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The Peregrine breather of order eleven (P11 breather) solution to the focusing one dimensional nonlinear Schrödinger equation (NLS) is explicitly constructed here. Deformations of the Peregrine breather of order 11 with 20 real parameters solutions to the NLS equation are also given : when all parameters are equal to 0 we recover the famous P11 breather. We obtain new families of quasi-rational solutions to the NLS equation in terms of explicit quotients of polynomials of degree 132 in x and t by a product of an exponential depending on t. We study these solutions by giving patterns of their modulus in the (x; t) plane, in function of the different parameters.

The eleventh Peregrine breather and twenty parameters families of solutions to the NLS equation.

Introduction

The story of the nonlinear Schrödinger equation (NLS) begins with the works of Zakharov and Shabat in 1968. It was solved in 1972 by using the inverse scattering method [START_REF] Zakharov | Stability of periodic waves of finite amplitude on a surface of a deep fluid[END_REF][START_REF] Zakharov | Exact theory of two dimensional self focusing and one dimensinal self modulation of waves in nonlinear media[END_REF]. The first quasi-rational solution to NLS equation was constructed in 1983 by Peregrine [START_REF] Peregrine | Water waves, nonlinear Schrödinger equations and their solutions[END_REF], nowadays called worldwide Peregrine breather. Akhmediev, Eleonski and Kulagin obtained the two-phase almost periodic solution to the NLS equation and obtained the first higher order analogue of the Peregrine breather [START_REF] Akhmediev | Generation of periodic trains of picosecond pulses in an optical fiber : exact solutions[END_REF][START_REF] Akhmediev | Exact first order solutions of the nonlinear Schrödinger equation[END_REF] in 1986; other families of higher order 3 and 4 were constructed in a series of articles by Akhmediev et al. [START_REF] Akhmediev | Rogue waves and rational solutions of nonlinear Schrödinger equation[END_REF][START_REF] Akhmediev | Rogue waves, rational solutions, the patterns of their zeros and integral relations[END_REF], using Darboux transformations.

Since the beginning of the years 2010, there was a renewed interest for this equation and many works were published using various methods. In 2011, the solutions to the NLS equation were presented as a quotient of two wronskians in [START_REF] Gaillard | Families of quasirational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF]. In 2012, Guo, Ling and Liu constructed another representation of the solutions to the NLS equation, as a quotient of two determinants [START_REF] Guo | Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions[END_REF] using the generalized Darboux transformation.

Ohta and Yang presented in [START_REF] Ohta | General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation[END_REF] solutions to the NLS equation by means of determinants, using a new approach based on the Hirota bilinear method.

Then in 2013, it was found in [START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF], solutions expressed in terms of determinants of order 2N depending on 2N -2 real parameters; the complete proof was recently given in [START_REF] Gaillard | Multi-parametric deformations of the Peregrine breather of order N solutions to the NLS equation and multi-rogue waves[END_REF]. A new representation has been found as a ratio of a determinant of order N + 1 by another one of order N by Ling and Zhao in [START_REF] Ling | Trajectory Characters of rogue waves[END_REF]. Very recently in 2014, another approach have been given in [START_REF] Gelash | Superregulier solitonic solutions : a novel scenario for the nonlinear stage of modulation instability[END_REF] using a dressing method where the solutions are expressed as the quotient of a determinant of order N + 1 by another one of order N .

With the method given in the present work, we construct new solutions to the focusing one dimensional nonlinear Schrödinger equation which appear as deformations of the (analogue) Peregrine breather of order 11 with 20 real parameters : when all the parameters are equal to 0, we recover the famous P 11 breather. These solutions are completely expressed as a quotient of two polynomials of degree 132 in x and t by an exponential depending on t. We do not have the space to present them here; we only present plots in the (x; t) plane to analyze the evolution of the solutions in function of the different parameters.

Determinant representation of solutions to NLS equation

We use in the following to construct deformations of the P 11 breather, solutions to the NLS equation, the results obtained in [START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF][START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF].

Theorem 2.1 The function v defined by v(x, t) = det((n jk ) j,k∈[1,2N ] ) det((d jk ) j,k∈[1,2N ] ) e (2it-iϕ)
is a quasi-rational solution to the NLS equation

iv t + v xx + 2|v| 2 v = 0,
where

n j1 = f j,1 (x, t, 0), n jk = ∂ 2k-2 fj,1 ∂ǫ 2k-2 (x, t, 0), n jN +1 = f j,N +1 (x, t, 0), n jN +k = ∂ 2k-2 fj,N+1 ∂ǫ 2k-2
(x, t, 0), d j1 = g j,1 (x, t, 0),

