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Parametric Replay-Based Simulation of

Underwater Acoustic Communication Channels

François-Xavier Socheleau, Christophe Laot, Jean-Michel Passerieux

Abstract

This paper presents an underwater acoustic channel simulation methodology that combines parametric

modeling with stochastic replay of at-sea measured channel impulse responses. The motivation behind

this approach is to extend the scope of use of replay-based methods by allowing some parameterization

of the channel properties while complying with some level of realism. Such an approach is beneficial

for extensive testing of communication links. Based on a relative entropy minimization between the

original time-varying channel impulse response and the simulated one, the idea is to deliberately distort

the original channel statistics in order to meet some user-specified constraints. A particular attention is

given to constraints on the channel Doppler spread and on the level of covariance between channel taps.

The testing capabilities provided by parametric replay-based simulations are illustrated with real data

collected in the bay of Brest (France).

Index Terms

Underwater acoustic communications, channel simulation, stochastic replay, relative entropy mini-

mization

I. INTRODUCTION

The use of underwater acoustic channel simulators appears as an efficient way of limiting the de-

sign and test efforts of communication systems when at-sea experimentation is costly and difficult to
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conduct. Among the various simulation strategies proposed in the literature, replay of time-varying

impulse responses (TVIRs) measured in situ has emerged as a relevant and accurate underwater acoustic

communication (UAC) channel simulation method. As described in [2]–[5], replay-based simulators either

strictly reproduce the measured TVIR in laboratory (a.k.a. direct replay), or generate new random TVIRs

with statistical properties identical to the original measurement (a.k.a. stochastic replay).1 From a single

measurement, it is thus possible to compare competing transmission schemes when faced with the same

realistic environment [5]. Thanks to Monte-Carlo simulations, design and validation metrics such as bit

error rate [3]–[5], capacity bounds [6]–[8] or fading statistics [4] can be computed with a good accuracy.

Replay-based methods are intrinsically realistic and do not require physical input parameters for which

numerical values may not be easy to set. However, unlike parametric model-based simulators such as

[9]–[15], the diversity of environments simulated by replay-based methods can be very limited. It actually

depends on the number of sea-probed TVIR available.

The best way to increase diversity with replay-based simulation is to collect a large amount of data

in different locations at different times. Obviously, this is the best option only if large-scale experiments

can be conducted. Another approach that is put forward in this paper is to create artificial diversity in

some statistical sense. Such an approach does not consider diversity in terms of channel measurement

conditions (e.g. sea state or deployment geometry) but rather in terms of statistical moments of random

TVIRs. This strategy can be relevant for testing the robustness of underwater acoustic communication

(UAC) systems. In fact, systems designed on the basis of a statistical channel model can be expected

to work in a variety of different propagation environments. Existing replay-based methods can already

create some artificial diversity by exploiting their ability to separate first-order statistics of the measured

impulse response from second-order statistics. A first example was given in [16] where the power ratios

between the specular and the scattered components of the channel were artificially modified to test the

receiver’s robustness to random scattering. To the best of our knowledge, this is the only attempt made

so far to purposely distort the channel statistics in the context of stochastic replay.

In this work, we extend the idea of [16] and seek to build a replay-based simulation strategy that allows

some level of parameterization in order to enlarge its scope of use. The problem we want to tackle is

the following: given prior information on UAC channels that is available through a measured impulse

1Note that stochastic replay does not apply to all kind of channels in its current implementation. Cyclostationary channels or

multi-scale multi-lag channels are typical examples that fall outside the domain of applicability of such a method (ref. to [5]

for more details).
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response, can we build a channel model that satisfies user-specified constraints while being “as close

as possible” to the original TVIR? Constraining the model means that we want to control some of its

statistical properties through specific parameters. In this paper, a specific focus is placed on the control of

second order statistics such as the Doppler spread and the covariance level between taps. “Being as close

as possible” is a way to achieve some level of realism as provided by the original TVIR. As shown in

Section III, this problem can be addressed by optimizing an information-theoretic criterion that formally

defines the concept of model proximity.

The paper is organized as follows: Section II is devoted to the presentation of the replay-based channel

simulation strategy which our framework is based on. Section III presents the method used to deliberately

distort the original TVIR statistics in order to meet the desired constraints. Numerical examples of the

proposed channel simulation strategy applied to real data are provided in Section IV. Finally, conclusions

and perspectives are discussed in Section V.

Notations: Throughout this paper, uppercase boldface letters denote matrices, e.g., A. The superscripts

T and † denote transposition and Hermitian transposition, respectively. The entries of a matrix A are

denoted by [A]k,n and tr [·] denotes the trace. ℜ and ℑ denote real and imaginary part, respectively.

Finally, E {.} denotes expectation.

II. REPLAY-BASED CHANNEL MODEL

We consider a doubly selective underwater acoustic channel, modeled as a random linear time-varying

system H that maps input signals x(t) onto output signals z(t) according to the I/O relationship

z(t) = (Hx)(t) + w(t) =

∫

τ

hH(τ, t)x(t − τ)dτ + w(t), (1)

where hH(τ, t) is the channel impulse response and w(t) denotes the ambient noise. As common practice

in replay-based simulation, the input of the simulator is a discrete-time baseband estimate of the in-situ

channel impulse response whose mean Doppler shift has been removed [3]–[5]. Such an estimate is

denoted as hl(k) where l ∈ {0, · · · , L− 1} is the tap index and k ∈ {0, · · · ,K − 1} is the time index.

