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Provisioning against borrowers default risk

Tuesday 10th March, 2015

Geoffrey Nichil and Pierre Vallois.

Abstract

This paper focuses on the risk of loan default from the point of view of an insurer required to indemnify
a bank for losses resulting from a borrower defaulting. The main objective of this paper is to model the
provision (or claim reserve) against the risk of borrowers defaulting. Unlike traditionally used models, our
model depends on specific information concerning the borrowers (amount borrowed and term of loan). Our
approach will also take into account three kinds of dependence: the dependence between each claim amount
(by taking into account the real estate price), the dependence between the date of default and the claim
amount, and the dependence between the number of defaults and the claim amount. Both theoretical
and applied, our model allows the calculation of the mean, the variance, and the law of the provision.
The amount of data available allows us to estimate all the parameters and to calculate the mean and the
variance plus the quantiles of the provision.

Key words: Borrower default risk; Individual stochastic provisioning; Poisson point process; Geometric
Brownian motion; Time of default; Quantile.

1 Introduction and summary

1) Overview:
In this paper, it is assumed that an insurance company is required to indemnify a bank against losses incurred
by a borrower defaulting on payments on real estate loans. The insurance company under consideration works
in the French market. A borrower is considered to be in a state of “claim” at a date T when he or she can no
longer pay their monthly loan installments.
The main issue for the insurance company is to evaluate, at time t0, potential future claim amounts from
borrowers whose loans are drawn down prior to t0 and who have not defaulted prior to t0. This amount is the
“provision”. It is important to note that in the event of default, the bank can get the money directly from
the borrower or try to repossess the property and sell it. Obviously the provision is unknown at time t0 as it
depends on possible future events. The main aim of this paper is to propose a stochastic model which is not
only simple but also focuses on the key factors which affect it.
The claim amount is the key to our model. For one borrower and for a fixed default date, this amount is
equal to max(S1

T − S2
T ; 0), where S1

T is the outstanding amount owed by the borrower at date T and S2
T is

the property sale amount (see Section 2.2). The amount S1
T is proportionate to the borrowed amount; the

proportionality coefficient depends on the term of the loan and the date of default (i.e. the maturity). The
quantity S2

T is proportionate to the borrowed amount; the proportionality coefficient represents the market
price fluctuation, the borrower’s deposit, and the selling costs of the property. This is modeled by a geometric
Brownian motion. We assume that the process representing the market price fluctuation is the same for each
borrower, so there is a dependence between each claim amount. We will model the law of the couples (Maturity
of the loan, Term of the loan) by a Poisson point process (see Section 2.3), which will allow us to define the
provision as the sum of individual claims (see Definition 2.5). For more details about individual models see
[1], [7], [11], [12], [14], and [15]. In Section 2.4 we also examine the links between our model and those of
Cramer - Lundberg and Mack. Unlike those, ours considers three different dependencies, which is one of the
main points of focus of this paper:

1. The dependence between individual claim amounts (because the market price fluctuation is common for
each borrower),

2. The dependence between claim amounts and default dates,
3. The dependence between the term of loan and the date of default.
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In Section 3, by making additional assumptions, we will calculate the mean (see Theorem 3.2) and the variance
(see Theorem 3.4) of the provision. In addition, our model allows us to go even further than the calculation
of these two parameters and provides an algorithm which permits us to simulate the provision (see Theorem
3.6). The amount of data available on each borrower allows us to give a numerical value to the parameters
of our model (see Section 4.2). When the parameters are estimated, we will obtain a numerical value for the
mean, the variance, the quantile of the provision, and we will also give a sensitive analysis of the provision
mean (see Section 4.3).
All proofs will be given in Section 5. Additional information can be found in Section 6, with an index of
notations at the end of the paper.

2) Existing methods:
Models normally used by insurance companies to calculate such provisions are collective models (Chain Lad-
der, Mack; see [8], [9], and [16]) because they aggregate data and do not allow for the calculation of a single
claim amount. The disadvantage of these models is two-fold: firstly the aggregation of data implies an over-
parameterization and secondly there is no reason to assume that the accident years (or drawdown years in our
case) are independent. There is a second type of model; seldom used by insurance companies which provides
this type of guarantee; these are models derived from the ruin theory, the best known of which is the Cramer
- Lundberg model (see [13]). In this model the provision is a random sum of individual claims concerning a
given borrower. The drawback of such models is that they do not take into account the dependence between
each claim amount, the dependence between a claim amount and the date of the claim, nor the dependence
between the number of claims and the amount of claim.

3) Conclusion:
This paper describes an alternative method for provisioning adapted to the specific insurance contracts consid-
ered. It defines an individual stochastic model which takes into account the borrowers’ characteristics together
with a number of dependencies. Both theoretical and applied, this model gives explicit formula for the mean
and the variance, and we also can simulate the provision. The latter enables us to calculate different risk
indicators including confidence interval and quantile.
However, we have made a couple of assumptions which in everyday circumstances, would not hold true. Firstly,
that the interest rate charged for each borrower is identical and secondly, that any default is immediate and
irreversible.

Acknowledgements
The authors are grateful to the referee for helpful comments and suggestions that led to substantial improve-
ments of the paper, and also to Stuart Armour who assisted with the translation into English.

2 Loss provision modeling

In Section 2.1 we will introduce notations and assumptions. Then, in Section 2.2, we will define a claim
amount. In Section 2.3 we will model the couples (Maturity of the loan, Term of the loan) by a Poisson point
process (see assumption (A6)) and we will define the fluctuation set of these couples (see Definition 2.3). This
allows us to model the provision by totaling the random sum of individual claim amounts reported on random
dates (see Definition 2.5). This is the key concept and will allow us to make a quantitative analysis (mean,
variance, and simulations). In Section 2.4, we will examine the links between our model and those of Cramer -
Lundberg and Mack. Finally in Section 2.5 we will discuss the main assumptions that we made in all previous
sections (assumptions (A5), (A7), and (A8)).

2.1 Notations and assumptions

In this paper we will assume a continuous time. The time t is defined as a fraction of year and t∗ is one month.
We denote:

• B (“B” for “borrower”) the borrower set. The borrower by j: j ∈ B,
• Ij (“I” for “inception”) the drawdown date of the borrower j: Ij ∈ [0, t0], where t0 is the last date under

consideration. Ij is the date on which the funds are released.
• Dj (resp. M j) the positive r.v.1 representing the loan term (resp. loan amount) for borrower j.

1r.v.: random variable ; r.v.’s: random variables.
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The couple (Dj ,M j) is associated to each borrower j. Borrower j draws down his loan in month i if i = bI
j

t∗
c,

where bxc represents the floor of x. In the following we will assume that a loan drawn down in month i is
drawn down at the beginning of this month, that is to say:

(A1) : If borrower j draws down his loan at date Ij which corresponds to month i, we will assume
that: Ij = t∗i.

(2.1)

We assume that the duration of loans is capped by an unknown quantity D̄ > 0 such as:

(A2) :

{
Dj 6 D̄, j ∈ B, (2.2)

t0 < Ij + D̄, j ∈ B. (2.3)

In the rest of the paper we will consider real estate loans with fixed monthly payments and fixed interest rates
for the term of the loan and for every borrower. We will use r to denote the exponential rate for all borrowers.
Finally we will assume that early payments are not possible. Therefore we will assume that:

(A3) :


Monthly repayments are fixed, (2.4)

r is the exponential and deterministic rate, (2.5)

Early partial payments are prohibited. (2.6)

When a borrower defaults (not definitive a priori), the bank has two possibilities: make a claim or wait for
the borrower to pay the missing monthly installment. In the second situation, the number of missing monthly
installments can increase. However, we will assume that the bank, in the event of default, submits the claim
immediately. Note that a default could represent only a portion of the monthly installment but for simplicity
we will assume a default concerns the entire monthly installment. Therefore we will assume that:

(A4) :

{
Default is submitted immediately as a claim, (2.7)

Default concerns the entire monthly installment. (2.8)

The bank can recover the borrower’s debt in the event of default. This amount is called the recoveries amount.
There are two types of recovery:

1. The bank may resell the property financed by the loan. Resale will be automatic if the bank took a
mortgage guarantee but less certain if it didn’t.

2. The bank may also be repaid by the borrower: inheritance, return to credit, etc..

Recoveries from borrowers are not so frequent. A lack of funds is the most common cause of default and
recoveries usually result from the sale of the property. Once again for simplicity, we will assume that borrower
recoveries are always zero and that any property sale is made immediately at the time of default. In reality this
is seldom, if ever, the case. We assume that the property’s value at time T is proportionate to the borrowed
amount, the market price variation, the borrower’s deposit, and the resale costs (including notary fees, legal
procedures fees, etc.). We will assume that market price variation depends only on the time interval between
drawdown date Ij and default date T . We can summarize all the assumptions put forward as follows:

(A5) :


Borrower recoveries are zero,

Property recoveries received at date T are: (2.9)

γM jRT−Ij , j ∈ B, Ij 6 T 6 Ij +Dj ,

where γ ∈ R+ is a coefficient independent of borrowers (see (2.33)), and (Rt)t>0 represents the market price
fluctuation with R0 = 1. For numerical applications we will assume that (Rt)t>0 is the geometric Brownian
motion with drift µ and volatility σ so that R0 = 1, that is to say:

Rt = exp
{
σBt + µt

}
, (2.10)

where (Bt)t>0 is a standard Brownian motion. Details about assumption (A5) are given in Section 2.5.

