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This paper addresses the a priori error estimation of the homogenized constitutive parameters (HCPs), the macroscopic field and the limit electromagnetic field in 3D periodic structure. The HCPs and the macroscopic field are approximated respectively by using the Lagrange and the first order Nédélec conforming finite element method. The approximation of limit field is derived from those of HCPs and macroscopic field. The optimality of the convergence is obtained for these electromagnetic quantities and the theoretical results of this work are reinforced by some numerical ones.

Introduction

The composite periodic structures have been investigated extensively in different branches of engineering such as electromagnetism, heat conduction, elastic deformation, porous media, acoustics [START_REF] Allaire | Homogenization and two-scale convergence[END_REF]- [START_REF] Shkoller | Homogenization of plane wave composite using two-scale convergence[END_REF]. In electromagnetism, the most famous types of these periodic structures are the metamaterials that have great potential applications and include sensor detection and infrastructure monitoring, remote aerospace applications, public safety, smart solar power management, radomes, the thin film capacitor design for the use in a new generation of memory devices, high-frequency battlefield communication and lenses for high-gain antennas, improving ultrasonic sensors, and even shielding structures from earthquakes [START_REF] Brun | Achieving control of in-plane elastic waves[END_REF]- [START_REF] Singh | Coupling between a dark and a bright eigenmode in a terahertz metamaterial[END_REF].

Artificial materials are synthesized to obtain the desired electromagnetic properties which can not be found in the nature. They usually gain their properties from the composition of the structure, the distribution and shape of inclusions. The homogenization is one of the most used method to characterize and model these materials. When the period of this composite material is small compared to the size of the studied structure, the homogenization processus allows establishing the homogenized electromagnetic properties by taking account the properties of the different heterogeneities. This means that the heterogeneous material is replaced by an homogeneous fictitious one whose global characteristics are a good approximation of the initial material. There are numerous approaches have been proposed providing the homogenized constitutive parameters (HCPs) of the Maxwell's equations both in frequency domain and in time domain. Barbatis [19] and Wellander [START_REF] Kristensson | Homogenization of the Maxwell equations at fixed frequency[END_REF] used the concept of two-scale homogenization technique, and Bossavit [START_REF] Bossavit | Modelling of periodic electromagnetic structures bianisotropic materials with memory effects[END_REF] employed the classical multi-scale homogenization technique giving a new approach based upon the periodic unfolding method. Generally, the boundary conditions used are the perfect conductor walls [START_REF] Poupaud | The Maxwell equation in a periodic medium; homogenization of the energy density[END_REF]- [START_REF] Wellander | Homogenization of the Maxwell equations: Case II[END_REF] or penetrable boundary conditions [START_REF] Kristensson | Homogenization of the Maxwell equations at fixed frequency[END_REF].

Assume Ω is a smooth and bounded domain in R 3 with boundary ∂ Ω. Moreover, assume that the material in Ω is Y α -periodic (Y α = αY ), where Y = (0, 1) 3 is the unit cube in R 3 . In the case of the anisotropic materials, the homogenized permittivity, ε H , and permeability, µ H , are described by their columns [START_REF] Kristensson | Homogenization of the Maxwell equations at fixed frequency[END_REF]- [START_REF] Bossavit | Modelling of periodic electromagnetic structures bianisotropic materials with memory effects[END_REF].

ε H k = Y ε(y) • (e k + ∇w ε k (y))dy (1) 
µ H k = Y µ(y) • (e k + ∇w µ k (y))dy (2) 
where e k is the k-th canonical vector basis of R 3 , ε(y) is the permittivity and µ(y) is the permeability of materials in Y . The sub-correctors w ε k and w 

In addition, the behaviour of the electromagnetic field limit is also treated. In a α-periodic material, the electromagnetic fields satisfy the Maxwell equations in Ω. They depend on the period of the material. Therefore, all fields are indexed by the periodicity α, namely, (E α , H α ). These fields converge weakly in H(curl, Ω) × H(curl, Ω) to the macroscopic field (E m , H m ) ∈ H(curl, Ω) × H(curl, Ω) [START_REF] Barbatis | Homogenization of Maxwell's equations in dissipative bianisotropic media[END_REF][START_REF] Bossavit | Modelling of periodic electromagnetic structures bianisotropic materials with memory effects[END_REF], where

H(curl, Ω) = {v ∈ L 2 (Ω), curl v ∈ L 2 (Ω)}. (5) 
It was shown in [START_REF] Barbatis | Homogenization of Maxwell's equations in dissipative bianisotropic media[END_REF][START_REF] Kristensson | Homogenization of the Maxwell equations at fixed frequency[END_REF] that the use of the concept of two-scale convergence, the field (E α , H α ) converges to (E l , H l ) which expressed by

E α 2-s E l (x, y) = E m (x) + E c (x, y) (6) 
H α 2-s H l (x, y) = H m (x) + H c (x, y) (7) 
where 2-s denotes the two-scale limit, and E c (x, y) and H c (x, y) are expressed as

E c (x, y) = ∇ y φ (x, y), H c (x, y) = ∇ y ψ(x, y) (8) 
The fields (E c , H c ) and (E l , H l ) are, respectively, the corrector and the limit electromagnetic fields. The functions φ and ψ in equations ( 8) contain the information of the behaviour of the fields on the microscale. A separation of variables arguments implies that these terms can be written as [START_REF] Kristensson | Homogenization of the Maxwell equations at fixed frequency[END_REF] 