Channel sounding is classically performed by transmitting a pseudonoise probe signal or a chirp signal

that is passed through a matched-filter at reception [17]. A common alternative method is to combine a

phase-shift keyed symbol stream with the least mean squares estimator (LMS) [4]. Note that the removal

of the mean Doppler shift is required to mitigate the drift of multipath arrivals that could obscure the

estimate of the taps statistics. Once the channel statistical properties have been estimated, this mean

Doppler shift can be reinserted at the output of the simulator by performing time resampling.
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In agreement with [4],
{

h(k)
∆
= [h0(k), h1(k), · · · , hL−1(k)]

T , k ∈ Z

}

is modeled as a multi-variate

trend stationary random process so that, for all k, k1 and k2 ∈ Z

hl(k) = h̄l(k) + h̃l(k), (2)

with

E {hl(k)} = h̄l(k), (3)

and

E

{

h̃l(k1)h̃
∗
p(k2)

}

= E

{

h̃l(k)h̃
∗
p(k + k2 − k1)

}

,

E

{

h̃l(k1)h̃p(k2)
}

= E

{

h̃l(k)h̃p(k + k2 − k1)
}

. (4)

h̄l(k) is called the trend and is a slowly time-varying deterministic component.2 h̃l(k) is a zero-mean

wide-sense stationary random process assumed to be Gaussian. This model describes the UAC channel

as a multivariate Rician fading process with a slowly time-varying mean. h̄l(k) can be interpreted as

the contribution of (pseudo) deterministic physical phenomena to channel fluctuations, i.e. h̄l(k) is a

(pseudo) specular component, and h̃l(k) represents the channel fluctuations attributable to scatterers that

result in fast fading. Note that since no particular assumption is made about the correlation of scatterers,

the model is very general and includes the wide-sense stationary uncorrelated scattering (WSSUS) model

as a subset.

Based on (2), standard replay methods first consist in isolating both components h̄l(k) and h̃l(k) from

hl(k). This can be done by estimating the specular component h̄l(k) either by simple time averaging

when h̄l(k) is (approximately) time-invariant [3], [5], [18] or by an empirical mode decomposition [4]

in the general time-varying case. h̃l(k) is then obtained as the difference between hl(k) and h̄l(k). An

example of the channel decomposition is shown in Fig. 1.

Finally, stochastic replay consists in drawing new realizations of the channel random component based

on the observation h̃l(k). These realizations are then added to the original specular component h̄l(k)

to obtain a new TVIR. New realizations of process

{

h̃(k)
∆
=

[

h̃0(k), h̃1(k), · · · , h̃L−1(k)
]T

}

can be

obtained either by explicit estimation of its second order statistics, as given by the scattering function

for instance [3], and by then filtering white Gaussian noises, or they can be generated simply by adding

noise on the phase of the discrete Fourier transform of the observation h̃l(k) [4], [19].

2Note that h̄l(k) can be null for some l.
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(a) (b) (c)

Fig. 1. Example of TVIR decomposition using EMD. (a) Magnitude of a TVIR measured in situ, i.e., |hl(k)|, (b) Magnitude of

the trend , i.e., |h̄l(k)|, (c) Magnitude of the random component, i.e., |h̃l(k)|. This TVIR has been extracted from an experiment

conducted in 2007 in the Bay of Brest (see Sec. IV for more details on the experiment) and estimated using a data-aided LMS

algorithm.

In this work, we consider the first approach and assume that we are able to estimate the full second-

order statistics of {h̃(k)} given by the 2L× 2L cross-spectral density matrix expressed as

S
h̃
(ω)

∆
=











S
ℜ,ℜ

h̃
(ω) S

ℜ,ℑ

h̃
(ω)

S
ℑ,ℜ

h̃
(ω) S

ℑ,ℑ

h̃
(ω)











, (5)

where the matrix sub-block S
ℜ,ℑ

h̃
(ω) of size L× L satisfies for all ω ∈ [−π, π]

[

S
ℜ,ℑ

h̃
(ω)

]

lp
=

+∞
∑

u=−∞

E

{

ℜ{h̃l(k)}ℑ{h̃p(k + u)}
}

e−iuω. (6)

The matrix blocks S
ℜ,ℜ

h̃
(ω), Sℑ,ℜ

h̃
(ω), Sℑ,ℑ

h̃
(ω) are defined analogously to (6). Note that the assumption of

taps with independent real and imaginary parts combined with the common assumption of uncorrelated

scattering lead to a diagonal matrix S
h̃
(ω). This is not the case here since we take into account the

possible covariance between channel taps as well as the possible covariance between the real and the

imaginary part of a single tap. The latter covariance is typically observed when the scattering is non-

isotropic [20], [21]. The auto-spectral density functions, i.e. the diagonal elements of S
h̃
(ω), are real and

nonnegative functions of ω and the cross-spectral density functions, i.e. the non-diagonal elements of

S
h̃
(ω), are generally complex functions of ω. In addition, matrix S

h̃
(ω) is positive definite and satisfies

the following relations

Sh̃(ω) = S
†

h̃
(ω),

[

S
h̃
(ω)

]

lp
=

[

S
∗
h̃
(−ω)

]

lp
. (7)
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(a) (b)

Fig. 2. Block diagram of replay-based methods, a) standard replay-based simulator as described in Sec.II, b) parametric

replay-based simulator.

