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EXTENSIONS BETWEEN FUNCTORS FROM FREE GROUPS

CHRISTINE VESPA

Abstract. Motivated in part by the study of the stable homology of auto-
morphism groups of free groups, we consider cohomological calculations in
the category F(gr) of functors from finitely generated free groups to abelian
groups. In particular, we compute the groups Ext∗

F(gr)
(Tn ◦a, Tm◦a) where a

is the abelianization functor and Tn is the n-th tensor power functor for abelian
groups. These groups are shown to be non-zero if and only if ∗ = m − n ≥ 0

and Extm−n

F(gr)
(Tn ◦ a, Tm ◦ a) = Z[Surj(m,n)] where Surj(m,n) is the set

of surjections from a set having m elements to a set having n elements. We
make explicit the action of symmetric groups on these groups and the Yoneda
and external products. We deduce from these computations those of rational
Ext-groups for functors of the form F ◦a where F is a symmetric or an exterior
power functor. Combining these computations with a recent result of Djament
we obtain explicit computations of stable homology of automorphism groups
of free groups with coefficients given by particular contravariant functors.

Stable homology with twisted coefficients of various families of groups can be
computed thanks to functor homology in a suitable category (see [7] [17] [4] [5]).
In particular, stable homology of automorphism groups of free groups with coeffi-
cients given by a reduced polynomial covariant functor is trivial (see [5]). Recently,
Djament proved in [2] that stable homology (resp. cohomology) of automorphism
groups of free groups with coefficients given by a reduced polynomial contravariant
(resp. covariant) functor is governed by Tor groups (resp. Ext groups) in the cate-
gory of functors from finitely generated free groups to abelian groups. The aim of
this paper is to calculate Ext and Tor groups between concrete functors from groups
to abelian groups in order to obtain explicit computations of stable homology of
automorphism groups of free groups with coefficients given by a contravariant func-
tor. Let gr be a small skeleton of the category of finitely generated free groups,
F(gr) the category of functors from gr to abelian groups and a the abelianization
functor in F(gr). The main result of this paper is:

Theorem 1. Let n and m be natural integers, we have an isomorphism:

Ext∗F(gr)(T
n ◦ a, Tm ◦ a) ≃

{

Z[Surj(m,n)] if ∗ = m− n
0 otherwise

where Surj(m,n) is the set of surjections from a set having m elements to a set
having n elements.

The actions of the symmetric groups Sm and Sn on Ext∗F(gr)(T
n ◦ a, Tm ◦ a)

are induced by the composition of surjections via the previous isomorphism, up to
a sign (see Proposition 2.5 for the precise signs).

The Yoneda product is induced by the composition of surjections, up to a sign,
(see Proposition 3.1 for the precise signs) via the previous isomorphism and the
external product is induced by the disjoint union of sets.

We remark that this theorem can be expressed elegantly in terms of symmetric
sequences (see Proposition 3.2).
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2 CHRISTINE VESPA

In particular for n = m = 1 we obtain thatHomF(gr)(a, a) = Z andExt∗F(gr)(a, a) =

0 for ∗ > 0. Let ab be a small skeleton of the category of finitely generated free
abelian groups and F(ab) be the category of functors from ab to abelian groups.
The previous groups should be compared with the groups Ext∗F(ab)(Id, Id) corre-

sponding to the MacLane homology of Z. This homology was computed by Bökstedt
by topological methods (unpublished) and reobtained in [8] by algebraic methods,
in particular it is non trivial. Theorem 1 illustrates that functor homology in F(gr)
is easier than functor homology in F(ab) (see also [3] for another illustration of
this fact).

Theorem 1 is used in [3, Proposition 4.1 and 4.6] in order to compute homological
dimension in a category of polynomial functors related to F(gr).