E c (x, y) = 3 ∑ k=1 ∇ y w ε k (y)E m k (x), (9) 
H c (x, y) = 3 ∑ k=1 ∇ y w µ k (y)H m k (x) (10) 
By utilizing the periodic unfolding operator T α , we have the following limit [START_REF] Bossavit | Modelling of periodic electromagnetic structures bianisotropic materials with memory effects[END_REF] T

α (E α )(x, y) → E l (x, y) strongly in L 2 (Ω ×Y ; R 3 ), (11) 
T α (H α )(x, y) → H l (x, y) strongly in L 2 (Ω ×Y ; R 3 ), ( 12 
)
where x is macroscopic variable and y is the the microscopic variable. The macroscopic field (E m , H m ) is independent of the variable y. These fields satisfy the Maxwell equations characterized by the HCPs (ε H , µ H ).

Using the constitutive relations

(D m = ε H E m , B m = µ H H m )
, the time-harmonic Maxwell equations are given in free space by

curl E m (x) = iω µ H H m (x), ( 13 
) curl H m (x) = -iωε H E m (x). (14) 
The numerical results of the homogenized constitutive parameters, the macroscopic fields and the corrector fields are presented for some classes of the electromagnetic materials as the isotropic, anisotropic, chiral and bi-anisotropic materials [START_REF] Ouchetto | Modeling of 3-D periodic multiphase composites by homogenization[END_REF]- [START_REF] Ouchetto | A new approach for the homogenization of threedimensional metallodielectric lattices: the periodic unfolding method[END_REF]. This paper is devoted to error estimation of the HCPs (ε H , µ H ), the macroscopic electromagnetic field (E m , H m ) and the limit electromagnetic field (E l , H l ) when we employ the finite element method. Usually, the electromagnetic field solution of Maxwell equations with exact coefficients (ε, µ) is approximated by the use of the first order Nédélec conforming finite element method. The optimal error made is the order of O(h min(s,1) ) [START_REF] Bramble | Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems[END_REF]- [START_REF] Monk | Finite element methods for Maxwell's equations[END_REF], where s is the regularity parameter of the exact macroscopic field ((E m , H m ) ∈ W s,2 ×W s,2 ). Here, the situation is different, the difficulty is to take account the approximated coefficients (ε H , µ H ). Our technique to counter this problem consists to use the Strang lemma. However, this latter requires some conditions which are not evident to satisfy. The main result in this case consists of showing that we still obtain the optimal convergence when the approximated coefficients (ε H , µ H ) have the optimal convergence too. In addition, we prove the optimality of these coefficients, which is related to the optimal approximation of the sub-correctors (w ε , w µ ) in Eqs [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures North-Holland[END_REF][START_REF] Conca | Homogenization of periodic structures via Bloch decomposition[END_REF]. The difficulty to control the error of the corrector field (9-10) is the product of the two approximated functions. However, we still have the optimal approximation. The outline of this paper is as follows. In Section 2, the algorithm, containing the different steps to obtain diverse electromagnetic quantities, is presented. Section 3 is devoted to approximate the continuous problem given in Section 2 using finite element discretization. The error estimate of the HCPs, the macroscopic and the limit field are established in Section 4. In the last Section, we provide some numerical experiments to validate the theoretical results.

Algorithm

The limit field (E l , H l ) in periodic composite material, obtained using two-scale convergence or unfolding method, is given by the macroscopic field (E m , H m ) and the corrector field (E c , H c ). In this section, we describe the different steps in order to give the error estimation of the different electromagnetic quantities. The algorithm presented here contains four steps. The first step is devoted to evaluate the sub-correctors w ε and w µ solutions of the local problem [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures North-Holland[END_REF][START_REF] Conca | Homogenization of periodic structures via Bloch decomposition[END_REF], the HCPs (ε H , µ H ) in equation (1-2) are presented in second step. The third one consists to give the macroscopic field. In the last step, we present the corrector field and we deduce the limit field. 

w β k ∈ V such that a(w β k , v) = l(v), ∀v ∈ V, k = 1, 2, 3. ( 15 
)
where a(w

β k , v) = Y ∇ y v(y) • β (y) • ∇w β k (y)dy (16) 
l(v) = - Y ∇ y w(y) • β (y) • e k dy (17) 
Here, we assume that β (y) (β = ε or µ) is in L ∞ (Ω) and there exists c 1 > 0 and c 2 > 0 such that β satisfies the following bounds

c 1 |z| 2 ≥ 3 ∑ i, j=1 β i, j (y)z i z j ≥ c 2 |z| 2 , ∀z ∈ R 3
It is easy to check that there exists a unique solution of the problem (15) up to a constant.

2.2

Step II: Evaluation of HCPs ε H and µ H The HCPs (ε H , µ H ) are given by the permittivity ε(y) and the permeability µ(y) of material in unit cell Y , and the terms w ε , w µ solutions of local problem [START_REF] Alici | Radiation properties of a split ring resonator and monopole composite[END_REF]. These parameters are present in the next step devoted to evaluate the macroscopic field (E m , H m ).