2.2 Claim amount

In this section we will define the claim amount concerning a borrower who has a default at time T . This is
the key notion of our model.
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Definition 2.1. Let us consider borrower j who has defaulted at date T . We denote:

1. S1,j
T the sum, at date T , of unpaid capital until initial maturity, unpaid interest until the date of default,

and additional interest for late payment,
2. S2,j

T the recoveries amount.

The claim amount is denoted by S(T − Ij , Dj ,M j , RT−Ij ) and defined by:

S(T − Ij , Dj ,M j , RT−Ij ) :=
(
S1,j
T−Ij − S

2,j
T−Ij

)
+
, Ij 6 T 6 Ij +Dj . (2.11)

It is clear that (2.11) implies that the claim amount cannot be negative and if the sum of unpaid capital,
unpaid interest, and additional interest is lower than the recoveries then the insurance company will not pay
anything to the bank. The claim amount does not represent the actual amount of loss but only the amount
that the insurance company will repay to the bank in the event of default.

Under assumptions (A1) to (A5), the quantities S1,j
t and S2,j

t can be expressed in terms of individual loan
criteria for borrower j (Dj and M j), γ (see (2.33)), and the market price fluctuation (Rt)t>0.

Proposition 2.2. Let assumptions (A1) to (A5) hold.

1. We have:

S1,j
t = M jφt(D

j), (2.12)

S2,j
t = γM jRt, (2.13)

where γ and (Rt)t>0 are introduced in assumption (A5) and:

φt(d) :=


[
ert
∗
(1 + t∗p)− t∗p

]erd − er(t−t∗)
erd − 1

, if 0 < t 6 d,

1, if t = 0,
(2.14)

with p ∈ R+ represents coefficient due to late payment interest (see (5.7) for more details).

2. So by combining (2.11), (2.12), and (2.13) we have:

S(t, d,m, u) := m(φt(d)− γu)+. (2.15)

Proof. See Section 5.1.

2.3 Characteristic of claims, a model of provision

Let Ti,j be the r.v. representing the maturity of the loan drawn down during month i by borrower j. We
deduce from notations introduced in Section 2.1:

t∗i 6 Ti,j 6 t∗i+Dj . (2.16)

It is important to distinguish two different situations in the previous inequality:

• Ti,j = t∗i+Dj , if the borrower repays his loan normally until the initial maturity,
• Ti,j < t∗i+Dj , if the borrower defaults before the initial maturity.

The fact that a borrower may or may not default leads to a partition of the “fluctuation set” of the couples
(Maturity of the loan, Term of the loan).

Definition 2.3. We denote Ait0+ (respectively Ait0−) as the “fluctuation set” of the couples (Maturity of the
loan, Term of the loan) concerning loans drawn down during month i and which have defaulted in the period
]t0, t

∗i+ D̄[ (respectively [t∗i, t0]):

Ait0+ :=
{

(d, t) ∈ (R+)2 : t0 < t < t∗i+ d; d 6 D̄
}
, (2.17)

Ait0− :=
{

(d, t) ∈ (R+)2 : t∗i 6 t 6 t0; t < t∗i+ d; d 6 D̄
}
, (2.18)

where D̄ is introduced in assumption (A2). An illustration of these sets is given in Appendix 6.1.
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Remark 2.4.

1. Defaults at the end of a loan are largely unknown and none have been recorded by the bank we are
considering. In addition, any defaults occurring at this time would result in insignificant claims so we
do not take into account claims submitted at date Ti,j = t∗i+Dj.

2. It is clear that relation (2.16) implies that when a claim occurs, there is a dependence between the loan
duration and the date of default.

Now we would like to consider loans drawn down during month i. We assume:

(A6) : The cloud of points
(
Ti,j , D

j
)
j∈B is a Poisson point process (PPP for short, see [2] and [4])

with intensity Λi.

(2.19)

Consequently we assume that the number of loans in a portfolio is random.

If we assume that the drawdown rules do not change from one month to another then a default can only
be explained by a change in the borrower’s personal situation, the month of drawdown does not affect the
default. So we will assume that:

(A7) : The PPP
((
Ti,j , D

j
)
j∈B

)
i>0

are independent, (2.20)

and:

(A8) :

{
The r.v.’s (Ti,j , D

j)j∈B , (M
j)j∈B , and the process (Rt)t>0 are independent, (2.21)

The r.v.’s
(
M j
)
j∈B are independent and identically distributed (i.i.d.). (2.22)

In Section 2.5 we will discuss in details assumptions (A7) and (A8).

Now we will define the provision over ]t0, t
∗i+ D̄[ in a stochastic way as a sum of individual claims amounts.

Definition 2.5. Provision over ]t0, t
∗i+ D̄[.

1. The claims amount for all loans drawn down during month i, t∗i 6 t0, and submitted as claims in
]t0, t

∗i + D̄[ is called “provision for month i”, denoted by P it0 (“P” for “provision”) and defined as the
sum of each individual claim amount:

P it0 :=
∑
j>1

1{(Ti,j ,Dj)∈Ait0+}S(Ti,j − t∗i,Dj ,M j , RTi,j−t∗i), (2.23)

where Ait0+ is defined by (2.17) and S(Ti,j − t∗i,Dj ,M j , RTi,j−t∗i) is given by (2.15) and represents the
claim amount at time Ti,j concerning borrower j who drew down his loan during month i.

2. The claims amount for all loan drawn down prior to t0 and occurring as claims in ]t0, t0 + D̄[ is called
the “total provision”, denoted by Pt0 , and defined as the sum of monthly provisions:

Pt0 :=

b t0
t∗ c∑
i=0

P it0 . (2.24)

Remark 2.6.

1. Determining the total provision as the sum of monthly provisions is a constraint imposed by the insurance
company under consideration.

2. We have not included discounting in the modeling of the claim amount because we use the date of default
instead.

2.4 Relation with other models

In Cramer - Lundberg’s model (see [13]) the provision over ]t0, t1], 0 6 t0 < t1 < +∞, is modeled by:∑
j>1

Y j1{t0<Tj6t1},

where Tj is the default time of j-th claim and (Y j)j>1 is a sequence of i.i.d. r.v.’s representing the claim
amounts. The r.v.’s (Y j)j>1 are assumed to be independent of (Tj)j>1. So this model does not allow us
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to consider the dependence between the date of default and the claim amount, the dependence between the
borrower’s situation and the claim amount or the dependence between all the claim amounts.

In the Mack model (see [9]), Ci,k+1 is the claim amount, for the accident year i (corresponding to the drawdown
date in our case) and the development year k, submitted as claims in ]i; i + k + 1]. Therefore, according to
Definition 2.5 this quantity can be expressed as:

Ci,k+1 = Ci,k +
∑
j>1

1{(Ti,j ,Dj)∈Ai(i+k+1)+
\Ai

(i+k)+
}S(Ti,j − t∗i,Dj ,M j , RTi,j−t∗i). (2.25)

Let Fi,k be the information available at date i+ k, i.e.:

Fi,k := σ
[(
Ti,j , Ti,j 6 it∗ + k

)
j∈B ;

(
Rt
)
t6it∗+k

; (Dj)j∈B:Ij=t∗i; (M j)j∈B:Ij=t∗i

]
. (2.26)

Assume that (2.10) holds, since (Ti,j , D
j)j∈B is a PPP and conditionally to Fi,k:(

Rs+it?+k; 0 6 s 6 1
)

(d)
=
(
Rit?+kR

′
s; 0 6 s 6 1

)
, (2.27)

where R′ is an independent copy of R, it follows that:

E
[
Ci,k+1|Fi,k

]
= Ci,k + βi,k(Rk), (2.28)

where:
βi,k(x) := E

[∑
j>1

1{(Ti,j ,Dj)∈Ai(i+k+1)+
\Ai

(i+k)+
}M

jf(Ti,j − t?i,Dj , xRTi,j−t?i−k)
]
. (2.29)

So our model is drastically different from the Mack model, where the main assumption is:

E
[
Ci,k+1|Fi,k

]
= fkCi,k, (2.30)

where fk is a deterministic coefficient independent of i. Our model, from a collective view point, is an additive
model where β is a r.v. which takes into account the month of drawdown i and the development date k.