Estimation of Sh̃(ω) can be performed with common spectral estimation methods (Welch, Burg,

Correlogram, etc.) as long as the duration of the sea-probed TVIR is much greater than the coherence

time of each process {h̃l(k)}k . In most experiments, this duration is on the order of several tens to several

hundreds of seconds, which is large in comparison to the coherence time of most UAC channels that is

usually lower than few hundreds of milliseconds [17].

Based on the spectral representation (5), it is then possible to draw new realizations of process {h̃(k)}

using existing techniques for simulating multivariate stationary Gaussian ergodic processes such as those

presented in [22]–[24]. A general overview of such methods is presented in Appendix A. The overall

standard replay-based simulation methodology is illustrated in Figure 2-(a).

III. PARAMETERIZATION OF REPLAY-BASED SIMULATION

A. General methodology and theoretical background

As discussed in the introduction, the main drawback of stochastic replay lies in its lack of diversity

or flexibility. In this section, we show how it is possible to extend the scope of use of such replay-

based modeling strategy by allowing some degree of parameterization. More specifically, the proposed

simulation framework consists in generating realizations of a new multivariate Gaussian random process

that satisfies some prescribed constraints, while being “as close as possible” to the reference process
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{h̃l(k)}. For instance, considering the second-order statistics only, we show how to specify constraints

on the Doppler spread in order to know the ability of a receiver to track the fluctuations of a channel.

Similarly, analyzing the impact of correlated scattering on the demodulation performance can be of great

interest. Since a realistic prior information is available through the matrix S
h̃
(ω), it is rather natural to

exploit this knowledge to build the new model.

The concept of model proximity can be formally defined through the relative entropy rate between

processes, which, as shown in this section, is also a pseudo-distance between spectral density matrices

for Gaussian processes. Building models with entropy-based criteria is a common procedure in statistical

inference [25]–[31]. Such an approach is justified on the basis of avoiding the arbitrary introduction of

unknown information.3 Note that entropy-based models are not meant to represent the physical reality

of the channel but rather a state of knowledge on this reality. In our case, this state of knowledge is

provided by the sea-probed TVIR as well as the user-specified constraints. For Gaussian processes, the

relative entropy is defined as follows.

Let {y(k)
∆
= [y1(k), y2(k), · · · , yM (k)]T , k ∈ Z} be a Gaussian random process taking values in R

M

and let pY[−n,n]
denote the joint probability density function of Y[−n,n] = [y(−n), y(−n+1), · · · , y(n−

1), y(n)], the differential entropy rate of y is defined as

hr(y) = lim
n→+∞

1

2n+ 1
H

(

pY[−n,n]

)

, (8)

where H(·) denotes the differential entropy [32]. Entropy rates can be considered as a tool for quantitative

characterization of dynamic processes evolving in time. For multivariate Gaussian processes, it can be

seen as a single metric that carries all the information on the second-order statistics (time fluctuations as

well as covariance across individual processes). If Sy(ω) denotes the cross-spectral density matrix of y,

then it can be shown [32] that

hr(y) =
M

2
log(2πe) +

1

4π

∫ π

−π

log detSy(ω) dω. (9)

The concept of entropy rate can be extended as a metric for comparing two random processes. Let

{y(k), k ∈ Z} and {z(k), k ∈ Z} be two random processes, the relative entropy rate between y and z is

defined as

Dr(y||z) = lim
n→+∞

1

2n+ 1
D

(

pY[−n,n]
||pZ[−n,n]

)

, (10)

3It is shown in [26] that the principle of minimum relative entropy is the only method of inductive inference that leads “to

consistent results where there are different ways of taking the same information into account”.
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where D (·||·) denotes the relative entropy [32]. If y and z are jointly Gaussian with cross-spectral density

matrices Sy(ω) and Sz(ω), respectively, then, under some regularity conditions (see [30] for details), their

relative entropy satisfies

Dr(y||z) =
1

4π

∫ π

−π

(

log det
(

S
−1
y (ω)Sz(ω)

)

+ tr
[

S
−1
z (ω) (Sy(ω)− Sz(ω))

]

)

dω. (11)

Using the relative entropy rate as a tool to quantitatively define the concept of model proximity, our

simulation strategy can be formalized as follows:

Let {y(k), k ∈ Z} be the Gaussian random process taking values in R
2L that we want to generate, find

the positive definite matrix S
o
y(ω) that solves















































minimize
Sy(ω)

Dr(y||h̃)

subject to Fn(Sy(ω)) =







αn (scalar constraint)

Σn (matrix constraint)

n ∈ {0, · · · , Nc − 1},

(12)

where Nc denotes the number of constraints on the channel second-order statistics, Fn is some user-

specified functional which is either equal to a scalar αn or to a 2L×2L matrix Σn, also specified by the

user. The overall simulation methodology is illustrated in Fig. 2-(b). Note that constraints only apply to

the zero-mean random components, the channel trend is kept identical to that of the sea-probed channel.