2.3

Step III: Evaluation of the macroscopic field (E m , H m ) This part deals with the macroscopic field (E m , H m ), which is solution of Maxwell equations in the bounded material Ω characterized by the HCPs (ε H , µ H ). The equations [START_REF] Rainsford | T-ray sensing applications: review of global developments[END_REF][START_REF] Cotton | Applied Electromagnetics[END_REF] are usually reformulated in term of the macroscopic electric field E m or in term of the macroscopic magnetic field H m . In the following, we will analyze only the electric field. The magnetic analysis can be obtained by the same way, and satisfies the same mean results. By re-writing this system and taking a boundary conditions, we obtain the following problem

   curl([µ H ] -1 curl E m ) -ω 2 ε H E m = 0 in Ω, E m × n = 0 on ∂ Ω D , curl E m × n = J on ∂ Ω N . ( 18 
)
where n is the unit outgoing normal vector and the boundary

∂ Ω = ∂ Ω D ∪ ∂ Ω N , with ∂ Ω D ∩ ∂ Ω N = / 0.
On the part ∂ Ω D and ∂ Ω N , we impose respectively the perfect conductor and the Neumann condition boundary.

We introduce the following space

V = {v ∈ H(curl, Ω) | (v × n) = 0 on Ω D and v × n ∈ (L 2 (∂ Ω N )) 3 }. ( 19 
)
By multiplying the first equation of ( 18) by a test function in V and taking the boundary condition, the associated variational formulation of [START_REF] Singh | Coupling between a dark and a bright eigenmode in a terahertz metamaterial[END_REF] reads

Find E m ∈ V such that a(E m , E ) = l(E ), ∀E ∈ V, (20) 
where

a(E m , E ) = Ω ([µ H ] -1 curl E m • curl E -ω 2 ε H E m • E ) dx, (21) 
l(E ) = ∂ Ω N [µ H ] -1 J • E dx. (22) 
If ω = 0, the problem (20) has a unique solution using the Lax-Milgram lemma. Otherwise, the presence of the term -Ω ω 2 ε H E m • E dx in the right-hand side of ( 21) means that the right-hand side is not a coercive sesquilinear form. To counter this problem, we assume the following hypotheses:

(1) The coefficients ε and µ in (20) are piecewise smooth.

(2) The domain Ω may be decomposed into P subdomains such that

• Ω = P p=1 Ω p and Ω p Ω q = / 0, if p = q;
• Each subdomain Ω p , p = 1, ..., P, is connected and has a Lipschitz boundary;

(3) The coefficient µ is constant on each subdomain;

(4) The coefficient ε is assumed to have the following properties:

• The restriction of ε to Ω p is a function in H 3 (Ω p ),
• There is a constant c > 0 such that for each p, p = 1, ..., P, and ℑ(ε) ≥ c on Ω p , where ℑ is the imaginary part.

According to Monk [START_REF] Monk | Finite element methods for Maxwell's equations[END_REF], we have the following theorem Theorem 2.1. Under these assumptions, there is at most one solution E m to the problem (20).

2.4

Step IV: Limit field

(E l , H l )
The computation of the terms [START_REF] Alici | Radiation properties of a split ring resonator and monopole composite[END_REF] in Y (Step I) and the macroscopic electric field E m ∈ V solution of the problem (20) (Step III), allows us to evaluate the corrector electric field E c . We can write

w ε k ∈ H 1 per (Y )/C solution of the local problem
E c (x, y) = 3 ∑ k=1 ∇ y w ε k (y)E m k (x) (23) 
Finally, the limit of the electric field E l is given by ( 6):

E l (x, y) = E m (x) + E c (x, y) (24) 
The algorithm presented in this section contains four steps. The organization of this algorithm is respected in the next sections (3 and 4). Section 3 is devoted to finite element discretization of continuous problem of each step and Section 4 deals with the error estimate of the different quantities when we use finite element method.

Finite element discretization

In this section, we give the finite element discretization of the different continuous problems presented in previous section. We will also have consider four steps. In the first step, we present the discretization of the terms w ε and w µ by using first order Lagrange conforming finite element method. The second step consists to update the HCPs (ε H ,µ H ). In the third step, the Nédélec elements are employed to approximate the macroscopic field E m . The update of the limit field, E l , is presented in the last step.

Let T Ω,h and T Y,h be , respectively, a family of triangulations of Ω and Y by means of a mesh composed of tetrahedra K such that

Ω = K∈T Ω,h K , Y = K∈T Y,h K where h = max{diam(K), K ∈ T Z,h } where Z = Y or Ω.
We assume that the mesh is regular in the sense of Ciarlet. We note that to obtain a periodic mesh of Y , the discretization of the opposite face of Y is identical. When Y contains a concentric isotropic inclusion, we start by meshing one-eighth of Y , the other seven-eighth of Y are obtained by using the symmetry in three directions. Finally, we obtain the mesh of the Y by grouping the eight subdomains. The reference element is defined to be the tetrahedron K with vertices â1 , ..., â4 given by â1 = (0, 0, 0) T , â2 = (1, 0, 0) T , â3 = (0, 1, 0) T and â4 = (0, 0, 1) T . Any target element K ∈ T Z,h can be obtained by mapping K using an affine map. By this we mean that for any K ∈ T Z,h there is a map F K : K → K, defined by:

F K (x) = B K x + b K such that K = F K ( K)
where B K is a non-singular 3 × 3 matrix, and b K is a vector. The non-singularity of B K is a result of the fact that we assumed that K has a non-empty interior since the volume of K is |det(B K )|/6. If K has vertices a 1 ,..., a 4 and if we choose F K to satisfy F K (â i ) = a i for 1 ≤ i ≤ 4 then it is easy to compute B K and b K , such that b K = a 1 and B K is the matrix where j th column is given by a j+1 -a 1 .