The proof of the first part of Theorem 1 can be decomposed into two steps
corresponding to the first two sections of this paper. In the first we compute
Ext∗F(gr)(a, T

m ◦ a) using an explicit projective resolution of the abelianization

functor a. In the second we deduce our result using the sum-diagonal adjunction
and an exponential-type property of the tensor power functor T •. The following
section is devoted to the study of products on these Ext-groups and the description
of the PROP governing these Ext-groups. More precisely, for gAb− the category
of graded abelian groups where the commutativity is given by the Koszul sign rule:
v ⊗ w 7→ (−1)|v|.|w|w ⊗ v, we deduce from Theorem 1 the following results:

Theorem 2. (Propositions 3.3 and 3.5)

(1) The graded symmetric sequence Q = {Q(n)}n≥0 given by Q(n) = Ext∗F(gr)(a, T
n◦

a) is an operad in gAb−.
(2) The symmetric monoidal graded category E having as objects the finite sets

n and such that

HomE(m,n) = Ext∗F(gr)(T
n ◦ a, Tm ◦ a)

is isomorphic to the graded PROP freely generated by the operad Q.

In the final section we deduce from Theorem 1 rational computations of Ext-
groups between symmetric power functors Sk, exterior power functors Λk and tensor
power functors. In particular, we obtain the following results.

Theorem 3. Let n and m be natural integers, we have isomorphisms:

Ext∗F(gr)((Λ
n ◦ a)⊗ Q, (Λm ◦ a)⊗Q) ≃

{

Qρ(m,n) if ∗ = m− n
0 otherwise

where ρ(m,n) denotes the number of partitions of m into n parts.

Ext∗F(gr)((Λ
n ◦ a)⊗Q, (Sm ◦ a)⊗Q) ≃







Q if n = m = 0 and ∗ = 0
or n = m = 1 and ∗ = 0

0 otherwise

Ext∗F(gr)((Λ
n ◦ a)⊗Q, (Tm ◦ a)⊗Q) ≃

{

QS(m,n) if ∗ = m− n
0 otherwise

where S(m,n) denotes the Stirling partition number (i.e. the number of ways to
partition a set of m elements into n non-empty subsets).

By duality arguments we deduce similar results for Tor groups.
In [2], Djament gives a description of stable homology of automorphisms of free

groups with coefficients twisted by contravariant functors in terms of Tor-groups
between functors in F(gr). More precisely, for N : grop → Q-Mod a polynomial
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functor, Fn the free group in n generators and any natural integer i, Djament has
shown [2, Théorème 1.10] that there is an isomorphism:

colim
n∈N

Hi(Aut(Fn), N(Fn)) ≃
⊕

k+l=i

Torgrk (N,Λl ◦ (a⊗Q)).

This statement is equivalent to the following: for M : gr → Q-Mod a polynomial
functor, there is an isomorphism:

lim
n∈N

Hi(Aut(Fn),M(Fn)) ≃
⊕

k+l=i

Extkgr(Λ
l ◦ (a ⊗Q),M).

To a covariant functorM : gr → Q-Mod we can associate a contravariant functor
N : grop → Q-Mod given by N(G) =M(HomGr(G,Q)) where Gr is the category
of groups. As an application of Proposition 3, using the previous result of Djament,
we obtain the following computations of stable homology:

Theorem 4. Let Hn = HomGr(Fn,Q). We have

colim
n∈N

H∗(Aut(Fn), T
d ◦ (a ⊗Q)(Hn)) ≃

{

QB(d) if ∗ = d
0 otherwise

where B(d) denotes the d-th Bell number (i.e. the number of partitions of a set of
d elements),

colim
n∈N

H∗(Aut(Fn),Λ
d ◦ (a⊗Q)(Hn)) ≃

{

Qρ(d) if ∗ = d
0 otherwise

where ρ(d) denotes the number of partitions of d, and

colim
n∈N

H∗(Aut(Fn), S
d ◦ (a⊗Q)(Hn)) ≃







Q if ∗ = d = 0
or ∗ = d = 1

0 otherwise

The two last results of the previous proposition were conjectured by Randal-
Williams in [15], which motivated the present work. More precisely, combining this
proposition with the stable range of such homology groups obtained by Randal-
Williams and Wahl in [16] we deduce the conjecture of Randal-Williams in [15,
Corollary 6.4]. The previous proposition has also been obtained in recent work of
Randal-Williams [14] using independent topological methods. Proposition 4 is a
partial answer to Problem 17 asked by Morita in [13].