2.5 Discussion concerning assumptions (A5), (A7), and (A8)

For more details concerning assumptions (A1) to (A4) and (A6) see [10].

(A5) Recoveries from borrowers are not so frequent. A lack of funds is the most common cause of default and
recoveries usually result from the sale of the property. This is why we assume that borrower recoveries are nil.
On the drawdown date, we assume that the property’s value is equal to the amount borrowed plus the bor-
rower’s deposit. We can reasonably assume that the borrower’s deposit is proportionate to the borrowed
amount since this is usually a condition of the loan. We assume that the proportionality coefficient is fixed
and that it is the same for all borrowers. Then we denote:

a ∈ R+ the coefficient representing the borrower’s deposit. (2.31)

We can further assume that the property’s value at time t depends on market price; improvements or damage
to the house are not taken into account. We assume in particular that the property’s value at time t is equal to
the property’s value at the drawdown date multiplied by a r.v. RT,Ij (“R” for “Real estate”). This represents
the market price variation between times Ij and T . This variable is assumed to be identical for all borrowers.
Again to simplify, we assume that coefficient RT,Ij depends only on the time interval between drawdown date
Ij and default date T , that is to say:

RT,Ij = RT−Ij ,

with R0 = 1. Property sale in the event of default incurs costs, including notary fees, legal procedure fees,
etc.. These costs are assumed to be proportional to the property’s value at default time. The proportionality
coefficient is assumed to be identical for all borrowers. Then we denote:

c ∈ [0; 1] the coefficient representing selling costs of property. (2.32)

So the amount realized from the potential sale of the property in the event of default at date T is:

(1 + a)M jRT−Ij − c(1 + a)M jRT−Ij = γM jRT−Ij ,
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where:
γ := (1− c)(1 + a). (2.33)

(A7) A priori one borrower has no link between another borrower. In addition, the drawdown rules do not
change from one month to another then a default can only be explained by a change in the borrower’s personal
situation, the month of drawdown has no affect on the default.

(A8) Assumption (2.22) is confirmed because loans are relatively homogeneous. The insurance company
under consideration has drawn up a profile covering loans and borrowers and if the loan and the borrower do
not match this profile then cover is cancelled. This profile concentrates the amount borrowed by applying an
upper and lower lending limit (see Section 4.2 for more informations about descriptive statistics). This leads
us to assume they will have the same law. Finally the independence assumption between each loan amount is
justified because a link between two separate borrowers is extremely rare.
Now we discuss assumption (2.21) in detail. (Rt)t>0 represents the fluctuation of the property value due to a
price fluctuation in the real estate market. In some cases it is possible that real estate prices will fluctuate in
relation to the relative value of the property in question. For example, there will be a bigger fluctuation for
cheaper houses than there will be for expensive houses and this is significant where the lending book covers a
wide range of property values. However, for the insurance company under consideration, as we have mentioned
above, the loan amounts are relatively concentrated and this is why we assume that:

(M j)j∈B and (Rt)t>0 are independent. (2.34)

In addition the loan amount does not impact on a submission of a claim: a claim is due to a change in the
personal situation of the borrower not in the characteristics of the loan, this is why we assume:

(Ti,j , D
j)j∈B and (M j)j∈B are independent. (2.35)

See also Appendix 6.4 for an illustration of the scatter plot of the loans duration and loans amount.

Economic trigger events (e.g. unemployment, inflation, etc.) have an impact on real estate price and de-
fault rate. In this paper we only consider a retail loans portfolio for financing principal residential properties
(we have excluded rental loans and corporate loans) and in this context, real estate price fluctuations have, in
the European market, no impact on the default rate. This is the framework of our study.
In addition for the insurance company considered, the number of claims to date is around 10.000 and can be
broken down as follows:

1. 84.70% - changes in the life of the borrower (divorce, death of one borrower, etc.),

2. 8.65% - fraud,

3. 6.84% - other reasons.

With these remarks, we can reasonably assume that:

(Ti,j , D
j)j∈B and (Rt)t>0 are independent. (2.36)

Even so, this assumption could not be applied in the US market (see strategic default, ).

3 Results

We will start by calculating the mean and the variance of the provision, then we will deal with the cumulative
distribution function (c.d.f.) of this r.v..

3.1 Mean and variance of the provision

Notation 3.1. It is convenient to adopt the following notation:

F1(t, x, µ, σ) := xΦ
[ ln

(
x
)
− µt

σ
√
t

]
− e(µ+σ2

2 )tΦ
[ ln

(
x
)
− (µ+ σ2)t

σ
√
t

]
, (3.1)

where K ∈ R+ and Φ is the c.d.f. of the standard normal distribution.
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Theorem 3.2. Let assumptions (A1) to (A8) hold. We also assume that (Rt)t>0 is the geometric Brownian
motion with drift µ and volatility σ defined by (2.10). So we have:

E
[
P it0

]
=γE

[
M1
] ∫

Ait0+

F1

(
t− t∗i, φt−t

∗i(d)

γ
, µ, σ

)
dΛi(t, d), (3.2)

E
[
Pt0

]
=γE

[
M1
] b t0t∗ c∑
i=0

∫
Ait0+

F1

(
t− t∗i, φt−t

∗i(d)

γ
, µ, σ

)
dΛi(t, d), (3.3)

where functions F1 and φ.(.) are defined by (3.1) and (2.14) respectively.

The proof is given in Section 5.2. Formulas (3.2) and (3.3) are not only theoretical because when the measure
Λi is the Lebesgue measure and when the parameters are given, it is possible to calculate a numerical value of
the provision mean, see Section 4.3.

Now we will focus on the calculation of the provision variance.

Notation 3.3. Let (α, β) ∈ R2. We denote:

d̃(x, y, z, t) :=
ln
(
x
)
− yt

z
√
t

, (3.4)

F2(t, d) := 2
φt(d)

γ
F1

(
t,
φt(d)

γ
, µ, σ

)
− F1

(
t,

[φt(d)]2

γ2
, 2µ, 2σ

)
, (3.5)

F3(t, d, t′, d′, x) :=
eµt+σ

√
tx− x22

√
2π

(φt(d)

γ
− eµt+σ

√
tx
)
F1

(
t′ − t, φt′(d

′)

γeµt+σ
√
tx
, µ, σ

)
, (3.6)

where functions F1 and φ.(.) are defined by (3.1) and (2.14) respectively.

Theorem 3.4. Let assumptions (A1) to (A8) hold. We also assume that (Rt)t>0 is the geometric Brownian
motion with drift µ and volatility σ defined by (2.10). The provision variance of month i is:

V
[
P it0

]
= γ2E

[
(M1)2

] ∫
Ait0+

F2

(
t− t∗i, d

)
dΛi(t, d) + γ2

[
E(M1)

]2
×

[∫
(Ait0+)2

{∫ d̃(
φt−t∗i(d)

γ ,µ,σ,t−t∗i)

−∞
F3

(
t− t∗i, d, t′ − t∗i, d′, x

)
dx
}

dΛi(t, d)dΛi(t
′, d′)−

{∫
Ait0+

F1

(
t− t∗i, φt−t

∗i(d)

γ
, µ, σ

)
dΛi(t, d)

}2
]
. (3.7)

The proof of this result is given in Section 5.3. The variance of the total provision can also be determined, see
Appendix 6.2.

Formula (3.7) is not easy to prove. This is due to the fact that the claim amounts are not independent due to
the process (Rt)t>0. Therefore, we have to take into account the correlation between two claim amounts.

Remark 3.5. By not assuming that (Rt)t>0 is the geometric Brownian motion defined by (2.10) we get:

V
[
P it0

]
=V

[
Ni(A

i
t0+)

]
E
[(
S(Ti,1 − t∗i,D1,M1, RTi,1−t∗i)

)2]
+
[
E
[
Ni(A

i
t0+)

]]2{
Ci −

[
E
[
S(Ti,1 − t∗i,D1,M1, RTi,1−t∗i)

]]2}
, (3.8)

where the couple (Ti,1, D
1) represents a generic point of the PPP (Ti,j , D

j)j∈B and:

Ni(A) :=
∑
j>1

1{(
Ti,j ,Dj

)
∈A
}, A ⊆ Ait0− ∪A

i
t0+, (3.9)

Ci :=
[
E
[
M1
]]2
E
[
h
(
Ti,1 − t∗i,D1, Ti,2 − t∗i,D2

)]
, (3.10)

h(t, d, t′, d′) := E
[(
φt(d)− γRt

)
+

(
φt′(d

′)− γRt′
)

+

]
, (3.11)
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where the couple (Ti,2, D
2) represents another generic point of the PPP (Ti,j , D

j)j∈B and independent of
(Ti,1, D

1). Result (3.8) (proved in Section 5.3) allows us to identify sources of risk. The first term of this
expression represents the variability of the number of claims around the mean of the number of claims. The
second term of (3.8) is, in the classical case of the compound Poisson process (independence of claim amount),
equal to the variance of the claim amount. So, the second term represents variability of the claim amount
around its mean.