3.1

Step I : Discretization of w β (β = ε, µ)

In this part, we give an approximation of the continuous problem [START_REF] Alici | Radiation properties of a split ring resonator and monopole composite[END_REF] expressed in Y . To this end, we use the conformal Lagrange finite elements. Now, we introduce the following space

U h = {u h ∈ C 0 (Y )| u h|Γ D = 0 and u h oF -1 K ∈ P K ( K) ∀K ∈ T h },
If we denote by w β h the approximation of w β in U h , the associated discrete variational problem is expressed as follows Find w

β k,h ∈ U h such that (25) a h (w β k,h , u h ) = l h (u h ), ∀u h ∈ U h , k = 1, 2, 3. where a h (w β k,h , u h ) = Y ∇ y u h (y) • β (y) • ∇w β k,h (y) dy, k = 1, 2, 3. (26) 
l h (u) = - Y ∇ y u h (y) • β (y) • e k dy, k = 1, 2, 3. (27) 
Due to the existence and the uniqueness of the solution of the continuous problem [START_REF] Alici | Radiation properties of a split ring resonator and monopole composite[END_REF] and the use of the conformal approximation, the approximate problem [START_REF] Ouchetto | Modeling of 3-D periodic multiphase composites by homogenization[END_REF] has also a unique solution.

3.2

Step II : Update of HCPs (ε H , µ H ) From the previous step, the terms w β k,h (β = ε, µ) are the approximations of w β k . They are consequently attached with an error which is reproduced in the HCPs (ε H , µ H ). Let us then denote the approximated HCPs by (ε H h , µ H h ) which are expressed as

ε H k,h = Y ε(y)(e k + ∇w ε k,h (y))dy (28) 
µ H k,h = Y µ(y)(e k + ∇w µ k,h (y))dy (29) 
3. [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures North-Holland[END_REF] Step III : Discretization of the macroscopic field E m In this part, we give the approximation of the continuous problem [START_REF] Kristensson | Homogenization of the Maxwell equations at fixed frequency[END_REF] characterized by the solution E m . For this, We use the H(curl, Ω) conformal finite element of Nédélec and we introduce the following finite dimensional space

V h = {v h ∈ H(curl, Ω) | B T K (v h|K oF K ) ∈ P n ( K)
, ∀K ∈ T h } where P n denotes a family of Nédélec type finite element polynomials of degree n. The basis functions w i j of the space P n that will be used later in the definition of the basis for V h . Given a target tetrahedron K, let r j ( j = 1, .., 4) be the position vectors of its vertices and λ j (r) be the barycentric coordinate of the point P ∈ K with respect to the vertex j. It is clear that λ j (r) is a linear function in the tetrahedron with λ j (r l ) = δ jl ( j, l ∈ {1, 2, 3, 4}). The vector basis function corresponding to an edge e i j going from r i to r j is given by

w i j (r) = λ i (r)gradλ j (r) -λ j (r)gradλ i (r)
The interpolating function u h on K for vectorial state u ∈ (C 0 (K)) 3 has the following form

u h = 3 ∑ i=1 4 ∑ j>i w i j α i j with α i j = e i j u h .dl
where dl is the unit vector tangent displacement on the edge e i j . Usually, the basis functions are expressed on the reference tetrahedron K and mapped to target tetrahedron K of the mesh.

In order to obtain the discret problem by taking into account the boundary conditions, we define the approximated finite space given as

X h = {v h ∈ V h | v h × n = 0 on Γ D }.
Finally, the discrete problem of the continuous problem ( 20) can be read by:

Find E m h ∈ X h such that a h (E m h , E h ) = l h (E h ), ∀E h ∈ X h (30) 
where

a h (E m h , E h ) = Ω ([µ H h ] -1 curl E m h • curl E h -ω 2 ε H h E m h • E h ) dx, (31) 
l h (E h ) = ∂ Ω N [µ H h ] -1 J • E h ds (32) 
The problem (30) has a unique solution, thanks to the use of the conformal approximation and its continuous problem also has a unique solution. A direct proof can be established using the Strang lemma given in section §4.3.

3.4

Step IV : Update of the limit electric field E l We denote by E l h and E c h the approximations of E l and E c in the finite discret space. The expressions of E l h and E c h are given as function of w β h and E m h , respectively, the approximation of w β and E m .

E c h (x, y) = 3 ∑ k=1 ∇ y w ε k,h (y)E m k,h (x) E l h (x) = E m h (x) + E c h (x, y)
In this section, we presented the finite element approximation of the different electromagnetic quantities. In the next section we analyze the a priori error estimate of these quantities.