d jk = ∂ 2k-2 gj,1 ∂ǫ 2k-2 (x, t, 0), d jN +1 = g j,N +1 (x, t, 0), d jN +k = ∂ 2k-2 gj,N+1 ∂ǫ 2k-2 (x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N
The functions f and g are defined for 1 ≤ k ≤ N by :

f 4j+1,k = γ 4j-1 k sin A k , f 4j+2,k = γ 4j k cos A k , f 4j+3,k = -γ 4j+1 k sin A k , f 4j+4,k = -γ 4j+2 k cos A k , f 4j+1,N +k = γ 2N -4j-2 k cos A N +k , f 4j+2,N +k = -γ 2N -4j-3 k sin A N +k , f 4j+3,N +k = -γ 2N -4j-4 k cos A N +k , f 4j+4,k = γ 2N -4j-5 k sin A N +k , g 4j+1,k = γ 4j-1 k sin B k , g 4j+2,k = γ 4j k cos B k , g 4j+3,k = -γ 4j+1 k sin B k , g 4j+4,k = -γ 4j+2 k cos B k , g 4j+1,N +k = γ 2N -4j-2 k cos B N +k , g 4j+2,N +k = -γ 2N -4j-3 k sin B N +k , g 4j+3,N +k = -γ 2N -4j-4 k cos B N +k , g 4j+4,N +k = γ 2N -4j-5 k sin B N +k , (1) 
The arguments A ν and B ν of these functions are given for 1 ≤ ν ≤ 2N by

A ν = κ ν x/2 + iδ ν t -ix 3,ν /2 -ie ν /2, B ν = κ ν x/2 + iδ ν t -ix 1,ν /2 -ie ν /2. The terms κ ν , δ ν , γ ν are defined by 1 ≤ ν ≤ 2N κ j = 2 1 -λ 2 j , δ j = κ j λ j , γ j = 1-λj 1+λj , κ N +j = κ j , δ N +j = -δ j , γ N +j = 1/γ j , 1 ≤ j ≤ N, (2) 
where λ j are given for 1 ≤ j ≤ N by :

λ j = 1 -2j 2 ǫ 2 , λ N +j = -λ j . (3) 
The terms x r,ν (r = 3, 1) are defined for 1 ≤ ν ≤ 2N by :

x r,ν = (r -1) ln γν -i γν +i . (4) 
The parameters e ν are given by

e j = i N -1 k=1 ãj ǫ 2k+1 j 2k+1 - N -1 k=1 bj ǫ 2k+1 j 2k+1 , e N +j = i N -1 k=1 ãj ǫ 2k+1 j 2k+1 + N -1 k=1 bj ǫ 2k+1 j 2k+1 , 1 ≤ j ≤ N, (5) 
3 Quasi-rational solutions of order 11 with twenty parameters

We construct here deformations of the Peregrine breather P 11 of order 11 depending on 20 parameters. This construction is based on Theorem 2.1. This theorem in various formulations was completely shown in the articles published previously [START_REF] Gaillard | Families of quasirational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF][START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF][START_REF] Gaillard | Multi-parametric deformations of the Peregrine breather of order N solutions to the NLS equation and multi-rogue waves[END_REF].

To obtain the quasi rational solutions of equation NLS one uses the functions f and g defined previously by [START_REF] Zakharov | Stability of periodic waves of finite amplitude on a surface of a deep fluid[END_REF]. One carries out limited developments of these functions in ǫ and their derivatives with respect to ǫ, to order 2N if one wants the solutions with the order N . The calculation of the two determinants given in theorem 2.1 then gives the polynomials searched in the expression of the solutions.

We do not give the analytic expression of the solution to NLS equation of order 11 with twenty parameters because of the length of the expression. The computations were done using the computer algebra systems Maple and TRIP [START_REF] Gastineau | TRIP 1.3.8 : TRIP Reference manual[END_REF]. For simplicity, we denote

d 3 := det((n jk) j,k∈[1,2N ] ), d 1 := det((d jk) j,k∈[1,2N ] ).
The number of terms of the polynomials of the numerator d3 and denominator d1 of the solutions are shown in the table below (Table 1) when other a i and b i are set to 0. The computation of d 3 (a 1 , b 1 , x, t) and d 1 (a We construct figures to show deformations of the eleventh Peregrine breather. We get different types of symmetries in the plots in the (x, t) plane.