3.2 The law of P i
t0

It is useful to order the loans maturities as follows:

Ti,(1) < Ti,(2) < ... < Ti,(n) < ... . (3.12)

We denote the loan duration associated to the date Ti,(j) by D(j).

Theorem 3.6. Let assumptions (A1) to (A8) hold. We also assume that (Rt)t>0 is the geometric Brownian
motion with drift µ and volatility σ defined by (2.10).

1. Recall that:
L
[
Ni(A

i
t0+)

]
= P

[
Λi(A

i
t0+)

]
.

2. The conditional law of P it0 given Ni(A
i
t0+) is:

L
[
P it0
∣∣Ni(Ait0+) = n

]
= L

[
fn

(
(Ti,(j))16j6n, (D

(j))16j6n, (M
j)16j6n, (G

j)16j6n

)]
, (3.13)

where:

fn

(
(ti,(j))16j6n, (d

(j))16j6n, (m
j)16j6n, (g

j)16j6n

)
:=

n∑
j=1

mj
{
φti,(j)−t∗i(d

(j))− γ
j∏

k=1

rk
}

+
, (3.14)

rk = exp
[
σ
√
ti,(k) − ti,(k−1)g

k + µ(ti,(k) − ti,(k−1))
]
,with this agreement: ti,(0) = 0, (3.15)

(Gj)16j6n is a collection of i.i.d. r.v.’s with standard normal distribution and independent of(
(Ti,(j), D

(j))16j6n, (M
j)16j6n

)
. (3.16)

Proof. See Section 5.4.

Clearly the law of the provision is not explicit. However, we formulated the law of the provision as a complicated
function but dependent on a sequence of r.v.’s which can be easily simulated. Therefore using the Monte Carlo
method we can obtain an approximation of the quantile (see Section 4.3 and Appendix 6.3 for more details).

4 Numerical application

The theoretical model that we have presented above has been created for application and this stochastic
modeling takes into account the borrowers’ characteristics. The amount of data available on each borrower
(amount borrowed, term, and default date) allows us to estimate the parameters of our model (see Section
4.2). The theoretical analysis presented in Section 3, with Theorems 3.2, 3.4, and 3.6, allows us to calculate
numerically the mean, the variance, the quantile of the provision, and also to give some sensitivity analysis
(see Section 4.3). To achieve this goal, we need to specified the choice of the measure Λi.

4.1 Choice of the intensity Λi

Partition Ait0− and Ait0+ (see (2.18) and (2.17)), of the fluctuation set of the couples (Maturity of the loan,
Term of the loan), concerns loans which have defaulted.

Definition 4.1. We denote Cit0+ (resp. Cit0−) as the “fluctuation set” of the couples (Maturity of the loan,
Term of the loan) concerning loans drawn down during month i and which have matured in the period ]t0, t

∗i+D̄]
(resp. [t∗i, t0]):

Cit0+ :=
{

(d, t) ∈ (R+)2 : t = t∗i+ d; t > t0; d 6 D̄
}
, (4.1)

Cit0− :=
{

(d, t) ∈ (R+)2 : t = t∗i+ d; t 6 t0; d 6 D̄
}
. (4.2)

An illustration of this set is given in Appendix 6.1.
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Having disposed of this preliminary step, we can now choose the intensity Λi. We will assume that:

Λi := λ1Leb1|Cit0−∪ C
i
t0+

+ λ2Leb2|Ait0−∪ A
i
t0+
, (4.3)

where:

• λ1 and λ2 are two real and strictly positive parameters,
• Leb1|Cit0−∪ Cit0+

(resp. Leb2|Ait0−∪ A
i
t0+

) is the Lebesgue measure on R (resp. R2) restricted on Cit0− ∪
Cit0+ (resp. Ait0− ∪ Ait0+).

Note that parameter λ1 represents loans which have matured without default. This parameter will only help
us to estimate parameter λ2 (and also h) but not to determine the mean (or the variance) of the provision.

4.2 Estimation of parameters

We will start by listing the parameters:

• The mean of borrowed amount: E(M1),
• The monthly rate r defined by (2.5),
• The coefficient γ associated to the borrower’s deposit and the selling costs of property, see (2.33),
• The penalty coefficient p, in relation to late payment, see (5.7),
• Coefficients µ and σ of the geometric Brownian motion defined by (2.10),
• Parameters λ1 and λ2 linked to the intensity Λi of the PPP, see (4.3),
• Parameter D̄ representing the maximal duration, see (2.2).

At date t0, we dispose of three different sources of data: data shared by all borrowers, data linked to claims,
and data exogenous to the insurance company. Note that the first two sources are private because they are
supplied by the insurance company while third is public. For each borrower j having drawn down his loan
during month i so that it∗ 6 t0, we have the term dj , the amount mj and the maturity ti,j of the loan. We
also dispose of the number bi of loans drawn down during month i, the number ni of defaults submitted until
date t0 and the number vi of loans which have matured prior to t0. So the number of loans “in force” at date
t0, that is to say loans which have not defaulted or matured, is given by bi − ni − vi. In the following, the
total number of loans drawn down prior to t0 is denoted by:

b :=

b t0
t∗ c∑
i=0

bi. (4.4)

Finally, we have exogenous data provided by INSEE, by the broker “Empruntis”, and by the French authority
ACPR. INSEE gives an index of house prices in France which is denoted by ut at date t. The broker “Em-
pruntis” and ACPR provide annual statistics about real estate loans, in particular the mean of the borrower’s
deposit and the mean of actuarial loan rate.

So the mean of borrowed amount will be estimated by empirical mean. The rate of each loan will be estimated
with the actuarial rate given by “Empruntis” (actuarial rate estimate to 5%). Coefficient γ (see Section 2.5)
is determined by the statistics from “Empruntis” and “ACPR” (coefficient a, see (2.31), representing the
borrower’s deposit is determined at 20%) and by “expert judgement” (coefficient c, see (2.32), representing
selling costs of property is fixed at 10%). Coefficient p (see (5.7)) will be estimated by “expert judgement” at 2.
Coefficients µ and σ will be estimated with INSEE’s data or by expert judgment in the case of stress scenarios.

We turn now to the estimation of λ1, λ2, and the maximum term D̄. The maximum-likelihood estimators are

denoted by λ̂1, λ̂2, and ˆ̄D.

Proposition 4.2. Let assumptions (A1) to (A8) hold. Then x = λ̂1, y = λ̂2, and z = ˆ̄D are solutions of the
following system:

i0∑
i=0

[
vi
x

+
(bi − ni − vi)

√
2(z − t0 + t∗i)

x
√

2(z − t0 + t∗i) + y(z−t0+t∗i)2

2

]
=
√

2(i0 + 1)z,

(S) :

i0∑
i=0

[
ni
y

+
(bi − ni − vi)(z − t0 + t∗i)2

2x
√

2(z − t0 + t∗i) + y(z − t0 + t∗i)2

]
=

(i0 + 1)z2

2
, (4.5)
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i0∑
i=0

[
ni(

z − 1
2 (t0 − t∗i)

) +
(bi − ni − vi)

(√
2x+ y(z − t0 + t∗i)

)
x
√

2(z − t0 + t∗i) + y(z−t0+t∗i)2

2

]
= (x

√
2 + yz)(i0 + 1),

where:

i0 := b t0
t∗
c ∈ N∗. (4.6)

The proof of Proposition 4.2 is given in Section 5.5. Note that the above system can be resolved numerically
using the software R. Here we summarize the estimation:

Parameter Notation Estimation Source

E(M1) m̄
1

b

b∑
i=1

mj Insurance company

r r̂ ln
(

1 + 5
100

1
12

)
Empruntis

γ γ̂ 1.20× 0.9 Expert judgement and Empruntis
p p̂ 2 Expert judgement

µ µ̂
1

i0

i0∑
i=1

[
ln(ui)− ln(ui−1)

]
INSEE or expert judgement

σ σ̂

√√√√ 1

i0

i0∑
i=1

[
ln(ui)− ln(ui−1)− µ̂

]2
INSEE or expert judgement

λ1, λ2, D̄ λ̂1, λ̂2,
ˆ̄D Maximum likelihood Insurance company

(4.7)

Now we want to estimate numerically all the parameters. To do this we will apply the estimation method
introduce previously on data collected by a French insurance company from January 2000 to December 2013
for one particular bank: 23, 067 contracts and 330 claims will be analyzed. Firstly, we give some descriptive
statistics concerning the contracts involved:

Mean Median Standard deviation Minimum Maximum
Borrowed amount 100,946 98,691 53,096 10,100 249,928

Loan duration 207 204 58 36 328

Illustration 1: Descriptive statistics.