B. Constraint on the channel Doppler spread

To illustrate our modeling approach, we first consider constraints on the channel Doppler spread. The

average Doppler spread σd is a measure (in Hz) of the spectral broadening caused by the time-varying

nature of the channel and is here defined as

σd =
F

(t)
s

2π

√

√

√

√

∫ π

−π
ω2tr

[

S
h̃
(ω)

]

dω
∫ π

−π
tr
[

S
h̃
(ω)

]

dω
, (13)

where F
(t)
s is the sampling frequency of the TVIR along the time axis. Note that common definitions

of the Doppler spread [33, Eq. 3.13b] are defined with respect to the center of gravity of the Doppler

spectrum, i.e.,
∫ π

−π
ωtr

[

S
h̃
(ω)

]

dω. This term does not appear in (13) because, as a consequence of

property (7), it is always null.

A particular value of Doppler spread can be specified by controlling the channel energy as well as

the second moment of the cross-spectral density matrix. More precisely, the new model Sy(ω) can be
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constrained to satisfy

∫ π

−π

tr [Sy(ω)] dω = α0, (14)

∫ π

−π

ω2tr [Sy(ω)] dω = α1. (15)

In practice, the channel energy can be normalized so that the Doppler spread is fully expressed by α1.

Problem (12) with constraints (14) and (15) can be solved using the method of Lagrange multipli-

ers. According to (11) and since −1
4π

∫ π

−π
tr
[

S
−1
h̃

(ω)S
h̃
(ω)

]

dω plays no role in the optimization, the

Lagrangian is expressed as

L (Sy, λ0, λ1) =
∫

(

log
detS

h̃
(ω)

detSy(ω)
+ tr

[

S
−1
h̃

(ω)Sy(ω)
]

)

dω+

λ0

(
∫

tr [Sy(ω)] dω − α0

)

+ λ1

(
∫

ω2tr [Sy(ω)] dω − α1

)

,

(16)

where λ0 and λ1 are the Lagrange multipliers.

Using the fact that, for the positive definite matrix Sy(ω), the directional derivative of log det (Sy(ω))

in direction δSy is equal to tr
[

S
−1
y (ω)δSy(ω)

]

[34, Sec. 4, Th. 2], it can be shown that the directional

derivative of the Lagrangian in direction δSy satisfies

δL (Sy, λ0, λ1; δSy) =

∫

tr
[(

S
−1
h̃

(ω)− S
−1
y (ω) +

(

λ0 + λ1ω
2
)

I2L

)

δSy(ω)
]

dω, (17)

where I2L denotes a 2L×2L identity matrix. Setting this derivative to zero leads to the following solution4

S
o
y(ω) =

[

S
−1

h̃
(ω) +

(

λ0 + λ1ω
2
)

I2L

]−1
. (18)

The multipliers λ0 and λ1 are then obtained by solving the equations (14) and (15). A numerical solution

can be found using a Newton algorithm as presented in Appendix B.

C. Constraint on the level of covariance between channel taps

To simplify the statistical characterization of linear time-varying channels, the uncorrelated scattering

assumption is very often invoked. In our context, this assumption would imply that the four submatrices

of (5) are diagonals (i.e., absence of correlation between two random components h̃l(k) and h̃p(k), with

l 6= p). In practice, this property is not satisfied for scatterers with close coordinates in the delay-Doppler

4Thanks to the Woodbury identity, the computation of the inverse matrix S
−1

h̃
(ω) can be avoided and (18) can also be written

as S
o
y(ω) = Sh̃(ω)

(

I2L −
[

I2L +
(

λ0 + λ1ω
2
)

Sh̃(ω)
]

−1 (
λ0 + λ1ω

2
)

Sh̃(ω)
)

.
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domain because they usually result from reflections on the same physical body and are thus correlated

[35]. In addition, from the receiver perspective, the transmission channel also includes the acoustic front-

end as well as filters that induce extra correlation between channel taps. Examples of UAC channels with

correlated scattering are discussed in [36], [37].

Using the definition of the cross-spectral density matrix S
h̃
(ω), the covariance coefficient between two

channel elements can be expressed as

ρij
∆
=

∫ π

−π

[

S
h̃
(ω)

]

ij
dω

√

∫ π

−π

[

S
h̃
(ω)

]

ii
dω

∫ π

−π

[

S
h̃
(ω)

]

jj
dω

. (19)

As an example, Fig. 3 shows the covariance coefficients for the channel of Fig. 1.