The final section also contains the following proposition used in the application
section of [3]. Let qn be the left adjoint of the inclusion functor from polynomial
functors of degree ≤ n to F(gr) and P̄ in F(gr) such that Z[gr(Z,−)] ≃ Z ⊕ P̄ ,
we have:

Proposition 5. Let m and n be integers such that m ≥ n > 0. We have:

Extm−n
F(gr)(qn(P̄ ), T

m ◦ a) 6= 0.

Notation: We denote by Gr the category of groups, Ab the category of abelian
groups, gr (resp. ab), a small skeleton of the full subcategory of Gr (resp. Ab),
having as objects finitely generated free objects. For example, we can take gr to
be the full subcategory with objects the groups Z∗n for n ∈ N where ∗ is the free
product.

We denote by a the abelianization functor from gr to ab, so that a(Z∗n) = Z⊕n.
Let C be a small pointed category. We denote by F(C) the category of functors

from C to Ab. This category is abelian and has enough projective and injective
objects. A reduced functor F ∈ F(C) satisfies F (0) = 0.
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For n ∈ N, we denote by Pn the representable functor Pn := Z[gr(Z∗n,−)] in
F(gr). By the Yoneda lemma we have a canonical isomorphismHomF(gr)(Pn, F ) ≃
F (Z∗n).

The Eilenberg-MacLane notion of polynomial functors [6] applies to the category
F(gr). For d ∈ N we denote by Fd(gr) the full subcategory of F(gr) of polynomial
functors of degree ≤ d and id : Fd(gr) → F(gr) the inclusion functor. This functor
has a left adjoint denoted by qd. The functors qi(P̄ ) are called Passi functors (see
[11] and [3]). For G ∈ gr we have a natural isomorphism qi(P̄ )(G) ≃ IG/Ii+1G,
where IG is the augmentation ideal (see, for example [3, Proposition 3.7]).

In the following, we sometimes write Ext∗(F,G) instead of Ext∗F(gr)(F,G) to

shorten formulas.
We denote by gAb− the symmetric monoidal category whose objects are graded

abelian groups V • =
⊕

i∈Z

V i and morphisms are linear maps preserving the grading.

The monoidal structure is given by the graded tensor product. The commutativity
isomorphism V • ⊗W • →W • ⊗ V • is defined by:

v ⊗ w 7→ (−1)|v|.|w|w ⊗ v.

1. Computation of Ext∗F(gr)(a, T
m ◦ a)

This section is based on the existence of an explicit projective resolution of a in
F(gr). This resolution occurs in [12, Proposition 5.1] and plays a crucial rôle in
[5].

Consider the following simplicial object in F(gr):

(1) . . .
,2

... ,2 Pn+1
,2

... ,2 Pn
,2

... ,2 . . .
,2
,2,2,2 P2

,2 ,2,2 P1
,2,2 P0

where δi : Pn+1 → Pn for 0 ≤ i ≤ n+ 1 are defined by:

δ0[g1, g2, . . . , gn, gn+1] = [g2, . . . , gn, gn+1]

δi[g1, g2, . . . , gn, gn+1] = [g1, . . . , gigi+1, . . . , gn, gn+1] for 1 ≤ i ≤ n

δn+1[g1, g2, . . . , gn, gn+1] = [g1, g2, . . . , gn]

and ǫi : Pn → Pn+1 for 1 ≤ i ≤ n+ 1 are defined by:

ǫi[g1, . . . , gn] = [g1, . . . , gi−1, 1, gi, . . . , gn].

We denote by C• the unnormalized chain complex associated to this simplicial
object and D• the complex defined by Di = Ci+1 for i ≥ 0 and Di = 0 for i < 0.