Note that to solve the system (4.5) we used an annual time unit in order to get a sufficient number of claims
by “grouping year”. So this data leads to the following estimates:

Parameter m̄ r̂ γ̂ p̂ µ̂ σ̂ λ̂1 λ̂2
ˆ̄D

Value 100,946 0.05 1.08 2 -0.08 0.05 86.43 0.27 286

Illustration 2: Synthesis estimation parameters.

Note that parameters related to the geometric Brownian motion were fixed by expert judgement. These pa-
rameters represent the evolution of real estate over 30 years: it seems more appropriate to set these parameters
rather than using data to estimate them. The choice made corresponds to a 30% drop in prices of real estate
over a 5 years period. This scenario partially matches the benchmark used by the European Central Bank for
stress tests in the banking sector ; This exercise is called “Asset Quality Review” or AQR.

4.3 Mean of the provision and sensitivity analysis

In this section we consider month i = 0 and we will only focus on the provision mean ; a similar analysis to
the provision variance (or quantile) could be obtained in the same manner.

Firstly we will compare the theoretical mean, obtained with Theorem 3.2, to the empirical mean, obtained
with Theorem 3.6. We will conclude this section with a sensitivity analysis of the provision mean according
to a fluctuation of some parameters.
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We obtain the numerical value of the provision mean (see Theorem 3.2 and formula (4.3)) by replacing the
value of parameters by their estimators, that is to say:

Ê
[
P 0
t0

]
= λ̂2m̄

∫ ˆ̄D

0

[ ∫ y

t0

{
φt(y)Φ

[
d̃
(φt(y)

γ̂
, µ̂, σ̂, t

)]
− γ̂e(µ̂+ σ̂2

2 )tΦ
[
d̃
(φt(y)

γ̂
, µ̂+ σ̂2, σ̂, t

)]}
dt
]
dy, (4.8)

where φ.(.) and d̃ are defined by (2.14) and (3.4) respectively.

In addition Theorem 3.6 allows Monte Carlo simulations of the provision. However, we need to know the
law of the borrowed amount M j . For loans drawn down during month i we have bi observations of the bor-
rowed amount. bi is actually around 300, so it is reasonable to replace the c.d.f. of M1 by the empirical c.d.f..
This enables us to get an algorithm to simulate the provision (see Appendix 6.3): we denoted the l- sample
obtained with this algorithm by (p0

1, ..., p
0
l ). Consequently we get the empirical mean which is denoted by

Eemp
[
P 0
t0

]
and defined by:

Eemp
[
P 0
t0

]
:=

1

l

l∑
k=1

p0
k. (4.9)

In the graph below we compare the empirical mean (blue curve) and the theoretical mean (green curve)
obtained with the set of parameters presented in Illustration 2 (we could chose another set of parameter of
course). The analysis date t0 is on the x axis and the provision means are on the y axis.
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Illustration 3: Empirical mean and theoretical mean.

A few observations:

1. The theoretical mean and the mean obtained by simulation are extremely close whatever analysis date.

2. As expected, the provision mean decreases with the analysis date but this decrease is not linear.

3. Finally, from 2016 the mean of the provision is almost zero. This allows us to determine numerically the
time t?0 (in this example t?0 = 16 years) from which the mean of the provision becomes insignificant:

t?0 := inf{t0 > 0 : Ê[P 0
t0 ] 6 β }, (4.10)

where β is set very small. This provides the insurance company the maximum provisioning duration for
each drawdown month, i.e. the period during which the company should record a provision.

Now we give a sensitivity analysis of the provision mean. Because we get an explicit formula for the provision
mean (see formula (3.2)) it is possible to calculate explicitly the provision mean derivative. However we only
show in this paper the provision mean fluctuation according to the fluctuation of our parameters (see [10]
for the calculation of the derivative). On the graph below you can see the fluctuation of the provision mean
according to the fluctuation of one parameter (others parameters are fixed):

1. λ2 (see (4.3)) top left: λ2 ∈ [0.1; 1.1],
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2. γ (see (2.33)) top right: γ ∈ [0.1, 1.4],

3. µ (see (2.10)) bottom left: µ ∈ [−0.1;−0.01],

4. r (see (2.5)) bottom right: r ∈ ]0; 0.15].

The y axis is the provision mean and the x axis is the value of the parameters. We plot each fluctuation for
t0 = 0 (blue curve), t0 = 5 years (green curve), and t0 = 10 years (red curve). The black vertical curves
represent the provision mean value for the set of parameters presented in Illustration 2.
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Illustration 4: Sensitivity analysis of the provision mean.

As expected only µ and γ allow the provision mean to reduce (the provision mean decreases when the parameter
increases), otherwise the provision mean increases when r and λ2 increase.

5 Proof

5.1 Proof of Proposition 2.2

Let us consider borrower j having drawn down his loan at date Ij for an amount M j and a term Dj . The
constant rate of return is denoted by r̃. So:

(1 + r̃)t
∗

= ert
∗
. (5.1)

From [3], pages 172 to 178, we obtain:

1. Capital repaid by borrower j at date t is denoted by Cjt and defined by:

Cjt :=

 (ert
∗
− 1)M j

(er(t−Ij−t∗)
erDj − 1

)
, if Ij < t 6 Ij +Dj ,

0, if t = Ij .
(5.2)
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2. Interest repaid by borrower j at date t is denoted by U jt and defined by:

U jt :=

 (ert
∗
− 1)M j

(erDj − er(t−Ij−t∗)
erDj − 1

)
, if Ij < t 6 Ij +Dj ,

0, if t = Ij .
(5.3)

3. Monthly installment paid by borrower j at date t is denoted by MEjt and defined by:

MEjt :=

 (ert
∗
− 1)M j

( erD
j

erDj − 1

)
, if Ij < t 6 Ij +Dj ,

0, if t = Ij .
(5.4)

Now we assume that this borrower defaults at the deterministic date T . The assumption (A4) implies that the
bank reports the claim immediately. Definition 2.1, formulae (5.1), (5.2), (5.3), and (5.4) allow us to determine
the different factors making up the claim amount:

1. The unpaid capital from date T until the loan maturity, Ij +Dj , is:

Ij+Dj∑
t=T

Cjt =

 M j
(erDj − er(T−Ij−t∗)

erDj − 1

)
, if Ij < T 6 Ij +Dj ,

M j , if T = Ij .
(5.5)

2. The unpaid interest for the monthly installment at date T is:

U jT =

 (ert
∗
− 1)M j

(erDj − er(T−Ij−t∗)
erDj − 1

)
, if Ij < T 6 Ij +Dj ,

0, if T = Ij .
(5.6)

3. Any missed monthly installments will incur penalty interest charges proportional to the delay. This
penalty interest is calculated from the date of the last payment until the claim is submitted. The
penalty interest is equal to the monthly interest multiplied by a coefficient. The multiplicative coefficient
due to late payment interest is fixed for every borrower and this coefficient will not change. It will be
denoted by p (“p” for “penalty”). The additional interest on the unpaid monthly installments only is:

t∗pU jT =

 t∗p(ert
∗
− 1)M j

(erDj − er(T−Ij−t∗)
erDj − 1

)
, if Ij < T 6 Ij +Dj ,

0, if T = Ij .
(5.7)

The additional interest is multiplied by the number of months that the monthly payment remains unpaid:
in this case we multiply by t∗ because the duration of unpaid interest until the reporting date is one
month (from date T − t∗ to date T ) according to the assumption (A5).

4. The recoveries received at date T is:
γM jRT−Ij , (5.8)

where γ is defined by (2.33). See assumption (A4) for more details.

By combining (5.5), (5.6), and (5.7) we prove (2.12). Formula (2.13) is given by (5.8).

5.2 Proof of Theorem 3.2

The proof of Theorem 3.2 is based on the following lemma:

Lemma 5.1. Let K ∈ R+. We consider (α, β) ∈ R2 and (Bt)t>0 a standard Brownian motion. Then:

E
[(
K − exp[αBt + βt]

)
+

]
= F1(t,K, β, α), (5.9)

where the function F1 is defined by (3.1).

Proof of Lemma 5.1. Analysis similar to that in [6] page 303 shows that (5.9) is proved.

Having disposed of this preliminary step, we can now prove the Theorem 3.2. Let assumptions (A1) to (A8)
hold. We assume that (Rt)t>0 is the geometric Brownian motion defined by (2.10). (Ti,j , D

j)j∈B is a PPP,
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so given Ni(A
i
t0+) = k the couples (Ti,j , D

j)16j6k are i.i.d., with law 1
Λi(Ait0+)

Λi|Ait0+
, where Ni is defined by

(3.9). So:

E
[
P it0

]
=
∑
k>0

P
[
Ni(A

i
t0+) = k

]
E
[ k∑
j=1

S(Ti,j − t∗i,Dj ,M j , RTi,j−t∗i)
]

= E
[
Ni(A

i
t0+)

]
E
[
S(Ti,1 − t∗i,D1,M1, RTi,1−t∗i)

]
(5.10)

= E
[
Ni(A

i
t0+)

]
E
[
M1
] ∫

Ait0+

E
[{
φt−t∗i(d)− γRt−t∗i

}
+

] dΛi(t, d)

Λi(Ait0+)
, (5.11)

where φ.(.) is defined by (2.14). By combining (5.11) and (5.9) we have:

E
[
P it0

]
= γE

[
M1
] ∫

Ait0+

F1

(
t− t∗i, φt−t

∗i(d)

γ
, µ, σ

)
dΛi(t, d).