We give some examples of this fact in the following discussion. The present study follows works on order N = 3 to N = 10 given in [START_REF] Gaillard | Deformations of third order Peregrine breather solutions of the NLS equation with four parameters[END_REF][START_REF] Gaillard | Six-parameters deformations of fourth order Peregrine breather solutions of the NLS equation[END_REF][START_REF] Gaillard | The fifth order Peregrine breather and its eight-parameters deformations solutions of the NLS equation[END_REF][START_REF] Gaillard | Ten parameters deformations of the sixth order Peregrine breather solutions of the NLS equation[END_REF][START_REF] Gaillard | Higher order Peregrine breathers, their deformations and multi-rogue waves[END_REF][START_REF] Gaillard | Other 2N-2 parameters solutions to the NLS equation and 2N+1 highest amplitude of the modulus of the N-th order AP breather[END_REF][START_REF] Gaillard | The Peregrine breather of order nine and its deformations with sixteen parameters solutions of the NLS equation[END_REF][START_REF] Gaillard | Eighteen parameter deformations of the Peregrine breather of order ten solutions of the NLS equation[END_REF].

Peregrine breather of order 11

If we choose ãi = bi = 0 for 1 ≤ i ≤ 10, we obtain the classical eleventh Peregrine breather Figure 1: Solution of NLS, N=11, all parameters equal to 0, Peregrine breather P 11 .

Variation of parameters

With other choices of parameters, we obtain all types of configurations : triangles and multiple concentric rings configurations with a maximum of 66 peaks. 

Conclusion

We have constructed explicitly solutions to the NLS equation of order 11 with 20 real parameters. The explicit representation in terms of polynomials of degree 132 in x and t is obtained. His expression is too large to be published in this text. It is the first time that the Peregrine breather of order eleven with its deformations with twenty parameters is presented to our knowledge. It confirms the property about the shape of the breather in the (x, t) coordinates, the maximum of amplitude equal to 2N + 1 and the degree of polynomials in x and t here equal to N (N + 1). We obtained different patterns in the (x; t) plane by different choices of these parameters. So we obtain a classification of the rogue waves at order 11.

It is fundamental to note the similar role played by a i and b i for the same given index i : one obtains exactly the same structures of the modulus of the solutions to NLS equation in the (x; t) plan.

In the cases a 1 = 0 or b 1 = 0 we obtain triangles with a maximum of 66 peaks; for a 2 = 0 or b 2 = 0 , we have 9 rings with respectively 5, 10, 10, 5, 5, 10, 5, 10, 5 peaks with in the center one peak. For a 3 = 0 or b 3 = 0, we obtain 7 rings with respectively 7, 14, 7, 14, 7, 7, 7 peaks with in the center the Peregrine P 2 . For a 4 = 0 or b 4 = 0, we have 7 rings with 9 peaks on each of them with in the center the Peregrine P 2 .

For a 5 = 0 or b 5 = 0 , we have 6 rings of 11 peaks on each of them without a central peak. For a 6 = 0 or b 6 = 0 , we have 5 rings with 13 peaks on each of them and in the center one peak. For a 7 = 0 or b 7 = 0 , we have 4 rings with 15 peaks on each of them and in the center the Peregrine breather of order 3. For a 8 = 0 or b 8 = 0, we have 3 rings with 17 peaks on each of them and in the center the Peregrine breather of order 5. For a 9 = 0 or b 9 = 0, we have 2 rings with 19 peaks and in the center the Peregrine breather of order 7. At least, for a 10 = 0 or b 10 = 0, we have only one ring with 21 peaks and in the center the Peregrine breather of order 9.

The study of the solutions to the NLS equation has been done until order N = 6 by Akhmediev et al. in [START_REF] Kedziora | Classifying the hierarchy of the nonlinear Schrödinger equation rogue waves solutions[END_REF] and extrapolated until order N = 10.

From this present study of order 11, it becomes clear that we can conjecture the structure of solutions to NLS equation.

Precisely, one can partly conjecture the structure of the rogue waves solutions to the NLS equation at the order N . Important applications for example in the fields of nonlinear optics and hydrodynamics are made recently; we can cite in particular the works of Akhmediev et al [START_REF] Chabchoub | Super rogue waves : observation of a higher-order breather in water waves[END_REF] or Kibler et al. [START_REF] Kibler | The Peregrine soliton in nonlinear fibre optics[END_REF].

Another interesting study would be to determine which initial conditions can give these types of rogue waves and to discuss the physical excitations which lead to such situations. It would be important to answer this kind of question in the future.

It would be relevant to continue this study to understand these solutions, to try to classify them in the general case of order N (N > 11) and to prove the preceding conjectures.

Figure 2 :

 2 Figure 2: Solution of NLS, N=11, ã1 = 10 3 : triangle with 66 peaks; in bottom, sight of top.

Figure 3 :

 3 Figure 3: Solution of NLS, N=11, b1 = 10 3 : triangle with 66 peaks; in bottom, sight of top.

Figure 4 :

 4 Figure 4: Solution of NLS, N=11, ã2 = 10 5 : 9 rings with 5; 10; 10; 5; 5; 10; 5 : 10; 5 peaks, with in the center one peak; in bottom, sight of top.

