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. Packed ellipses are tangent to the vertexes of a master ellipse, initially positioned at the center of the polygon. Superposition restrictions are imposed and checked at each stage. R 2 transformations are applied, which raise parametric ellipse equations. Results illustrate that the proposed heuristic can be applied to polygons with varying shapes, either convex or concave, due to the type of search which is performed in the interior of the polygon. The constructive heuristic was able to find the optimal solutions for the polygons tested.

Introduction

Cutting and packing problems appear in many industrial applications, such as textile, automotive, transportation, among others. Cutting problem consists of cutting smaller units from a substrate, given shapes and sizes, in order to optimize some objective function, such as loss or cost minimization, or profit maximization [START_REF] Brusso | Tecnologia 3D Gemas: otimizac ¸ão do aproveitamento de gemas coradas digitalizadas tridimensionalmente[END_REF]. The insertion of irregular polygons inscribed in ellipses a relevant topic for the Brazilian gem industry. As [START_REF] Brusso | Tecnologia 3D Gemas: otimizac ¸ão do aproveitamento de gemas coradas digitalizadas tridimensionalmente[END_REF] [START_REF] De | Dicionário de mineralogia e gemologia[END_REF], gems are generally natural and inorganic substances which are used for personal adornment. The development of this sector in Brazil led to the creation of multiple lines of research in technologies for the cutting techniques, which could improve the quality of the products composed of found gems in the rough state. Gems 3D Technology [START_REF] Brusso | Tecnologia 3D Gemas: otimizac ¸ão do aproveitamento de gemas coradas digitalizadas tridimensionalmente[END_REF], [START_REF] De | Dicionário de mineralogia e gemologia[END_REF][START_REF] Da | Identificac ¸ão da maior elipse com excentricidade prescrita inscrita em um polígono não convexo através do Continuous GRASP[END_REF][START_REF] Zanatta | Tecnologia 3D Gemas: visualizac ¸ão de projetos virtuais de lapidac ¸ão[END_REF][START_REF] Da | Algoritmo heurístico utilizando Grasp Contínuo para a otimizac ¸ão do aproveitamento volumétrico de gemas de cor[END_REF], has emerged with the intention of improving the quality of the products. This technology is a set of techniques and procedures developed, aiming to assist the process of lapidary faceted of colored gemstones, which consists in applying models of lapidary where the gems are fully constrained by flat surfaces, aiming to find each gem faceting design that results in higher added value, considering the volume and brightness. The insertion of models of lapidary, one of the areas in greater emphasis on lapidary industry, has as a fundamental part of the packaging ellipses or circles that form the basis of the oval and round models of lapidary [START_REF] Beckel | Modelagem Computacional e Otimizac ¸ão de secc ¸ões cônicas em polígonos irregulares de n lados[END_REF] [START_REF] Beckel | An adaptation of the Hooke and Jeeves optimization algorithm for the maximization of the dimensions of an ellipse inscribed in a given non-convex polygon[END_REF], as shown in Figure 1.

This paper presents a constructive heuristic for packing tangent ellipses in a given polygon. We consider a prescribed eccentricity for all packaged ellipses. The Hooke and Jeeves optimization method [START_REF] Beckel | Modelagem Computacional e Otimizac ¸ão de secc ¸ões cônicas em polígonos irregulares de n lados[END_REF][4] [START_REF] Bazaraa | Nonlinear programming: theory and algorithms[END_REF][START_REF] Hooke | Direct Search Solution of Numerical and Statistical Problems[END_REF][START_REF] Al-Fawzan | A tabu search Hooke and Jeeves algorithm for unconstrained optimization[END_REF][START_REF] Babu | Optimizing pulsed current gas tungsten arc welding parameters of AA6061 aluminium alloy using Hooke and Jeeves algorithm[END_REF] was adopted for positioning the initial ellipse inside the polygon. The polygons used for the simulations of the packing ellipses and for the validation of the developed heuristics represent the largest plan that describes a scanned three-dimensionally gem. Tangent ellipse packing in a n-side polygon is modeled as a two-dimensional problem here, where the parameters of each ellipse are the semi-minor and semi-major axes. The Hooke e Jeeves [START_REF] Bazaraa | Nonlinear programming: theory and algorithms[END_REF] is the core optimization method adopted. Translation and rotation of the ellipses are adopted as degrees of freedom.