From (19), it can be seen that the level of covariance between taps (and also between the real and

the imaginary part of a single tap) can be controlled by forcing the cross-spectral density matrix of the

simulated channel to satisfy
∫ π

−π

Sy(ω)dω = Σ, (20)

where Σ is the user-defined covariance matrix of the output process. By analogy with (6), Σ can be seen

as a block matrix with, for instance,
[

Σ
ℜ,ℑ

]

lp
=

∫ π

−π

[

S
ℜ,ℑ
y (ω)

]

lp
dω = E {ℜ{yl(k)}ℑ{yp(k)}}.

Problem (12) with constraint (20) can also be solved using the method of Lagrange multipliers.

Recalling that the inner product in the vector space of symmetric matrices is defined as 〈A,B〉 = tr [AB],

the Lagrangian is expressed as

L (Sy,Λ) =

∫
(

log
detS

h̃
(ω)

detSy(ω)
+ tr

[

S
−1
h̃

(ω)Sy(ω)
]

+ tr [ΛSy(ω)]

)

dω − tr [ΛΣ] , (21)

where Λ is a 2L × 2L symmetric matrix that denotes the Lagrange multipliers. Following the same

approach as in Section III-B, the optimal cross-spectral density matrix is found to be

S
o
y(ω) =

[

S
−1

h̃
(ω) +Λ

]−1
. (22)

A numerical solution to find Λ is presented in Appendix C.

The way constraint (20) is applied allows the user to have a full control on the inter and intra channel

tap covariation. However, it is so detailed that it may sometimes be difficult to set numerical values for

every elements of Σ. An alternative way of specifying covariance values is to reformulate the covariance

between taps in terms of magnitude and phase correlations. For instance, consider a particular case of
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Fig. 3. Covariance coefficients for the channel of Fig. 1. The covariance matrix is partitioned into four submatrices similarly

to definition (5).

jointly proper5 random taps with for all l and p

E {ℜ{yl(k)}ℑ{yp(k)}} = 0, (23)

E {ℜ{yl(k)}ℜ{yp(k)}} = E {ℑ{yl(k)}ℑ{yp(k)}} . (24)

Define each tap l in polar form as yl(k) = al(k)e
iθl(k). In this case, the covariance between taps can be

fully specified by E {al(k)ap(k)} and E {cos (θl(k)) cos (θp(k))} since, from (23) and (24), Σ satisfies6

Σ
ℜ,ℑ = Σ

ℑ,ℜ = 0, (25)

[

Σ
ℜ,ℜ

]

lp
=

[

Σ
ℑ,ℑ

]

lp
= E {al(k)ap(k)}E {cos (θl(k)) cos (θp(k))} . (26)

Such a reformulation can be relevant to examine the effect of amplitude or phase correlation alone. In

particular, phase-correlated channels represent an important class of acoustic channels and controlling

phase correlation may be useful to characterize the behavior of phase-locked loops commonly used in

receivers.

5Refer to [38, Sec. III-B] for a definition of proper random processes.

6Note that (24) implies E {cos (θl(k)) cos (θp(k))} = E {sin (θl(k)) sin (θp(k))}.
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IV. ILLUSTRATIONS

The parametric replay-based simulation strategy is here illustrated through bit error rate (BER) mea-

surements of a QPSK communication scheme put through a shallow water channel whose sea-probed

TVIR is shown in Fig. 1. This TVIR has been extracted from an experiment conducted in 2007 in the

Bay of Brest. The water depth varied between approximately 10 to 20 m over a 1 km track and both

the transmitter and the receiver were immersed 5 m below the sea surface. This channel was probed at

a center frequency of 17.5 kHz with a 2.9 kBd QPSK signal (for more details, refer to [4, Sec. II]). The

average Doppler spread of the in-situ TVIR is approximately 0.7 Hz and the Rice factor κ, defined as

the power ratio between the deterministic trend and the random component, i.e. :

κ =
1

K

∑K−1
k=0

∑L−1
l=0 |h̄l(k)|

2

∑L−1
l=0 E

{

|h̃l(k)|2
} , (27)

is equal to 6.5 dB approximately.

The receiver implemented for the simulations is an adaptive decision-feedback equalizer (DFE) with

joint phase tracking [39] and its performance is assessed for various channel Doppler spreads and several

levels of covariance between channel taps. The DFE operates with 2L feedforward taps and L feedback

taps. For transmit data of power Pd, filter coefficients are updated with LMS algorithms of step-sizes

µff = 1/(10Pd × (2L + 1)) and µfb = 1/(10Pd × (L + 1)) for the feedforward filter and the feedback

filter, respectively. The first 1000 symbols fed into the DFE are training symbols used for convergence of

the adaptive filters. For the remaining symbols used for BER computation, the DFE is decision-directed.

No attempt is made to optimize the receiver’s parameters or to compare it with other receiver structures.

The objective is not to evaluate communication performance, but to illustrate how our simulator can help

modem designers. Each BER value is obtained from 100 realizations of 30 sec. long TVIRs.