This establishes (3.2). It follows easily that formula (3.3) is proved.

5.3 Proof of Theorem 3.4

Let assumptions (A1) to (A8) hold. Our proof starts with a technical lemma:

Lemma 5.2. Let assumptions (A1) to (A8) hold.

1. For all j 6= l we have:

E
[
S(Ti,j − t∗i,Dj ,M j , RTi,j−t∗i)S(Ti,l − t∗i,Dl,M l, RTi,l−t∗i)

]
= Ci,i, (5.12)

where:

Ci,i
′

:=
[
E
[
M1
]]2
E
[
h
(
Ti,1 − t∗i,D1, Ti′,2 − t∗i′, D2

)]
. (5.13)

For all i 6= i′ we have:

E
[
S(Ti,j − t∗i,Dj ,M j , RTi,j−t∗i)S(Ti′,l − t∗i′, Dl,M l, RTi′,l−t∗i′)

]
= Ci,i

′
. (5.14)

2. Let K ∈ R+. Consider (α, β) ∈ R2 and (Bt)t>0 a standard Brownian motion. Then:

E
[{(

K − exp[αBt + βt]
)

+

}2]
= 2KF1

(
t,K, β, α

)
− F1

(
t,K2, 2β, 2α

)
, (5.15)

where F1 is defined by (3.1).
3. We have:

V
[
P it0

]
= V

[
Ni(A

i
t0+)

]
E
[(
S(Ti,1 − t∗i,D1,M1, RTi,1−t∗i)

)2]
+
[
E
[
Ni(A

i
t0+)

]]2{
Ci,i −

[
E
[
S(Ti,1 − t∗i,D1,M1, RTi,1−t∗i)

]]2}
, (5.16)

where Ci,i is defined by (5.13).
4. If (Rt)t>0 is the geometric Brownian motion defined by (2.10) then:

E
[(
S(Ti,1 − t∗i,D1,M1, RTi,1−t∗i)

)2]
= γ2E

[
(M1)2

] ∫
Ait0+

F2(t− t∗i, d)
dΛi(t, d)

Λi(Ait0+)
, (5.17)

Ci,i
′

= γ2
[
E
[
M1
]]2 ∫

Ait0+×Ai
′
t0+

{∫ d̃(
φt−t∗i(d)

γ ,µ,σ,t−t∗i)

−∞
F3

(
t− t∗i, d, t′ − t∗i′, d′, x

)
dx
}

dΛi(t, d)dΛi′(t
′, d′)

Λi(Ait0+)Λi′(Ai
′
t0+)

, (5.18)

where functions d̃, F2, and F3 are defined by (3.4), (3.5), and (3.6).
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The proof of this lemma will be made at the end of this section. Having disposed of this preliminary step, we
can now prove the Theorem 3.4. We want to calculate the variance of the monthly provision. By combining
(5.16), (3.2), (5.17), and (5.18) we obtain:

V
[
P it0

]
= γ2E

[
(M1)2

] ∫
Ait0+

F2

(
t− t∗i, d

)
dΛi(t, d) + γ2

[
E
[
M1
]]2

×

[∫
(Ait0+)2

{∫ d̃(
φt−t∗i(d)

γ ,µ,σ,t−t∗i)

−∞
F3

(
t− t∗i, d, t′ − t∗i, d′, x

)
dx
}

dΛi(t, d)dΛi(t
′, d′)−

{∫
Ait0+

F1

(
t− t∗i, φt−t

∗i(d)

γ
, µ, σ

)
dΛi(t, d)

}2
]
.

This establishes (3.7). Let us come back to the proof of Lemma 5.2.

Proof of Lemma 5.2.

1. By combining (2.15) and (3.11) we obtain that E
[
S(Ti,j−t∗i,Dj ,M j , RTi,j−t∗i)S(Ti,l−t∗i,Dl,M l, RTi,l−t∗i)

]
is equal to:

E
[
M jM l

{
φTi,j−t∗i(D

j)− γRTi,j−t∗i
}

+

{
φTi,l−t∗i(D

l)− γRTi,l−t∗i
}

+

]
=
[
E
[
M1
]]2
E
[{
φTi,j−t∗i(D

j)− γRTi,j−t∗i
}

+

{
φTi,l−t∗i(D

l)− γRTi,l−t∗i
}

+

]
=
[
E
[
M1
]]2
E
[
h
(
Ti,1 − t∗i,D1, Ti,2 − t∗i,D2

)]
= Ci,i,

as (Ti,j , D
j)j∈B is a PPP then the r.v.’s (Ti,j , D

j)j>1 are i.i.d.. This establishes (5.12).

In the same manner E
[
S(Ti,j − t∗i,Dj ,M j , RTi,j−t∗i)S(Ti′,l − t∗i′, Dl,M l, RTi′,l−t∗i′)

]
is equal to:

E
[
M jM l

{
φTi,j−t∗i(D

j)− γRTi,j−t∗i
}

+

{
φTi′,l−t∗i′(D

l)− γRTi′,l−t∗i′
}

+

]
=
[
E
[
M1
]]2
E
[{
φTi,j−t∗i(D

j)− γRTi,j−t∗i
}

+

{
φTi′,l−t∗i′(D

l)− γRTi′,l−t∗i′
}

+

]
=
[
E
[
M1
]]2
E
[
h
(
Ti,1 − t∗i,D1, Ti′,2 − t∗i′, D2

)]
= Ci,i

′
.

This establishes the formula (5.14).
2. If x > 0 then: (

(K − x)+

)2

= 2K(K − x)+ − (K2 − x2)+.

Applying Lemma 5.1 and the last observation we can conclude:

E
[{(

K − exp[αBt + βt]
)

+

}2]
= 2KE

[(
K − exp[αBt + βt]

)
+

]
− E

[(
K2 − exp[2αBt + 2βt]

)
+

]
,

= 2KF1

(
t,K, β, α

)
− F1

(
t,K2, 2β, 2α

)
.

This establishes the formula (5.15).
3. First we calculate the second moment of the monthly provision. Then we can deduce the variance of the

monthly provision. We have:

E
[
(P it0)2

]
=
∑
k>1

P
[
Ni(A

i
t0+) = k

]
E
[{ k∑

j=1

S(Ti,j − t∗i,Dj ,M j , RTi,j−t∗i)
}2]

= A+B, (5.19)

where:

A :=
∑
k>1

P
[
Ni(A

i
t0+) = k

]
E
[ k∑
j=1

(
S(Ti,j − t∗i,Dj ,M j , RTi,j−t∗i)

)2]
,

and:
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B :=
∑
k>1

P
[
Ni(A

i
t0+) = k

]
E
[
2

∑
16j<l6k

S(Ti,j − t∗i,Dj ,M j , RTi,j−t∗i)S(Ti,l − t∗i,Dl,M l, RTi,l−t∗i)
]
.

We begin by calculating A. Analysis similar to that in the proof of Theorem 3.2, shows that:

A =
∑
k>1

P
[
Ni(A

i
t0+) = k

] k∑
j=1

E
[(
S(Ti,1 − t∗i,D1,M1, RTi,1−t∗i)

)2]
=
∑
k>1

P
[
Ni(A

i
t0+) = k

]
kE
[(
S(Ti,1 − t∗i,D1,M1, RTi,1−t∗i)

)2]
= E

[
Ni(A

i
t0+)

]
E
[(
S(Ti,1 − t∗i,D1,M1, RTi,1−t∗i)

)2]
. (5.20)

Now we calculate B. Expression (5.12) implies:

B =
∑
k>1

P
[
Ni(A

i
t0+) = k

]
× 2

∑
16j<l6k

Ci,i

=
∑
k>1

P
[
Ni(A

i
t0+) = k

]
k(k − 1)Ci,i

= E
[(
Ni(A

i
t0+)

)2]
Ci,i − E

[
Ni(A

i
t0+)

]
Ci,i

=
[
E
[
Ni(A

i
t0+)

]]2
Ci,i, (5.21)

where Ci,i is defined by (5.13). By combining (5.19), (5.20), and (5.21) we obtain:

E
[
(P it0)2

]
= E

[
Ni(A

i
t0+)

]
E
[(
S(Ti,1 − t∗i,D1,M1, RTi,1−t∗i)

)2]
+
[
E
[
Ni(A

i
t0+)

]]2
Ci,i. (5.22)

Let us come back to the calculation of the monthly provision variance. Combining (5.10) and (5.22) we
conclude that:

V
[
P it0

]
= E

[
(P it0)2

]
−
[
E
[
P it0
]]2

= V
[
Ni(A

i
t0+)

]
E
[(
S(Ti,1 − t∗i,D1,M1, RTi,1−t∗i)

)2]
+
[
E
[
Ni(A

i
t0+)

]]2{
Ci,i −

(
E
[
S(Ti,1 − t∗i,D1,M1, RTi,1−t∗i)

])2}
.