A priori error estimate

In this section, we investigate the a priori error estimate of the previously defined algorithm, computed using conformal finite element method. The strategy used here is to seek for an optimal error estimate at each level (or step) of the algorithm. As mentioned before; four steps are to be considered.

Step I: A priori error estimation on w

β , β = ε, µ
For the sake of simplicity in notation, we are going to write w β instead of w β k which represents the k-th column exact solution. This following result shows that the optimal error estimate is achieved when we use Lagrange finite element method to compute w β . Proposition 4.1. Let w β be the solution of problem [START_REF] Alici | Radiation properties of a split ring resonator and monopole composite[END_REF] and w β h the solution of problem [START_REF] Ouchetto | Modeling of 3-D periodic multiphase composites by homogenization[END_REF]. Under the assumption of β (y), there exists a constant C not depending on w β such that

w β -w β h 1,Y ≤ C inf w∈U h w β -w 1,Y . (33) 
Proof. This result is a consequence of Cea's lemma [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF].

4.2

Step II: A priori error estimation on ε H and µ H Let us recall that ε H and µ H are just particular average of ε and µ, with weight depending linearly on first derivatives of w ε and w µ . Consequently, the error made in evaluating either ε H or µ H depends only in the used quadrature and the error made on evaluating w β (β = ε, µ). Here we suppose that the used quadrature are rich enough to neglect the error due to this quadrature, more specially in our case where ε and µ are constant per element. Now, we give a standard result which will be applied in estimating either ε H or µ H . Due to the Cauchy-Schwartz inequality, one can demonstrate the following lemma.

Lemma 4.2. Let Y be an open bounded subset of R 3 , σ ∈ L ∞ (Y ) and ψ 1 , ψ 2 ∈ H 1 (Y ). Assume χ 1 and χ 2 be defined by

χ 1 = Y σ (y)∇ψ 1 (y) dy, χ 2 = Y σ (y)∇ψ 2 (y) dy (34) 
then

|χ 1 -χ 2 | ≤ |Y | σ ∞,Y ψ 1 -ψ 2 1,Y . ( 35 
)
where |Y | denotes the Lebesgue measure of the bounded open subset Y .

The application of this lemma allows to control the error between (ε H , µ H ) and (ε H h , µ H h ) as presented in the following proposition.

Proposition 4.3. Let ε H

h and µ H h be an approximated value of ε H and µ H , respectively, obtained by replacing w ε (resp. w µ ) in (1) (resp. ( 2)) by their approximations given by [START_REF] Ouchetto | Modeling of 3-D periodic multiphase composites by homogenization[END_REF]. Then there exists a constant C depending only on Y , ε, and µ such that

|ε H -ε H h | ≤ C w ε -w ε h 1,Y , (36) |µ 
H -µ H h | ≤ C w µ -w µ h 1,Y . (37) 
Combining this result with the previous one (Proposition 4.1), we can obtain the error made when evaluating ε H and µ H . This error will still be optimal with respect to the mesh size.

Step III: A priori error estimation on the macroscopic field E m

The problem satisfied by E m , has been studied by many books see a review for instance in [START_REF] Monk | Finite element methods for Maxwell's equations[END_REF], but here the situation is different since the parameters in equation ( 20) are only approximated ones. Therefore, this induces a particular error in the approximation of E m . The way to account this error is to use the Strang lemma. As one can imagine, due to possible semi-definite property of the bilinear form, it will not be easy to show that our problem satisfy this property. But thanks to recent result of Bramble [START_REF] Bramble | Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems[END_REF] we will circumvent this as shown in Lemma 4.5. Proposition 4.4 (Strang). Let X h be a Hilbert space and a h (•, •) be a bilinear form defined on X h satisfying

∃α > 0 sup v h ∈X h ,v h =0 a h (w h ,v h ) v h X h ≥ α w h X h ∀v h ∈ X h ; (38) ∃C > 0 a h (u h , v h ) ≤ C u h X h v h X h ∀u h , v h ∈ X h . ( 39 
)
Let u and u h be the solution of

a(u, v) = l(v) ∀v ∈ X, (40) a h (u h , v h ) = l h (v) ∀v h ∈ X h . ( 41 
)
Then there exists a constant C not depending on u and h such that

u -u h X h ≤ C inf v h ∈X h u -v h X h + sup v h ∈X h ,v h =0 (a -a h )(u, v h ) v h X h (42) + sup v h ∈X h ,v h =0 (l -l h )(v h ) v h X h .
Proof. The proof of the above proposition is given in [START_REF] Ern | Theory and practice of finite elements[END_REF].

In order to use this result in our problem let us first state the following lemma which shows that the bilinear form a h (•, •) given in equation ( 31) satisfies the above mentioned properties.

Lemma 4.5. Let a h (•, •) be defined as in [START_REF] Ouchetto | Effective constitutive parameters of periodic composites[END_REF]. Then

∃α > 0 sup v h ∈V h ,v h =0 a h (w h ,v h ) v h V h ≥ α w h V h ∀v h ∈ V h ; (43) ∃C > 0 a h (u h , v h ) ≤ C u h V h v h V h ∀u h , v h ∈ V h . ( 44 
)
Proof. The continuity of a h (•, •) is a straightforward computation.