Packing of Ellipses Tangents at Quadrants Initial Ellipse

The optimal tangent points are obtained using the parametric equation for each ellipse. The packing of ellipses tangent adopted in the developed heuristic is based on the adaptation made in the method used to manufacture of pieces Lego [START_REF] Dreshaper | Soft. 3DReshaper[END_REF]. The following restrictions are considered in the optimization problem:

• restrictions for the stating ellipse;

• restrictions for the tangent ellipses, and tangency conditions;

• additional condition for the convexity test.

First, we make the packing of each ellipse in the polygon P need not be convex. With the initial positioning, is carried out the verification of the inscription of the ellipses and if necessary is applied a process of gradual reduction in semi-major axis (a) the respective ellipse which not completely inscribed in P. The polygon used is composed of a set of vertices {(x 1 , y 1 ), (x 2 , y 2 ), . . . , (x np , y np )} and initial ellipse inscribed in P is described by the following parameters:

• Coordinates of the center of the polygon C(x c , y c ) obtained through software 3DReshaper [START_REF] Dreshaper | Soft. 3DReshaper[END_REF].

• Angle of counterclockwise rotation (θ ) the semi-major axis.

• Semi-major axis (a) of the ellipse, with eccentricity (e) fixed and semi-minor axis (b) defined by b = a 1e 2 ).

The restriction for the optimization of the starting ellipse subject to the restriction of space is:

Maximise a(x c , y c , σ ) subject to:

S = {(x c , y c , σ , a) : (x c + a cos(σ ), y c + a √ 1 -e 2 sin(σ )) ⊂ P, σ ∈ [0, 2π]}
With the initial parameters of the ellipse described, packing is achieved by adapting the method of Hooke and Jeeves [START_REF] Brusso | Tecnologia 3D Gemas: otimizac ¸ão do aproveitamento de gemas coradas digitalizadas tridimensionalmente[END_REF][2] as illustrated in Figure 2.

The points of tangency of every ellipse are obtained, and will be useful for positioning the secondary ellipses around the initial one. The point of tangency of the quadrant is given by the inter-section of the bisectrix with the 

x(t) = x c + a cos(t) cos(σ ) -b sin(t) sin(σ ) x(t) = y c + a cos(t) sin(σ ) -b sin(t) cos(σ ) (1) 
The heuristic adopted by [START_REF] Godtfred | Toy building brick[END_REF] for the construction of Lego bricks in the mid 1958 is the initial position of the ellipse and tangent. The concept the Lego is to project toy building elements with blocks adapted to be fixed to each other by means of projections extending from faces of the elements and which are arranged to involve protruding portions of an adjacent element when the two elements are assembled, as shown in Figure 3 In the project of the parts [START_REF] Dreshaper | Soft. 3DReshaper[END_REF], each circumference must be inserted so that the maximum area is occupied around the central circumference better fixing the embedded block, in other words, maintaining a tangency point in each quadrant of center circumference. The ideal positioning of the tangents circumferences can be seen in Figure 3(b). The point of tangency in the first quadrant is located in π/4, 3π/4 in the second quadrant, 5π/4 in the third quadrant and 7π/4 in the fourth quadrant. Defined the first point of tangency, the search for the other points is performed using the following symmetries in the plane: reflection around the y-axis, reflection around the origin and reflection around the x-axis.

Exploring Symmetries in the Plane

The heuristic of packing of tangent ellipses to each quadrant of an initial ellipse is based on the use of symmetries in the plane [START_REF] Beckel | Modelagem Computacional e Otimizac ¸ão de secc ¸ões cônicas em polígonos irregulares de n lados[END_REF] to determine the respectives points of tangency. Points are created in the counterclockwise direction of the initial ellipse and the transformations used are described according to the calculated point, considering the following matrix:

A = a cos(t) cos(σ ) -b sin(t) sin(σ ) a cos(t) sin(σ ) -b sin(t) cos(σ ) (2) 
where t ∈ [0, 2π]. The reflection about the ordinate axis is described by the transformation T 1(x, y) in the plane, given by:

x y = x c y c + A. -1 0 0 1 , (3) 
resulting in the parametric equation shown in Equation ( 4):

x(t) = x c -a cos(t) cos(σ ) -b sin(t) sin(σ ) x(t) = y c -a cos(t) sin(σ ) + b sin(t) cos(σ ) (4) 
where (a, b) are respectively, the major and minor semi-axis of the ellipse packed, considering t ∈ [0, 2π]. The transformation T 2(x, y) describes the reflection around the origin given by Equation ( 5):

x y = x c y c + A. -1 0 0 -1 , (5) 
and the parametric equation resulting from the reflection around the origin is given by:

x(t) = x c -a cos(t) cos(σ ) + b sin(t) sin(σ ) x(t) = y c -a cos(t) sin(σ ) -b sin(t) cos(σ ) (6) 
For determine the point of tangency in the fourth quadrant of the original ellipse is necessary to make a reflection about the y-axis, defined by T 3(x, y) and shown in Equation ( 7):

x y = x c y c + A. 1 0 0 -1 , (7) 
resulting in the following parametric equation:

x(t) = x c -a cos(t) cos(σ ) + b sin(t) sin(σ ) x(t) = y c -a cos(t) sin(σ ) -b sin(t) cos(σ ) (8) 
In the Figure 4 are shown the symmetries in the plane used for the search of the point of tangency considering the point obtained in the first quadrant of the initial ellipse, positioned in π/4.

The first point of tangency is located in the first quadrant, given in function of bisectrix the quadrant (π/4) assuming the angle of rotation σ and the center C(x c , y c ), we have the parametric equation of the first point of tangency P1(P1x, P1y):

P1x = x c + a cos(π/4) cos(σ ) -b sin(π/4) sin(σ ) P1y = y c + a cos(π/4) sin(σ ) + b sin(π/4) cos(σ ) (9) 
The coordinates of each point of tangency obtained are stored and used to determine the length of the major and minor semi-axis of the ellipse tangent. The center of each ellipse tangent is calculated assuming the same search direction of the point of tangency and the distance of initial ellipse center from the point of tangency. The length of the semi-major axis is defined by Equation [START_REF] Hooke | Direct Search Solution of Numerical and Statistical Problems[END_REF]: For the packing of ellipses in the polygon P, it is assumed 80% of the distance so that the ellipses are fully inscribed in the polygon P. In cases in which some points of the ellipses are outside the polygon applies a process of gradual reduction of the semi-major axis. The distance from the center to any point of tangency is equivalent, so it is possible to generalize the calculation of the distance, the value of the scalar λ to the tangent ellipse to the point P1(x, y) is calculated by Equation ( 11):

aw = 0.8 λ , λ ∈ R + (10)
dx = |P1x -x c | dy = |P1y -y c | (11) 
with the scalar defined by:

λ = (dx) 2 + (dy) 2 (12) 
and the semi-minor axis of the ellipse obtained by: bw = aw 1e 2 [START_REF] Godtfred | Toy building brick[END_REF] where e = 0.593946 is the eccentricity fixed for packaged ellipses. Defined the tangency point in each quadrant, it is used the modified parametric equation to calculate the center of the ellipse being packaged. The center C(x c , y c ) of the ellipse tangent to the point P1(x, y) is obtained by Equation ( 14) assuming t = π/4 and rotation angle σ :

P1x = x c + aw cos(π/4) cos(σ ) -bw sin(π/4) sin(σ ) P1y = y c + aw cos(π/4) sin(σ ) + bw sin(π/4) cos(σ ) (14) 
To check the packing becomes necessary to define the vertices, the center and the point of tangency of each packaged ellipse. Considering c = cos(-σ ) and s = sin(-σ ), we have the vertices described by Equations (15-16):

A1 = A1x = x c -aw.c A1y = y c + aw.s B1 = B1x = x c + aw.c B1y = y c -aw.s (15) 
Thus, we have established that the major axis of the ellipse is defined by Ā1B1. where the minor axis of the ellipse is given by C1D1. The vertices calculated are shown in Figure 5.

Figure 6 shows the graphical representation of the tangent ellipses, with the vertices of the ellipses are plotted in red and the center points of tangency and blue. The search performed by the method of Hooke and Jeeves [START_REF] Brusso | Tecnologia 3D Gemas: otimizac ¸ão do aproveitamento de gemas coradas digitalizadas tridimensionalmente[END_REF], [START_REF] Beckel | Modelagem Computacional e Otimizac ¸ão de secc ¸ões cônicas em polígonos irregulares de n lados[END_REF] position the initial ellipse near the contour of the polygon in the assumed direction, therefore there is few points of contact with the outside of the polygon. Therefore, it is necessary to define a point in each quadrant that has a likelihood to have points outside the polygon. The point corresponds to intersection of the bisectrix of the quadrant that has outer points to the polygon with the curve that describes the ellipse. Following the heuristic developed and transformations in the plane, with parametric equations and the same search direction of the tangent point and the center is possible to determine the point. Equation 17shows the result for the first quadrant.