A. Influence of the channel Doppler spread

Fig. 4 represents the auto-spectral density functions, a.k.a. Doppler spectra, of the two most powerful

random taps of the TVIR shown in Fig. 1 (i.e., real and imaginary parts of the taps at τ ≈ 2 ms and

τ ≈ 3.8 ms in Fig. 1). The channel energy, as defined in (14), is set to α0 = 2π. Solid lines corresponds

to the original spectra estimated from the in-situ TVIR. Other spectra are represented for two different

constraints α1. Changing the average Doppler spread through the value α1 affects all taps, but in different

ways. Dashed lines indicate the output of the optimization procedure (12) when the taps fluctuations are

artificially slowed down. In this case, the average Doppler spread (13) is halved. As for the dash-dotted

lines, they correspond to faster taps fluctuations with an average Doppler spread multiplied by 1.5. It can
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Fig. 4. Doppler spectra of taps at τ ≈ 2 ms and τ ≈ 3.8 ms in Fig. 1 for different constraints on the average Doppler

spread. (a) real part, (b) imaginary part of taps at τ ≈ 2 ms. (c) real part, (d) imaginary part of taps at τ ≈ 3.8 ms. Solid

lines correspond to the original spectra estimated from the in-situ TVIR (σd = 0.7 Hz). Dashed lines indicate the output of the

optimization procedure for σd = 0.35 Hz and dash-dotted lines for σd = 1.05 Hz.

be observed that the Doppler spread modification changes the shape of the Doppler spectra. For instance,

the Doppler spectra of Fig. 4 (c) and (d) get very peaky for small average Doppler spread and become

multimodal as this spread increases. It is also interesting to note that the tap at τ ≈ 3.8 ms is more

affected by the Doppler spread changes than the tap at τ ≈ 2 ms. This is explained by the fact that the

random part of the tap at τ ≈ 3.8 ms is 8 dB more powerful than its counterpart at at τ ≈ 2 ms. Since

the constraint is set on the average Doppler spread, it is less demanding in term of entropy change to

act on the most powerful taps.

Fig. 5 shows the BER of an uncoded 1.95 kBd QPSK system as a function of Eb/N0 for several

constraints on the Doppler spread. For simplicity, the noise is modeled as an additive white Gaussian
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Fig. 5. BER as a function of Eb/N0 for several constraints on the average Doppler spread.

noise. Not surprisingly, the Doppler spread strongly impacts the receiver’s performance. As this spread

increases, the adaptive DFE gets some difficulties to track the channel fluctuations. Such figures of merit

can be useful when designing a receiver, either to bound the range of Doppler spread for which the

receiver’s performance is acceptable, or to tune some parameters (especially the LMS step-sizes jointly

with the filters order in our example) to make the receiver adapted to some specific environment.

B. Influence of the channel taps covariance

To illustrate the impact of the level of covariance between taps, we constrain the output process {y(k)}

to have a covariance matrix Σ, as defined in (20), controlled by a simple scalar. The methodology of Sec.

III-C is general and applies to any structure of covariance matrix but, to ease the illustration, a canonical

covariance model is chosen. More precisely, for the simulation, matrix Σ takes the following form

[Σ]ll =

∫ π

−π

[

S
h̃
(ω)

]

ll
dω, (28)

and, for l 6= p,
[Σ]lp

√

[Σ]ll [Σ]pp

= ρ0, (29)

where ρ0 is some constant between 0 and 1. (28) indicates that the power of the simulated taps is the

same as the original taps and (29) means that each pair of simulated taps has the same level of covariance

ρ0.
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Fig. 6. BER as a function of Eb/N0 for several constraints on the covariance ρ0.

(a) (b)

Fig. 7. Examples of sample paths (in linear scale) of the channel random components |yl (k)| as generated by the simulator

with constraints on the covariance ρ0. (a) ρ0 = 0.25, (b) ρ0 = 0.95. For both figures, only taps at τ ≈ 2 ms and τ ≈ 3.8 ms

are shown.

Fig. 6 shows the effects of the covariance coefficient ρ0 on the BER.7 As ρ0 increases, the channel

taps tend to fade simultaneously more frequently which may create recurrent drop of the instantaneous

signal-to-noise ratio (SNR) at the receiver. The effect of correlation is clearly visible in Fig. 7 where

outputs |yl (k)| of the simulator are shown for two levels of correlation, ρ0 = 0.25 and ρ0 = 0.95. When

7Note that a covariance coefficient ρ0 as large as 0.95 is quite extreme and is quite unlikely to be encountered at sea. It is

shown here only to illustrate the capabilities of the proposed simulation methodology.
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and is defined as r(k) =
∣

∣

∣

∑

l
h̄l

(

k −
⌊

lF
(t)
s

F
(τ)
s

⌋)

+ yl

(

k −
⌊

lF
(t)
s

F
(τ)
s

⌋)∣

∣

∣
where F

(t)
s and F

(τ)
s are the sampling frequencies of the

TVIR along the time and delay axis, respectively. Deep fades are observed quite frequently for ρ0 = 0.95, which may result in

recurrent temporary failure of communication.

the covariance is large, the channel random components tend to oscillate coherently. This coherence leads

to deep fades that can be quite frequent for large values of ρ0 (see Fig. 8). This phenomenon creates

burst errors due to a lack of multipath diversity and consequently increases the BER. Simulations with

controlled covariance matrices can therefore be of interest to assess the robustness of coding mechanisms

designed to combat such a type of errors.