To verify the inf-sup condition, we denote by µ the parameter µ H h in the first term of the bilinear form a h (•, •) and we consider the following set

X N (Ω) = H 0 (curl; Ω) ∩ H 0 (div; µ, Ω) (45) 
where H 0 (curl; Ω) denotes the functions f in H(curl; Ω)

satisfying n × f = 0 on ∂ Ω and H 0 (div; µ, Ω) = {U ∈ [L 2 (Ω)] 3 : ∇ • (µU) = 0}. It was shown in [33] that for v ∈ X N (Ω), v H(curl;Ω) ≤ C sup φ ∈X N (Ω) |a h (v, φ )| φ H(curl;Ω) (46) 
Let w be in H 0 (curl; Ω) and set w = v + ∇ψ where ψ ∈ H 1 0 (Ω) solves

(µ∇ψ, ∇θ ) = (µw, ∇θ ) for all θ ∈ H 1 0 (Ω), so that v is in X N (Ω). Thus, v H(curl;Ω) ≤ C sup φ ∈X N (Ω) |a h (w, φ )| φ H(curl;Ω) +C ∇ψ L 2 (Ω) (47) ≤ C sup Θ∈H 0 (curl;Ω) a h (w, Θ) Θ H(curl;Ω) +C ∇ψ L 2 (Ω) . Now ∇ψ 2 L 2 (Ω) ≤ C|a h (∇ψ, ∇ψ)| = C|a h (w, ∇ψ)|, then it follows easily that ∇ψ H(curl;Ω) = ∇ψ L 2 (Ω) ≤ C sup Θ∈H 0 (curl;Ω) |a h (w, Θ)| Θ H(curl;Ω) . ( 48 
)
The inf-sup condition (43) then follows from the triangle inequality, (47) and (48).

This lemma plays an important role in evaluating the error of the field E m . In fact, the weak problem satisfied by E m , includes some constitutive parameters on which an error has been made when achieving the previous step. Here by using this lemma, we mimic the approach used in case of variational "crime" or approximated quadrature formula, in order to account the approximated value of constitutive parameters. Thus, we have the following result. Proposition 4.6. Let E m be the solution of ( 20) and E m h the solution of (30), under the above properties (43-44) on the bilinear forms a(•, •) and a h (•, •), there exists a constant C not depending on E m such that

E m -E m h V ≤ C inf E h ∈V h E m -E h V + max(|µ H -µ H h |, |ε H -ε H h |) E m V ( 49 
)
Proof. By combining the Lemma 4.5 and Proposition 4.4, we have the following inequality

E m -E m h V ≤ C   inf E h ∈V h E m -E h V + sup E h ∈V h ,E h =0 (a -a h )(E m , E h ) E h V + sup E h ∈V h ,E h =0 (l -l h )(E h ) E h V   (50) 
To obtain the inequality (49), it remains to estimate the second and third terms of (50).

(a -a h )(E m , E h ) = Ω ([µ H ] -1 -[µ H h ] -1 ) curl E m • curl E h -ω 2 (ε H -ε H h ) E m • E h dx.
The use of the Cauchy-Schwarz inequality and the lower boundedness of µ H (because

µ is bounded) allow to obtain |(a -a h )(E m , E h )| ≤ C max(|µ H -µ H h |, |ε H -ε H h |) E m V E h V . We have also (l -l h )(E h ) = ∂ Ω N ([µ H ] -1 -[µ H h ] -1 ) curl E m × n • E h ds.
The direct result of Cauchy-Schwarz inequality gives

|(l -l h )(E h )| ≤ C|[µ H ] -1 -[µ H h ] -1 | curl E m × n H -1/2 E h H 1/2 .
Using the theorem of the trace operator, the last inequality becomes as follows

|(l -l h )(E h )| ≤ C|[µ H ] -1 -[µ H h ] -1 | E m V E h V . Then |(l -l h )(E h )| ≤ C|µ H -µ H h | E m V E h V .
according to the lower-boundedness of µ H . Finally, by combining the above inequalities, the result follows.

4.4

Step IV: A priori error estimation on the limit field E l We recall that the limit field E l (resp. E l h ) is defined as summation of macroscopic E m (resp. E m h ) and corrector field E c (resp. E c h ). Hence,

E l (x, y) = E m (x) + E c (x, y) and E l h (x, y) = E m h (x) + E c h (x, y) (51) 
It follows that

E l -E l h V ≤ E m -E m h V + 3 ∑ k=1 ∇ y (w ε k -w ε k,h ) 0,Y E m k V + ∇ y w ε k,h 0,Y E m k -E m k,h V . (52) 
Applying the Cauchy-Schwarz inequalities yields

E l -E l h V ≤ E m -E m h V + E m 2 V + w ε h 2 1,Y 1 2 E m -E m h V + E m 2 V + w ε 2 1,Y 1 2 ∇ y (w ε -w ε h ) 0,Y (53) 
where

w ε = (w ε 1 , w ε 2 , w ε 3 ) and w ε h = (w ε 1,h , w ε 2,h , w ε 3,h ). By writing ∇ y w ε k,h 0,Y ≤ ∇ y w ε k 0,Y + ∇ y (w ε k,h -w ε k ) 0,
Y , the using of the error estimate of step I, provided the mesh parameter (h) is bounded, we have the following bound