PA(x) = P1x + 2aw cos(π/4) cos(σ ) -2bw sin(π/4) sin(σ ) PB(y) = P1y + 2aw cos(π/4) sin(σ ) + 2bw sin(π/4) cos(σ ) (17) 
The heuristic for packing ellipses always considers the same search direction from the point of tangency and the center, as shown in Figure 7.

Verification of the inscription of the ellipses in the polygon P

To verify the inscription of ellipses tangent to the initial ellipse is necessary to obtain the matrix shown in Equation ( 18) which contains np-points of each ellipse (vertex, center, and aleatory point). With the matrix of points defined is held a test to verification of each point in relation to the polygon in order to ensure the full inscription of the ellipse, so that:

E i = Ex i Ex i+1 . . .
• P (x,y) (in) → P (x,y) ∈ V x • P (x,y) (∼ in) → P (x,y) / ∈ V x
The points P (x,y) (in) which belong to the polygon are stored in an array E i n as well the points P (x,y) (∼ in) are allocated in an array E (∼in) thereby separating the interiors and exteriors points. If neither point P (x,y) is outside to the polygon then the matrix E (∼in) will be empty. If the matrix E (∼in) have some element, applies the process of refinement of the semi-major axis of the ellipse which being inserted to get an array E (∼in) resultant empty. The matrix used for verification is defined by Equation ( 19):

E = A1x B1x C1x D1x x c PAx A1y B1y C1y D1y y c PAy (19) 
containing the vertices, and the center point aleatory of each ellipse. For the verification of matrix of points is used the function inpolygon available in the MatLab [START_REF] Mathworks | Matlab and simulink for technical computing[END_REF] software. The function inpolygon is is structured as follows form:

• IN = inpolygon (X,Y, xv, yv) • [IN ON] inpolygon = (X,Y, xv, yv)
The instruction IN = inpolygon (X,Y, xv, yv) returns an array IN the same size of X and Y . For each element of IN a value from the set 0, 1 is assigned, conditioned to the point (X(p, q),Y (p, q)) be inside the polygonal region whose vertices are specifically defined by the vectors xv and yv, resulting in two cases:

• If (X(p, q),Y (p, q)) is inside the polygonal region or the boundary of the polygon then IN (p, q) = 1;

• If (X(p, q),Y (p, q)) is outside the polygonal region then IN (p, q) = 0.

The instruction [IN ON] inpolygon = (X,Y, xv, yv) returns a second matrix ON the same size of X and Y . For each element of ON is assigned the value of 0 or 1 considering that the point (X(p, q),Y (p, q)) may be in the polygonal region, resulting in two new cases:

• If (X(p, q),Y (p, q)) is on the boundary of the polygonal region then ON (p, q) = 1;

• If (X(p, q),Y (p, q)) is inside or outside the polygonal region then ON (p, q) = 0. According to the heuristic developed for the packing, all ellipses must be fully inscribed in the polygon. Thus, the matrix [IN ON] of each ellipse shall contain only interior points. If return an point outside the polygon, is made the gradual reduction of the semi-major axis and is held again the calculation of semi-minor axis, of the center, coordinates of the vertices and the aleatory point until all points are interior to the polygon.

The new length of the semi-major axis is defined by:

aw = aw.(1 -α) ( 20 
)
where α = 0.1 established by the heuristic as the reduction factor. Performed the verification of the inscription all ellipses obtained are fully included in P.

Results and Discussion

The validation of the constructive heuristic for packing of ellipses was performed using both convex and nonconvex polygon. Figure 9 shows the inscription of ellipses tangent to the initial ellipse based on data obtained from Table 1 for a polygon with 122 vertexes. Table 1 summarizes the results. Table 1 shows the computational processing time that is demanded for registration of each ellipse. The simulation time for the verification of the inscription varies according to the number of vertices of the polygon and the number of iterations performed to obtain a viable solution with all ellipses inscribed. With the procedure for the gradual reduction of the semi-major axis of the ellipses partially outside the polygon, the packing of ellipses is total, as can be seen in the Figure 10.