Figure 5 :

 5 Figure 5: Solution of NLS, N=11, b2 = 10 5 : 9 rings with 5; 10; 10; 5; 5; 10; 5 : 10; 5 peaks, with in the center one peak; in bottom, sight of top.

Figure 6 :

 6 Figure 6: Solution of NLS, N=11, ã3 = 10 7 : 7 rings with 7; 14; 7; 14; 7; 7; 7 peaks, with in the center P 2 ; in bottom, sight of top.

Figure 7 :

 7 Figure 7: Solution of NLS, N=11, b3 = 10 7 : 7 rings with 7; 14; 7; 14; 7; 7; 7 peaks, with in the center P 2 ; in bottom, sight of top.

Figure 8 :

 8 Figure 8: Solution of NLS, N=11, ã4 = 10 9 : 6 rings with 9; 9; 18; 9; 9; 9 peaks, with in the center P 2 ; in bottom, sight of top.

Figure 9 :

 9 Figure 9: Solution of NLS, N=11, b4 = 10 9 : 6 rings with 9; 9; 18; 9; 9; 9 peaks, with in the center P 2 ; in bottom, sight of top.

Figure 10 :

 10 Figure 10: Solution of NLS, N=11, ã5 = 10 11 : 6 rings of 11 peaks without a central peak; in bottom, sight of top.

Figure 11 :

 11 Figure 11: Solution of NLS, N=11, b5 = 10 11 : 6 rings of 11 peaks without a central peak; in bottom, sight of top.

Figure 12 :

 12 Figure 12: Solution of NLS, N=11, ã6 = 10 13 : 5 rings with 13 peaks and in the center one peak; in bottom, sight of top.

Figure 13 :

 13 Figure 13: Solution of NLS, N=11, b6 = 10 13 : 5 rings with 13 peaks and in the center one peak; in bottom, sight of top.

Figure 14 :

 14 Figure 14: Solution of NLS, N=11, ã7 = 10 15 : 4 rings with 15 peaks and in the center the Peregrine breather of order 3; in bottom, sight of top.

Figure 15 :

 15 Figure 15: Solution of NLS, N=11, b7 = 10 15 : 4 rings with 15 peaks and in the center the Peregrine breather of order 3; in bottom, sight of top.

Figure 16 :

 16 Figure 16: Solution of NLS, N=11, ã8 = 10 18 : 3 rings with 17 peaks and in the center the Peregrine breather of order 5; in bottom, sight of top.

Figure 17 :

 17 Figure 17: Solution of NLS, N=10, b8 = 10 18 : 3 rings with 17 peaks and in the center the Peregrine breather of order 5; in bottom, sight of top.

Figure 18 :

 18 Figure 18: Solution of NLS, N=10, ã9 = 10 20 : two rings with 19 peaks and in the center the Peregrine breather of order 7; in bottom, sight of top.

Figure 19 :

 19 Figure 19: Solution of NLS, N=10, b9 = 10 20 : two rings with 19 peaks and in the center the Peregrine breather of order 7; in bottom, sight of top.

Figure 20 :

 20 Figure 20: Solution of NLS, N=10, ã10 = 10 20 : one ring with 21 peaks and in the center the Peregrine breather of order 9; in bottom, sight of top.

Figure 21 :

 21 Figure 21: Solution of NLS, N=10, b10 = 10 20 : one ring with 21 peaks and in the center the Peregrine breather of order 9; in bottom, sight of top.

Table 1 :

 1 1 , b 1 , x, t) requires 13 days on a 32-cores computer. Number of terms for the polynomials d 3 and d 1 of the solutions to the NLS equation.

	N=11	Number of terms
	d 3 (a 1 , b 1 , x, t)	803 534
	d 1 (a 1 , b 1 , x, t)	407 850
	d 3 (a 2 , b 2 , x, t)	306 417
	d 1 (a 2 , b 2 , x, t)	155 543
	d 3 (a 3 , b 3 , x, t)	165 321
	d 1 (a 3 , b 3 , x, t)	83 925
	d 3 (a 4 , b 4 , x, t)	105 667
	d 1 (a 4 , b 4 , x, t)	53 637
	d 3 (a 5 , b 5 , x, t)	74 720
	d 1 (a 5 , b 5 , x, t)	37 930
	d 3 (a 6 , b 6 , x, t)	56 409
	d 1 (a 6 , b 6 , x, t)	28 638
	d 3 (a 7 , b 7 , x, t)	44 491
	d 1 (a 7 , b 7 , x, t)	22 590
	d 3 (a 8 , b 8 , x, t)	35 459
	d 1 (a 8 , b 8 , x, t)	17 999
	d 3 (a 9 , b 9 , x, t)	26 282
	d 1 (a 9 , b 9 , x, t)	13 332
	d 3 (a 10 , b 10 , x, t)	15 049
	d 1 (a 10 , b 10 , x, t)	7632