∇ y w ε k,h 0,Y ≤ C ∇ y w ε k 0,Y . Then equation (53) becomes E l -E l h V ≤ 1 + E m 2 V + w ε 2 1,Y 1 2 E m -E m h V + E m 2 V + w ε 2 1,Y 1 2 w ε -w ε h 1,Y
This shows the following result Proposition 4.7. Let E l be the limit electric field and E l h the finite element approximated one. Then the error made is given by

E l -E l h V ≤ 1 + E m 2 V + w ε 2 1,Y 1 2 E m -E m h V (54) 
+ E m 2 V + w ε 2 1,Y 1 2 w ε -w ε h 1,Y
Let us put all the result of different previous steps devoted to estimate error together. The principal result is presented in the next theorem Theorem 4.8. The error made in approximating the limit electric field by conformal finite element method is given by

E l -E l h V ≤ C 1 + E m 2 V + w ε 2 1,Y 1 2 inf E h ∈V h E m -E h V + C 1 + E m 2 V + w ε 2 1,Y 1 2 E m V inf w∈U h w µ -w 1,Y + inf w∈U h w ε -w 1,Y + C E m 2 V + w ε 2 1,Y 1 2 inf w∈U h w µ -w 1,Y ( 55 
)
where C is a constant not depending neither on E m nor w µ and w ε .

Remark It follows from Theorem 4.8 that the error made, when using conformal finite element approximation, is optimal with respect to the approximability of the discrete spaces. This result was obtained in a more general setting, assuming only conformal approximation. Let us now recall some approximability properties of spaces U h and V h . This result will give the error made in case of uniform mesh (i.e. relates the error on the mesh parameter). This will end the proof of the a priori error estimate. The approximation property of V h is given by Lemma 4.9 ([34]). Lemma 4.9. Let τ h be a regular mesh on Ω. Then if u ∈ (H s (Ω)) 3 and curl u ∈ (H s (Ω)) 3 for some 1/2 + δ ≤ s ≤ n for δ > 0 then

u -r h u (L 2 (Ω)) 3 + curl (u -r h u) (L 2 (Ω)) 3 ≤ Ch s u (H s (Ω)) 3 + curl u (H s (Ω)) 3 ( 56 
)
where r h : (H s (Ω)) 3 → V h is the global interplant operator.

Let us announce the following standard result [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF].

Lemma 4.10. Given a conforming shape-regular mesh τ h , for u ∈ H s (Ω), and

3 2 < s ≤ m + 1, 0 ≤ m ≤ s,
there exists a constant C, depending only on m and s such that

inf u h ∈V h |u -u h | H m (Ω) ≤ Ch s-m |u| H s (Ω) . (57) 
Now we can put together all the above result to end the a priori estimation.

Theorem 4.11. Let E m ∈ (H s (Ω)) 3 be the exact macroscopic electric field and E c the corrector field. Assuming that the term w β (25) is approximated by nodal Lagrange conformal finite element on a shape-regular mesh of characteristic size h Y , and that the macroscopic electric field is approximated by the first order Nédélec finite element method on a shape regular mesh of characteristic size h Ω . Then, there exists a constant C depending only on E m , w, and s such that

E l -E l h (L 2 (Ω)) 3 + curl(E l -E l h ) (L 2 (Ω)) 3 ≤ C[h γ Ω + h Y ], (58) 
with γ = min(2, s). Furthermore, if the mesh size of the whole domain is a constant factor of the mesh size of the periodic cell (i.e., h Ω = κh Y for some constant κ), then

E l -E l h (L 2 (Ω)) 3 + curl(E l -E l h ) (L 2 (Ω)) 3 ≤ Ch γ (Ω), (59) 
with γ = min(1, s). Proof. It is a combination of the approximation property in the space V h using lemma 4.9 and Lemma 4.10 together with Theorem 4.8.

Numerical results

In this section, we present the numerical results of the error estimate related to HCPs (ε H , µ H ) and the macroscopic electric field E m . The studied material is periodic and the purpose is to examine the influence of mesh size, h, on the numerical results.

HCPs ε H and µ H

We consider a unit cell Y = (0, 1) 3 occupied by the laminated materials which composed by two components. These components have the thickness l 1 and l 2 and characterized by two different permittivities (ε 1 , ε 2 ) and permeabilities (µ 1 , µ 2 ) (Fig. 1).

ε 1 = 10ε 0 , ε 2 = 5ε 0 , µ 1 = 1µ 0 , µ 2 = 10µ 0 and l 1 = l 2 = 0.5cm where ε 0 and µ 0 are, respectively, the permittivity and the permeability of the vacuum. Our choice of the laminated material in this study is dictated by the possibility to express the exact expression of the HCPs. We denote that in the other cases, to find the exact expression of ε H and µ H is not possible, for example, the material composed by the inclusions with complicated shape suspended in the host media.