Recall that the homology of a free group is naturally isomorphic to its abelian-
ization in degree 1 and is zero in degree > 1. So D• is a resolution of a and we
obtain:

Proposition 1.1. (Cf. [12, Proposition 5.1]) The exact sequence in F(gr):

. . . Pn+1
dn−→ Pn → . . .→ P2

d1−→ P1

is a projective resolution of the abelianization functor a : gr → Ab. The natural
transformation dn : Pn → Pn−1 is given on a group G ∈ gr by the linear map
Z[Gn+1] → Z[Gn] such that:

dn([g1, . . . , gn+1]) = [g2, . . . , gn+1]+

n
∑

i=1

(−1)i[g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1] + (−1)n+1[g1, . . . , gn]

for all (g1, . . . , gn+1) ∈ Gn+1.
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For F ∈ F(gr) and n an integer, we have

ExtnF(gr)(a, F ) ≃ πn+1(F (Z∗•)) ≃ Hn+1(NF (Z∗•))

where F (Z∗•) is the cosimplicial abelian group obtained by applyingHomF(gr)(−, F )
to the simplicial object (1) and using the natural isomorphism HomF(gr)(Pn, F ) ≃
F (Z∗n) given by the Yoneda lemma and NF (Z∗•) is the normalized cochain com-
plex.

Remark 1.2. A straightforward calculation gives that

Ext∗F(gr)(a, T
0 ◦ a) ≃ Ext∗F(gr)(a,Z) = 0.

Proposition 1.3. Let m ≥ 1 be a natural integer, we have an isomorphism:

Ext∗F(gr)(a, T
m ◦ a) ≃

{

Z if ∗ = m− 1
0 otherwise

The proof of this proposition is based on the following lemma.

Lemma 1.4. If F : gr → Ab and G : gr → Ab are reduced functors, then there is
a graded morphism

Ext∗F(gr)(a, F )⊗ Ext∗F(gr)(a, G) → Ext∗+1
F(gr)(a, F ⊗G)

which is an isomorphism if the values of F and Ext∗F(gr)(a, F ) are torsion free,

Proof. Considering the complexes NF (Z∗•), NG(Z∗•) and NF (Z∗•) ⊗ NG(Z∗•)
we have a graded morphism:

(2) H∗(NF (Z∗•))⊗H∗(NG(Z∗•)) → H∗(NF (Z∗•)⊗NG(Z∗•)).

Let (F ⊗ G)(Z∗•) be the cosimplicial abelian group obtained when we apply
HomF(gr)(−, F ⊗G) to the simplicial object (1). We have

HomF(gr)(Pn, F ⊗G) ≃ (F ⊗G)(Z∗n) = F (Z∗n)⊗G(Z∗n).

So (F ⊗G)(Z∗•) = F (Z∗•)⊗G(Z∗•) where ⊗ denote the tensor product of cosim-
plicial abelian groups. By the Eilenberg-Zilber theorem, the map

N(F (Z∗•)⊗G(Z∗•)) → NF (Z∗•)⊗NG(Z∗•)

is a quasi-isomorphism. So, we have isomorphisms

Extn(a, F ⊗G) ≃ Hn+1
(

N(F (Z∗•)⊗G(Z∗•))
)

≃ Hn+1(NF (Z∗•)⊗NG(Z∗•))

and hence the stated morphisms. Suppose now that the values of F are torsion
free, by the Künneth formula (see [18] Theorem 3.6.3), the graded morphism (2) is
part of a natural short exact sequence

0 → H∗(NF (Z∗•))⊗H∗(NG(Z∗•)) → H∗(NF (Z∗•)⊗NG(Z∗•)) → Tor1
Z
(Ext∗(a, F ), Ext∗(a, G)) → 0

Hence, if the groups Ext∗F(gr)(a, F ) are torsion free, we have an isomorphism

H∗(NF (Z∗•))⊗H∗(NG(Z∗•)) ≃ H∗(NF (Z∗•)⊗NG(Z∗•)).

We deduce:

Extn+1(a, F ⊗G) = Hn+2(NF (Z∗•)⊗NG(Z∗•)) ≃
⊕

i+j=n+2

Hi(NF (Z∗•))⊗Hj(NG(Z∗•))

=
⊕

i+ j = n+ 2
i 6= 0, j 6= 0

Hi(NF (Z∗•))⊗Hj(NG(Z∗•)) since F and G are reduced

=
⊕

i+ j = n+ 2
i 6= 0, j 6= 0

Exti−1(a, F )⊗ Extj−1(a, G)

=
⊕

p+q=n
Extp(a, F )⊗ Extq(a, G).