V. CONCLUSIONS AND PERSPECTIVES

UAC channel simulation as defined in the proposed parametric replay-based framework is a way to

find a good compromise between simulation realism, parameterization simplicity and flexibility. Thanks

to the formalism of relative entropy minimization between random processes, statistical properties of

the simulated channel can be controlled, while being close to realistic TVIRs. Illustrations with user-

defined values of Doppler spread or taps covariance have shown that such a simulation approach can help

modem designers either to tune receivers or to better define their operating range. The main limitation

of the proposed simulation strategy holds in the absence of control of the transmission geometry, i.e, the

number of taps as well as their respective delay remain unchanged. Moreover, while Doppler spread is a

well-studied phenomenon, experimental results on the actual covariance between taps are very scarce in
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the literature. This can make it difficult to specify a realistic covariance matrix Σ. Further investigations

have to be conducted to better identify the kinds of covariance structure that can be expected at sea.

Extension of this work to SIMO or MIMO channels is possible by adding the space dimension in

the definition of the cross-spectral density matrix (5). In this scenario, the theoretical framework would

remain the same and spatial correlations could be controlled. However, limitations might appear in the

numerical resolution of (22) due to the dimension increase. Ultimately, it might also be relevant to merge

physics-based model with replay-based simulation in order to link environmental conditions to statistical

constraints such as (15) and (20).
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APPENDIX A

OVERVIEW OF MULTIVARIATE GAUSSIAN PROCESSES SIMULATION

Let {x(t)
∆
= [x1(t), x2(t), · · · , xM (t)]} be a real-valued Gaussian process taking values in R

M with

cross-spectral density matrix Sx(ω). Because Sx(ω) is hermitian, using Cholesky’s decomposition, it can

be factorized as

Sx(ω) = H(ω)H†(ω), (30)

where H(ω) is a lower triangular matrix. If the elements of H(ω) are written in polar form as

[H(ω)]lp =
∣

∣

∣
[H(ω)]lp

∣

∣

∣
ejθlp(ω), (31)

then each stochastic process xm(t), m = 1, 2, · · · ,M can be simulated for large N as8 [22]

xm(t) ≈

√

2∆ω

π

m
∑

l=1

N
∑

k=1

|[H(ωlk)]ml| cos (ωlkt− θml(ωlk) + φlk) , (32)

where

ωkl =

(

l − 1 +
k

M

)

∆ω, l = 1, 2, · · · ,M ; k = 1, 2, · · · , N (33)

and ∆ω = ωu/N , with ωu is the upper cutoff frequency beyond which the entries of Sx(ω) are assumed

to be zero. The phase terms φlk are independent and uniformly distributed over the interval [0, 2π]. The

computational cost of (32) can be reduced by making use of the FFT technique. Note that the method

implemented in Section IV is the one detailed in [24], which is an improved version of the original

method presented in [22].

8For simplicity, xm(t) also denotes the sample function.
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APPENDIX B

NUMERICAL SOLUTION OF (18)

The proposed solution is based on a backtracking line search algorithm and is inspired from the

Newton-like algorithm presented in [30], [31].

To find the Lagrange multipliers Λ
∆
= (λ0, λ1), we first resort to the duality principle. Consider

L
(

S
o
y,Λ

)

=

∫

log det
(

S
−1
h̃

(ω) + γ(Λ, ω)I2L

)

+ log det
(

S
h̃
(ω)

)

dω + 2L− α0λ0 − α1λ1, (34)

where γ(Λ, ω)
∆
= λ0+λ1ω

2. Note that (34) is obtained by injecting (18) in (16). According to the duality

theory9, our primal problem can be restated as the following dual problem:

Find Λ ∈ L+ minimizing J(Λ)
∆
= −L

(

S
o
y,Λ

)

, (35)

where L+
∆
= {(λ0, λ1)|S

o
y > 0}. Note that So

y has to be positive definite since it is a cross-spectral density

matrix (see also (7)).

Problem (35) is then solved by applying the following iterative procedure:

1) Set the initial condition Λ0 = (0, 0)

2) At iteration i, compute the Newton search direction

dΛi
= − [HJΛi

]−1∇JΛi
, (36)

where HJΛi
and ∇JΛi

are the Hessian and the gradient of J at Λi, respectively. HJ· and ∇J· can

be computed using the following relations:

∂J

∂λ0
= α0 −

∫

tr

[

(

S
−1

h̃
(ω) + γ(Λ, ω)I2L

)−1
]

dω

∂J

∂λ1
= α1 −

∫

ω2tr

[

(

S
−1
h̃

(ω) + γ(Λ, ω)I2L

)−1
]

dω

∂2J

∂λ0∂λ0
=

∫

tr

[

(

S
−1
h̃

(ω) + γ(Λ, ω)I2L

)−2
]

dω

∂2J

∂λ1∂λ1
=

∫

ω4tr

[

(

S
−1
h̃

(ω) + γ(Λ, ω)I2L

)−2
]

dω

∂2J

∂λ0∂λ1
=

∫

ω2tr

[

(

S
−1

h̃
(ω) + γ(Λ, ω)I2L

)−2
]

dω

∂2J

∂λ1∂λ0
=

∂2J

∂λ0∂λ1
. (37)

9The existence of the dual problem as well as the convergence of the proposed algorithm is out of the scope of this paper.

