that describe
in details the application of our proposed approach in the
framework of a research project, called TACOS [7]. We
shared the salient points of our experience to specify a
localization software component that used GPS, Wifi and
sensors technologies. A number of future work are ongoing.
We currently improve the developed meta-model [23] to
represent non-functional goals and their impacts on func-
tional goals which is inspired from the i* method [10] and
from [35]. These elements will be considered as a sugar
that enriches the obtained abstract Event-B models (new
variables, new invariants...). We plan also to improve the pre-
sented tool support, SysKAOS2EventB plug-in, in order to
consider these elements. Moreover, it would be interesting to
establish the correspondence between the obtained abstract
Event-B specification and the later phases of an Event-B
development.
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