If the response of a composite material changes with the direction of the excitation by electromagnetic wave, this material is anisotropic. In spite of the permittivity and the permeability of the anisotropic material are constant, the expression of its HCPs are not constant but diagonal matrices of the form

ε H =   ε H x 0 0 0 ε H y 0 0 0 ε H z   µ H =   µ H x 0 0 0 µ H y 0 0 0 µ H z  
In the case of the laminated material (Fig. 1), the expression of HCPs' z-components ε H z and µ H z of ε H and µ H , respectively, is given analytically by the thickness of the component of material l 1 , l 2 and its parameters (ε 1 , ε 2 ) and (µ 1 , µ 2 ).

l 1 + l 2 ε H z = l 1 ε 1 + l 2 ε 2 (60) l 1 + l 2 µ H z = l 1 µ 1 + l 2 µ 2 (61) 
We now investigate the precision of the proposed error estimation by considering the dependence of the relative error (ε H zε H z,h )/ε H z and (µ H zµ H z,h )/µ H z , respectively, for the HCPs (ε H z , µ H z ) on the mesh parameter h.

The approximated parameters ε H h and µ H h are expressed respectively as function of w ε h and w µ h solutions of problem [START_REF] Ouchetto | Modeling of 3-D periodic multiphase composites by homogenization[END_REF]. The terms w ε h and w µ h are computed in the unit cell and the mesh is decomposed by regular tetrahedra elements. The computation is carried out at four values of h = h i (i = 1, ..., 4) with h i = 1/2 i cm. Using the bi-conjugate gradient and incomplete LU (ILU) preconditioning in each computation the solution is obtained. In Fig. 2 and Fig. 3, we present the relative error of ε H z,h and µ H z,h respectively as function of the mesh parameter In this subsection, we are going to analyze the macroscopic field by making the comparison between the "exact solution" (E m ) and the numerical one (E m h ) computed in different meshes. For this, we consider a bounded domain Ω which characterized by (ε H , µ H ) (Fig. 4). The size of the Ω is a × a × L with a = 2cm and L = 3cm. The incident field, E m i , is applied to surface S 1 = (abcd) and is assumed to satisfy the Maxwell system. On the surface S 2 = (efgh) of the boundary ∂ Ω, the opposite surface of S 1 , we impose the perfect conducting boundary condition. In addition, We need distinguish a given incident field and resulting reflected field by the surface S 2 . The reflected field is denoted by E m r . A typical example might be the plane wave given by

E m i = p i exp(-ik x • d) (62) E m r = p r exp(ik x • d) ( 63 
)
where k is the wavenumber, d ∈ R 3 is a unit vector giving the direction of propagation of the wave, and the vector p j = 0 with ( j ∈ {i, r}) is called the polarization vector . This vector must be orthogonal to the direction of propagation, so (p j • d = 0), ( j ∈ {i, r}). The total field E m T consists of the incident field E m i and the reflected field

E m r E m T = E m i + E m r
The incident wave is applied at the frequency f = 1GHz and its vector propagation is polarized along the z-axis (d = (0, 0, 1)). The vector of polarization p j is along the y-axis and the magnetic field (H m T = α curl E m T ) is according the x-axis. We impose that on S 1 , the total field E m T equal to (0, 1, 0). The field E m T is perpendicular to the surface S 3 = (bcgf) and S 4 = (adhe) (see Fig. 4). It is also tangential to the surfaces S 5 = (abfe) and S 6 = (dcgh). So, it verifies the following problem Here, g results from a given incidence field. We can easily find that the exact solution of this problem can be expressed as follows

       curl([µ H ] -1 curl E m T ) -ε H ω 2 E m T = 0, in Ω n × E m T = n × g on
E m
T,x (z) = 0, E m T,y (z) = sin(k(Lz))/sin(kL), E m T,z (z) = 0.

The numerical solution E m T,h of the problem (64) is obtained by using the Nédélec finite elements method and the triangulation are the tetrahedra. The field E m T,h is computed at four values of the h = 1/2 i cm (i = 1, ..., 4). In this case, the size mesh of Ω is identical to the size of Y (h Ω = h Y ) for each value of h. The inversion of the obtained linear system is carried out by the bi-conjugate gradient solver combined with the incomplete LU (ILU) preconditioning on each mesh.

In Fig. 5, we present the variation of the relative error E m -E m h L 2 (Ω) / E m L 2 (Ω) of the macroscopic electric field E m h , as function of the parameter h. The obtained numerical results confirm the theoretical linear dependence of macroscopic field on the parameter h.

Conclusion

We have presented the a priori error estimation of the electromagnetic properties obtained using two-scale convergence or unfolding method. These properties are the homogenized constitutive parameters (HCPs), the macroscopic field and the limit electromagnetic field in 3D periodic structure. The HCPs are approximated respectively by using the Lagrange and the first order Nédélec conforming finite element method. We note that the approximation of limit field is obtained from those of HCPs and macroscopic field. The optimality of the convergence is obtained for these electromagnetic quantities and the numerical results are also presented which confirm the theoretical results.

µ k for k = 1 , 2 , 3

 123 are solutions of the local problems for all v inH 1 per (Y ) Y ∇ y v(y) • ε(y) • (∇w ε k (y) + e k ) dy = 0,(3)Y ∇ y v(y) • µ(y) • ∇w µ k (y) + e k dy = 0.

2. 1

 1 Step I: Evaluation of w ε and w µ solutions of local problem Since the HCPs are given as function of local terms w ε k and w µ k for k = 1, 2, 3, we start by solving the local problem in V = H 1 per (Y )/C. The associate problems of w ε and w µ have the same form and they can be written in the same way by w β where β is either ε or µ.
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