This establishes the formula (5.16).
4. Assumption (A8) and (2.15) imply:

E
[(
S(Ti,1 − t∗i,D1,M1, RTi,1−t∗i)

)2]
= E

[
(M1)2

] ∫
Ait0+

E
[{

(φt−t∗i(d)− γRt−t∗i)+

}2] dΛi(t, d)

Λi(Ait0+)
.

Applying (5.15) and (2.10) we obtain:

E
[(
S(Ti,1 − t∗i,D1,M1, RTi,1−t∗i)

)2]
= γ2E

[
(M1)2

] ∫
Ait0+

F2(t− t∗i, d)
dΛi(t, d)

Λi(Ait0+)
,

where F2 is defined by (3.5). So formula (5.17) is proved.

Now we want to calculate Ci,i
′

which is defined by (5.13). We start by evaluating h(t, d, t′, d′), for
t 6= t′, where h is defined by (3.11). Assume for example t′ > t. Let 0 < t1 < ... < tn. Definition of R.
(see (2.10)) shows that given Rt1 = x1, ..., Rtn−1 = xn−1, Rtn has the same law as xn−1Rtn−tn−1 , i.e.:

L
[
Rtn |Rt1 = x1, ..., Rtn−1 = xn−1

]
= L

[
xn−1Rtn−tn−1

]
. (5.23)

In particular,

L
(
Rt, Rt′

)
= L

(
Rt, R

′
t′−t

)
, (5.24)
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where:
R′t′−t := exp

[
σ(Bt′ −Bt) + µ(t′ − t)

]
. (5.25)

So for t′ > t:

h(t, d, t′, d′) = γ2E
[{φt(d)

γ
−Rt

}
+

{φt′(d′)
γ

−Rt′
}

+

]
= γ2E

[{φt(d)

γ
−Rt

}
+

{φt′(d′)
γ

−RtR′t′−t
}

+

]
= γ2E

[{φt(d)

γ
−Rt

}
+
h̃(Rt)

]
, (5.26)

where:

h̃(z) := zE
[
{φt

′(d′)

zγ
−Rt′−t}+

]
.

Formula (5.9) implies:

h̃(z) = zF1

(
t′ − t, φt

′(d′)

zγ
, µ, σ

)
. (5.27)

Let us come back to the calculation of h. Using (3.4), (5.26), and (5.27) we obtain:

h(t, d, t′, d′) = γ2E
[{φt(d)

γ
−Rt

}
+
RtF1

(
t′ − t, φt

′(d′)

Rtγ
, µ, σ

)]
= γ2

∫ d̃(
φt(d)
γ ,µ,σ,t)

−∞

eµt+σ
√
tx− x22

√
2π

(φt(d)

γ
− eµt+σ

√
tx
)
F1

(
t′ − t, φt′(d

′)

γeµt+σ
√
tx
, µ, σ

)
dx

=

∫ d̃(
φt(d)
γ ,µ,σ,t)

−∞
γ2F3

(
t, d, t′, d′, x

)
dx, (5.28)

where the function F3 is defined by (3.6). Formulas (3.10) and (5.28) imply:

Ci,i
′

= γ2
[
E
[
M1
]]2 ∫

Ait0+×Ai
′
t0+

{∫ d̃(
φt−t∗i(d)

γ ,µ,σ,t−t∗i)

−∞
F3

(
t−t∗i, d, t′−t∗i′, d′, x

)
dx
}dΛi(t, d)dΛi′(t

′, d′)

Λi(Ait0+)Λj′(Ai
′
t0+)

.

This establishes the formula (5.18) and achieves the proof of Lemma 5.2.

5.4 Proof of Theorem 3.6

To simplify the proof we will denote:
Ti,j = Tj .

First we order the dates of default (Tj)16j6n as follows:

T(1) = Tj1 < ... < T(n) = Tjn , (5.29)

where (j1, ..., jn) ∈ Bn : jk 6= jl ∀k 6= l ∈ {1, ..., n} and with agreement T(0) = 0. The term and the amount

associated to the loan which defaulted at date T(j) are denoted by D(j) and M (j) respectively. Then, for

example, D(1) = Dj1 .

With Definition 2.5 and Proposition 2.2 we can rewrite the provision for month i:

P it0 =
∑
j>1

1{(T(j),D(j))∈Ait0+}M
(j)
{
φT(j)−t∗i(D

(j))− γRT(j)−t∗i

}
+
.

The identity in law (5.23) implies:

L
[(
RT(1)

, ..., RT(n)

)]
= L

[(
exp

(
σ
√
T(1)G

1 + µT(1)

)
, ...,

n∏
k=1

exp
(
σ
√
T(k) − T(k−1)G

k + µ(T(k) − T(k−1))
))]

,

(5.30)
where (Gj)16j6n is a collection of r.v.’s i.i.d. with standard normal distribution and independent of(

(Tj , D
j)16j6n, (M

j)16j6n

)
.
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So the law of P it0 given Ni(A
i
t0+) = n is:

L
[
P it0 |Ni(A

i
t0+) = n

]
= L

[
fn

(
(T(j))16j6n, (D

(j))16j6n, (M
(j))16j6n, (G

j)16j6n

)]
,

where:

fn

(
(t(j))16j6n, (d

(j))16j6n, (m
(j))16j6n, (g

j)16j6n

)
:=

n∑
i=1

m(j)
{
φt(j)−t∗i(d

(j))− γ
j∏

k=1

rk
}

+
,

rk = exp
[
σ
√
t(k) − t(k−1)g

k + µ(t(k) − t(k−1))
]
,with this agreement: t(0) = 0.

In other way, random subscripts j1, ..., jn defined by (5.29) do not depend on T1, ..., Tn. Yet (M j)16j6n are
independent of (Tj)16j6n, so:

L
[
(M j1 , ...,M jn)

]
= L

[
(M1, ...,Mn)

]
. (5.31)

Therefore:

L
[
P it0 |Ni(A

i
t0+) = n

]
= L

[
fn

(
(T(j))16j6n, (D

(j))16j6n, (M
j)16j6n, (G

j)16j6n

)]
.

5.5 Proof of Proposition 4.2

Our proof starts with a technical lemma:

Lemma 5.3.

1. Consider the collection
(
Zi, Z

′
i, Z
′′
i

)
0 6i6i0

of r.v.’s satisfying:

(a) The r.v.’s
{
Zi, Z

′
i, Z
′′
i , 0 6 i 6 i0

}
are independent,

(b) The marginal distributions are:

L
(
Zi

)
= P

(
fi(θ)

)
, L
(
Z ′i

)
= P

(
gi(θ)

)
, L
(
Z ′′i

)
= P

(
hi(θ)

)
, (5.32)

where fi, gi, and hi are C1(R3) functions and θ =
(
θ1, θ2, θ3

)
∈ R3.

Let
(
zi, z

′
i, z
′′
i

)
0 6i6i0

be a realisation of the collection
(
Zi, Z

′
i, Z
′′
i

)
0 6i6i0

. The three likelihood equations
are:

i0∑
i=0

[
zi

∂fi(θ)
∂θk

fi(θ)
+ z′i

∂gi(θ)
∂θk

gi(θ)
+ z′′i

∂hi(θ)
∂θk

hi(θ)

]
−

i0∑
i=0

∂

∂θk

[
fi(θ) + gi(θ) + hi(θ)

]
= 0, k = 1, 2, 3. (5.33)

2. Let Leb1 (respectively Leb2) the Lebesgue measure on R (respectively on R2). So:

Leb1
(
Cit0−

)
=
√

2(t0 − t∗i), (5.34)

Leb2
(
Ait0−

)
= (t0 − t∗i)

(
D̄ − 1

2
(t0 − t∗i)

)
, (5.35)

Leb2
(
Ait0+

)
=

1

2
(D̄ − t0 + t∗i)2, (5.36)

Leb1
(
Cit0+

)
=
√

2(D̄ − t0 + t∗i), (5.37)

where sets Cit0−, A
i
t0−, A

i
t0+, and Cit0+ are defined by (4.2), (2.18), (2.17), and (4.1).