Figure 11 shows the initial positioning of ellipses in another not-necessarily convex polygon with 232 vertexes, whose time of computational processing is equivalent to the processing time of the previous simulation. In the first positioning, as shown in the Figure 11, the ellipses tangent to the initial ellipse feature all the same length of semi-major axis, it is verified on the Table 3 from the data obtained. Applying the procedure of gradual

PT (x, y) 1 C(x c , y c ) 2
PA(x, y) 1. Results obtained with the positioning of the ellipses -simulation 1. 1 Point of tangency, 2 Center of the ellipse, 3 Aleatory point, 4 Total processing time (microseconds), 5 Semi-major axis, 6 Semi-minor axis, 7 Area. reduction of the semi-major axis of the ellipses partially inscribed, we have final positioning of ellipses as shown in Figure 12. PT (x, y) 1 C(x c , y c ) 2 PA(x, y) 2. Results obtained with the positioning of the ellipses and gradual reduction of the semi-major axissimulation 1. 1 Point of tangency, 2 Center of the ellipse, 3 Aleatory point, 4 Total processing time (microseconds), 5 Semi-major axis, 6 Semi-minor axis, 7 Area. Table 3. Results obtained with the positioning of the ellipses -simulation 2. 1 Point of tangency, 2 Center of the ellipse, 3 Aleatory point, 4 Total processing time (microseconds), 5 Semi-major axis, 6 Semi-minor axis, 7 Area.

PT (x, y) 2 Center of the ellipse, 3 Aleatory point, 4 Total processing time (microseconds), 5 Semi-major axis, 6 Semi-minor axis, 7 Area.

With the packing of ellipses tangent to the initial ellipse completed, the parameters are re-evaluated to assure the efficiency of the developed heuristic. The high computational processing time is due to the number of vertices of the polygon and for every check of the inscription of ellipses is necessary to perform a scan for all the vertices of the polygon. Figure 13 shows the complete packing of the ellipses.

Table 5 shows general results, after iteration of the simulation performed for the polygon in Figure 13. Total processing time (tpt), total area of packed ellipses (ta) and remaining area (ra) are computed at each iteration. Figure 14 shows a spline curve fitting for the computed points. The Equation (21) shows performed curve fitting:

y = ae bx (21) 
The adjustment of the series of data in Table 5 for parameterized curves shown in Figure 14 and to determine the trend of constructive heuristic generates a function that can be used for the heuristic comparisons in each polygon and a subsequent widespread process. Figure 14 illustrates the exponential behavior of the reduction of remaining area as a function of the computational processing time. The function obtained from curve fitting is:

y = 137.9e -1,403x (22) 
With the exponential function described in Equation ( 22), it is possible to determine the percentage remaining area as an elapsed processing time or to establish the time required to obtain the optimal solution. Another factor that should be highlighted in the analysis of the results is the easy adaptation of the heuristics in polygons with large hollows. The heuristic developed performs searches in random directions but not employ any method that uses the gradient vector ∇aw(x c , y c , σ ) and ∇aw(C x ,C y , σ ) information. The behavior of the heuristic for situations with accentuated concavity was also tested. Figure 15 illustrates two of those cases.

Positioning regions vary from iteration to iteration, which illustrates the ability of the heuristic to search for the best positioning, successfully avoiding ellipses to get stuck in the concavities of the polygons.