For details on these aspects, the reader is referred to [30], [31].
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3) Set t0i = 1, and let tk+1
i = tki /2 until both of the following conditions hold:

(

S
−1
h̃

(ω) + γ(Λi + tki dΛi
, ω)I2L

)−1
> 0,

J(Λi + tki dΛi
) < J(Λi) + βtki d

T
Λi
∇J(Λi), (38)

where β ∈ (0, 1/2). The first condition guarantees that Λi + tki dΛi
belongs to L+ and the second

one is the Armijo condition useful to determine the maximum amount to move along the search

direction dΛi
[40, Ch. 3].

4) Set Λi+1 = Λi + tki dΛi
.

5) Repeat steps 2, 3 and 4 until ‖∇J(Λi)‖2 < ǫ, where ǫ is a small tolerance.

In all the simulations conducted in this paper, this numerical approach converged quickly. For all

scenarios of Sec. IV-A, it took less than 10 iterations to get (λ0, λ1) with ǫ set to 10−6. This represents

a couple of seconds of processing time on a standard computer (CPU: 2.6 GHz, RAM: 4 Go) with a

Matlab implementation.

APPENDIX C

NUMERICAL SOLUTION OF (22)

The approach used to find Λ in (22) is very similar to the one presented in Appendix B, except that

the unknown is now a matrix, which changes the way the search direction is computed. Consider

L
(

S
o
y,Λ

)

=

∫

log det
(

S
−1
h̃

(ω) +Λ

)

+ log det
(

S
h̃
(ω)

)

dω + 2L− tr [ΛΣ] , (39)

obtained by injecting (22) in (21). The primal problem is restated as the following dual problem:

Find Λ ∈ L+ minimizing J(Λ)
∆
= −L

(

S
o
y,Λ

)

, (40)

where L+
∆
= {Λ|So

y > 0}. The dual function J(Λ) is then minimized by applying the following iterative

procedure:

1) Set the initial condition Λ0 = 0.

2) At iteration i, compute the Newton search direction ∆Λi
. This computation is not straightforward

because the expression of the search direction in the form of (36) is not available. The unknown

∆Λi
is therefore obtained by solving the following equation

H∆Λi
JΛi

= −∇JΛi
, (41)

where H∆Λi
JΛi

is the second variation of J at Λi in direction ∆Λi
. Using the fact that

δJ(Λ; δΛ) =

∫

tr

[(

Σ−
(

S
−1

h̃
(ω) +Λ

)−1
)

δΛ

]

dω, (42)
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δJ2(Λ; δΛ1, δΛ2) =

∫

tr

[

(

S
−1

h̃
(ω) +Λ

)−1
δΛ2

(

S
−1

h̃
(ω) +Λ

)−1
δΛ1

]

dω, (43)

(41) can explicitly be written as

∫

(

S
−1
h̃

(ω) +Λi

)−1
∆Λi

(

S
−1
h̃

(ω) +Λi

)−1
dω =

∫

(

S
−1
h̃

(ω) +Λi

)−1
dω −Σ. (44)

3) Set t0i = 1, and let tk+1
i = tki /2 until both of the following conditions hold:

[

S
−1

h̃
(ω) +Λi + tki∆Λi

]−1
> 0,

J(Λi + tki∆Λi
) < J(Λi) + βtki tr [∆Λi

∇J(Λi)] , (45)

where β ∈ (0, 1/2).

4) Set Λi+1 = Λi + tki∆Λi
.

5) Repeat steps 2, 3 and 4 until ‖∇J(Λi)‖2 < ǫ, where ǫ is a small tolerance.

Similarly to [31, Sec. VI], (44) is solved by making use of a basis {B1,B2, · · · ,BN} that span the space

of 2L× 2L symmetric matrices. More precisely, the procedure is the following

1) Compute

Z =

∫

(

S
−1

h̃
(ω) +Λi

)−1
dω −Σ. (46)

2) For each Bn, compute

Zn =

∫

(

S
−1
h̃

(ω) +Λi

)−1
Bn

(

S
−1
h̃

(ω) +Λi

)−1
dω. (47)

3) Using the Moore-Penrose pseudoinverse, find {µn} satisfying Z =
∑

n µnZn.

4) Set ∆Λi
=

∑

n µnBn.

The speed of convergence of the optimization procedure strongly depends on the level of similarity

between the user-defined covariance matrix Σ and the actual covariance matrix of the sea-probed channel.

For the simulations conducted in Sec. IV-B and with ǫ set to 10−6, it converged in 25 iterations for

ρ0 = 0.25 and 200 iterations for ρ0 = 0.95. When the number L of taps becomes large, most of the

processing time is consumed by the computation of (47) because the size of the basis {B1,B2, · · · ,BN}

also becomes large since N = L(2L+ 1).
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