The proof of this lemma will be given at the end of this section. Having disposed of this preliminary step, we
can now prove the Proposition 4.2. We denote:

Zi = Ni(C
i
t0−) and zi = vi,

Z ′i = Ni(A
i
t0−) and z′i = ni,

Z ′′i = Ni(A
i
t0+ ∪ Cit0+) and z′′i = bi − ni − vi,

θ = (θ1, θ2, θ3) = (λ1, λ2, D̄).

Using expressions (3.9), (4.3), and Lemma 5.3 we can deduce that (5.32) is true and we have:

fi(θ) = λ1Leb1(Cit0−) = λ1

√
2(t0 − t∗i),
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gi(θ) = λ2Leb2(Ait0−) = λ2(t0 − t∗i)
(
D̄ − 1

2
(t0 − t∗i)

)
,

hi(θ) = λ1Leb1(Cit0+) + λ2Leb2(Ait0+) = λ1

√
2(D̄ − t0 + t∗i) +

λ2

2
(D̄ − t0 + t∗i)2,

fi(θ) + gi(θ) + hi(θ) = λ1

√
2D̄ +

λ2

2
(D̄)2.

Variables Zi = Ni(C
i
t0−), Z ′i = Ni(A

i
t0−), and Z ′′i = Ni(A

i
t0+ ∪ Cit0+) are independent so we can use Lemma

5.3. The likelihood equations, where zi, z
′
i, and z′′i are exchanged by vi, ni, and bi − ni − vi (see Section 4.2),

lead to the following system:

i0∑
i=0

[
vi

∂λ1Leb1(Cit0−
)

∂θk

λ1Leb1(Cit0−)
+ ni

∂λ2Leb2(Ait0−
)

∂θk

λ2Leb2(Ait0−)
+ (bi − ni − vi)

∂

(
λ1Leb1(Cit0+)+λ2Leb2(Ait0+)

)
∂θk

λ1Leb1(Cit0+) + λ2Leb2(Ait0+)

]

−
i0∑
i=0

∂

∂θk

[
λ1Leb1(Cit0−) + λ2Leb2(Ait0−) + λ1Leb1(Cit0+) + λ2Leb2(Ait0+)

]
= 0,

where k = 1, 2, 3. Using Lemma 5.3 the likelihood equations become:

i0∑
i=0

[
vi
λ1

+
(bi − ni − vi)

√
2(D̄ − t0 + t∗i)

λ1

√
2(D̄ − t0 + t∗i) + λ2(D̄−t0+t∗i)2

2

]
=
√

2(i0 + 1)D̄,

(S) :

i0∑
i=0

[
ni
λ2

+
(bi − ni − vi)(D̄ − t0 + t∗i)2

2λ1

√
2(D̄ − t0 + t∗i) + λ2(D̄ − t0 + t∗i)2

]
=

(i0 + 1)(D̄)2

2
,

i0∑
i=0

[
ni(

D̄ − 1
2 (t0 − t∗i)

) +
(bi − ni − vi)

(√
2λ1 + λ2(D̄ − t0 + t∗i)

)
λ1

√
2(D̄ − t0 + t∗i) + λ2(D̄−t0+t∗i)2

2

]
= (λ1

√
2 + λ2D̄)(i0 + 1).

We denote (λ̂1, λ̂2,
ˆ̄D) the solution of this system which corresponds to the likelihood maximum estimators of

parameters λ1, λ2, and D̄. This achieves the proof of Proposition 4.2.

Proof of Lemma 5.3.

1. The likelihood of
(
Zi, Z

′
i, Z
′′
i

)
0 6i6i0

is denoted by Li0 . Using the independence of variables
{
Zi, Z

′
i, Z
′′
i , 0 6

i 6 i0

}
we obtain:

Li0 =

i0∏
i=0

[fi(θ)]
zi [gi(θ)]

z′i [hi(θ)]
z′′i

i0∏
i=0

zi! z
′
i! z
′′
i !

exp
[
−

i0∑
i=0

(
fi(θ) + gi(θ) + hi(θ)

)]
,

where zi, z
′
i, and z′′i are contained in N. So:

ln(Li0) = − ln
( i0∏
i=0

zi! z
′
i! z
′′
i !
)

+

i0∑
i=0

[
zi ln

[
fi(θ)

]
+z′i ln

[
gi(θ)

]
+z′′i ln

[
hi(θ)

]]
−

i0∑
i=0

[
fi(θ)+gi(θ)+hi(θ)

]
.

(5.38)
The likelihood equations are:

∂

∂θk

(
ln(Li0)

)
= 0, k = 1, 2, 3. (5.39)

Combining (5.38) and (5.39) the likelihood equations lead to this system:

i0∑
i=0

[
zi

∂fi(θ)
∂θk

fi(θ)
+ z′i

∂gi(θ)
∂θk

gi(θ)
+ z′′i

∂hi(θ)
∂θk

hi(θ)

]
−

i0∑
i=0

∂

∂θk

[
fi(θ) + gi(θ) + hi(θ)

]
= 0, k = 1, 2, 3.

2. The proof is straightforward with definitions of Cit0−, A
i
t0−, A

i
t0+, and Cit0+.
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6 Appendix

6.1 Graphical illustration

t = t∗i+ d

t = t∗i+t∗i

+t∗i+ D̄

+

D̄t0 − t∗i
+

+t0

••

• •

•

0 d

t

Ait0+

Ait0−

Cit0+

Cit0−

Illustration 5: Illustration of sets Ait0−, A
i
t0+, C

i
t0−, and Cit0+.

6.2 Variance of the total provision

We want to calculate the total provision variance.

V
[
Pt0

]
=

b t0
t∗ c∑
i=0

V
[
P it0

]
+ 2

∑
06i<i′6b t0

t∗ c

{
E
[
P it0P

i′

t0

]
− E

[
P it0

]
E
[
P i
′

t0

]}
. (6.1)

We calculate E
[
P it0P

i′

t0

]
.

E
[
P it0P

i′

t0

]
= E

[{∑
j>1

1{(Ti,j ,Dj)∈Ait0+}S(Ti,j − t∗i,Dj ,M j , RTi,j−t∗i)
}

×
{∑
l>1

1{(Ti′,l,Dl)∈Ai
′
t0+}

S(Ti′,l − t∗i′, Dl,M l, RTi′,l−t∗i′)
}]

=
∑

k>0,h>0

{
P
[
Ni(A

i
t0+) = k

]
P
[
Ni′(A

i′

t0+) = h
]}

×
∑

16j6k,16l6h

E
[
S(Ti,j − t∗i,Dj ,M j , RTi,j−t∗i)S(Ti′,l − t∗i′, Dl,M l, RTi′,l−t∗i′)

]
=

∑
k>0,h>0

{
P
[
Ni(A

i
t0+) = k

]
P
[
Ni′(A

i′

t0+) = h
]}
Ci,i

′
kh = Ci,i

′
E
[
Ni(A

i
t0+)

]
E
[
Ni′(A

i′

t0+)
]
. (6.2)

Combining (6.1), (6.2), (5.18), and (3.2) we have:

V
[
Pt0
]

=

b t0
t∗ c∑
i=0

V
[
P it0

]
+ 2

∑
06i<i′6b t0

t∗ c

γ2
[
E
[
M1
]]2{ ∫

Ait0+×Ai
′
t0+

{∫ d̃(
φt−t∗i(d)

γ ,µ,σ,t−t∗i)

−∞

F3

(
t− t∗i, d, t′ − t∗i′, d′, x

)
dx
}
dΛi(t, d)dΛi′(t

′, d′)−
∫
Ait0+

F1

(
t− t∗i, φt−t

∗i(d)

γ
, µ, σ

)
dΛi(t, d)

×
∫
Ai
′
t0+

F1

(
t− t∗i′, φt−t

∗i′(d)

γ
, µ, σ

)
dΛi′(t, d)

}
,

where V
[
P it0
]

is obtained by (3.7).
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6.3 Simulation algorithm

Algorithm 1 Simulation of a sample of length l for the r.v. P it0 .

1: for k = 1 to l do
2: Simulate a r.v. with distribution P

(
λ̂2Leb2(Âit0+)

)
. Its realization is denoted by n.

3: Simulate n r.v.’s i.i.d. uniformly distributed on Âit0+. The realizations are denoted by (tj , d
j)16j6n.

Order dates (tj)16j6n: t(1) 6 ... 6 t(n).
4: The variables (M j)16j6n are simulated by reversing the empirical c.d.f.. The realizations are denoted

by (m̃j)16j6n.
5: Simulate n r.v.’s i.i.d. with standard normal distribution. The realizations are denoted by (gj)16j6n.

6: Calculate: pik =

n∑
i=1

m̃j
{
φt(j)−t∗i(d

(j))− γ
j∏

k=1

rk
}

+
, where φ and rk are defined by (2.14) and (3.15).

7: end for

6.4 Scatter plot

Illustration 6: Scatter plot of the borrowed amount and the loan duration.
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