Conclusion

A constructive heuristic for packing of tangent ellipses in irregular polygons of n-sides was shown to be effective when solving the problem of positioning of ellipses used as basis in the oval gemstones cutting model. In order to make the process viable for to the lapidary industry, the mathematical formulation restricted to the boundary conditions imposed by the problem were taken into consideration. The verification phase of the inscription of ellipses requires more computational time in cases where there are points outside the polygon and subsequently these ellipses go through the process gradual reduction of the semi-major axis. The heuristic developed was shown to be highly adaptive for different types of polygons both convex and no convex. One of the great advantages of using the Hooke and Jeeves method is that this method can be easily modified and adjusted to the problem you want to solve. This change is observed in problems that take into consideration the constraints of the contour or space of possible solutions. Becomes an unconstrained optimization method for a constrained optimization method to ensure that the optimal solution is contained in the polygonal region formed by vertices that describe the contour of the major plane where the initial ellipse is inserted.
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 1 Figure 1. Packing of models of lapidary on a gem with 3D Technology Gems.
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 2 Figure 2. Initial ellipse inscribed in P -Base of oval lapidary model.
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 3 Figure 3. (a) Lego blocks, (b) Positioning of the circumferences in each quadrant.
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 4 Figure 4. Symmetries in the plane and tangency points in the initial ellipse.
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 5 Figure 5. Coordinates of the center and vertices of the ellipse.
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 6 Figure 6. Ellipses tangent to the initial ellipse with vertices, points of tangency and center defined.
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 7 Figure 7. Points with search direction defined.
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 8 Figure 8. Relative position of the point with respect to the polygon P.
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 9 Figure 9. Ellipses tangent to the initial ellipse -simulation 1.
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 10 Figure 10. Ellipses fully inscribed in P -simulation 1.
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 11 Figure 11. Ellipses tangent to the initial ellipse -simulation 2.
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 12 Figure 12. Ellipses fully inscribed into P -simulation 2.PT (x, y) 1 C(x c , y c ) 2 PA(x, y) 3 T T P 4 a 5 b 6 A 6 EI -(9.91, 3.22) -974.98 6.67 5.37 112.72 E1 (9.51, -2.81) (9.23, -7.20) (8,94, -11.60) 63.74 4.84 3.9 59.41 E2 (15.90, 4.13) (20.25, 4.79) (24.60, 5.45) 38.19 4.84 3.9 59.41 E3 (10.30, 9.27) (10.59, 13.66) (10.88, 18.05) 38.78 4.84 3.9 59.41 E4 (3.92, 2.32) (-0.43, 1.65) (-4.78, 0.99) 38.56 4.84 3.9 59.41
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 13 Figure 13. Final packaging ellipses.
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 14 Figure 14. Simulation with curve fitting.

Figure 15 .

 15 Figure 15. Packaged ellipses restricted to the boundary with concavities.

  Ex np Ey

i Ey i+1 . . . Ey np

(18) 

Table

  

			3	T T P 4	a 5	b 6	A 6
	EI -	(4.12, 11.53) -	1024.03	4.96 3.99 62.31
	E1 (1.16, 14.93) (0.88, 15.27) (0.59, 15.60) 28294.81 0.48 0.39 0.59
	E2 (1.43, 7.91)	(-0.51, 5.29) (-2.47, 2.66) 39.38	3.60 2.90 32.84
	E3 (7.08, 8.13)	(7.75, 7.35)	(8.42, 6.58)	22405.90 1.13 0.91 3.23
	E4 (6.81, 15.14) (7.21, 15.69) (7.61, 16.23) 25919.02 0.74 0.59 1.39

Table 4 .

 4 Results obtained with the positioning of the ellipses -simulation 2.1 Point of tangency,

	1	C(x c , y c ) 2	PA(x, y) 3	T T P 4	a 5	b 6	A 6
	EI -	(9.91, 3.22)	-	1023.52	6.67 5.37 112.72
	E1 (9.51, -2.81) (9.36, -5.15)	(9.21, -7.48)	20572.25 2.57 2.07 16.78
	E2 (15.90, 4.13) (16.63, 4.24)	(17.35, 4.35)	36532.59 0.80 0.65 1.65
	E3 (10.30, 9.27) (10.36, 10.09) (10.41, 10.90) 35731.06 0.89 0.72 2.04
	E4 (3.92, 2.32)	(2.04, 2.03)	(0.17, 1.75)	24995.03 2.08 1.67 11.01

Table 5 .

 5 Results obtained with the constructive heuristic.

	I	Ttp (s)	At (mm 2 ) Ar (mm 2 ) Pr (%)
	0	4.7954	7.8932	207.8757 96.3418
	1	4.7047	16.9199	198.8491 92.1583
	2	19.8998	30.2945	185.4744 85.9597
	3	6.7174	75.8355	139.9335 64.8534
	4	60.8931	112.7322 103.0368 47.7533
	5	119.6117 127.2988 88.4702	41.0023
	6	199.3145 144.9635 70.8055	32.8154
	7	214.8979 150.4614 65.3076	30.2674
	8	225.3092 151.5046 64.2645	29.7839
	9	216.3957 151.2833 64.4857	29.8865
	10 288.3527 159.3059 56.4631	26.1683
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