�
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Proof of Proposition 1.3. We prove the result by induction on m. To start the
induction, Ext∗F(gr)(a, a) is the homology of the complex:

. . . Zn+1lr Zn
δnlr . . .lr Z2lr Z

δ1lr

which is trivial for ∗ ≥ 1 and is isomorphic to Z for ∗ = 0. In particularExt∗F(gr)(a, a)

is torsion free. Assume that the statement is true for m. Applying Lemma 1.4 to
Tm ◦ a and a which takes torsion free values, we have a graded isomorphism:

Ext∗+1
F(gr)(a, T

m+1 ◦ a) ≃ Ext∗F(gr)(a, T
m ◦ a)⊗ Ext∗F(gr)(a, a)

and we obtain the result by the inductive step and the computation ofExt∗F(gr)(a, a).

�

Remark 1.5. Proposition 1.3 is used in [3] to prove that the global dimension of the
category of polynomial functors of degree ≤ m from gr to the category of Q-vector
spaces has global dimension m− 1 (see [3, Proposition 4.6]).

The symmetric group Sm acts on Tm by permuting the factors of the tensor
product. This action induces an action ofSm on the extension groupsExtm−1

F(gr)(a, T
m◦

a) that we make explicit in the following proposition.

Proposition 1.6. The action of Sm on Extm−1
F(gr)(a, T

m ◦ a) is given by the sign

representation.

The proof of this proposition relies on the following well-known lemma (see [1,
X 62]).

Lemma 1.7. Let A be a commutative ring, (C, d) and (C′, d′) be complexes of
A-modules. The map σ(C,C′) : C ⊗

A
C′ → C′ ⊗

A
C given by σ(C,C′)(x ⊗ x′) =

(−1)|x| |x′|x′ ⊗ x is an isomorphism of complexes.

Proof of Proposition 1.6. Since Ext∗F(gr)(a, a) is torsion free by Proposition 1.3 and

a has torsion free values, applying iteratively Lemma 1.4 for F = a and G = a we
obtain that the morphism

ψ :

m
⊗

i=1

Ext∗F(gr)(a, a) → Ext∗+m−1
F(gr) (a, Tm ◦ a)

is an isomorphism.
Let σ ∈ Sm, the action of σ on Extm−1

F(gr)(a, T
m ◦ a) is given by the following

composition where φ :
m
⊗

i=1

Ext∗F(gr)(a, a) →
m
⊗

i=1

Ext∗F(gr)(a, a) is given by the action

of σ on
m
⊗

i=1

Ext∗F(gr)(a, a)

Ext∗+m−1
F(gr) (a, Tm ◦ a)

≃

ψ−1

,2
m
⊗

i=1

Ext∗(a, a)
φ

,2
m
⊗

i=1

Ext∗(a, a)
≃

ψ
,2 Ext∗+m−1

F(gr) (a, Tm ◦ a)

By Lemma 1.7, we have

φ(x1 ⊗ . . .⊗ xn) = ǫ(σ)xσ−1(1) ⊗ . . .⊗ xσ−1(m)

where xk is a generator of the k-th copy of Ext∗F(gr)(a, a) in
m
⊗

i=1

Ext∗F(gr)(a, a). �

Remark 1.8. We denote by Λ(m)[m−1] the symmetric sequence of objects of gAb
−

which is equal to the sign representation of Sm placed in degree m − 1 and 0 in
other degrees. It follows from Propositions 1.3 and 1.6 that Ext∗F(gr)(a, T

m ◦ a) =

Λ(m)[m− 1].
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2. Computation of Ext∗F(gr)(T
n ◦ a, Tm ◦ a)

This section is based on the sum-diagonal adjunction, an exponential type prop-
erty of tensor powers and the Künneth formula.

We begin this section with some recollections; we refer the reader to [4, Appen-
dice B] for more details.

For F and G in F(gr), their external tensor product F⊠G is the functor sending
(X,Y ) to F (X)⊗G(Y ). This yields a functor:

−⊠− : F(gr)×F(gr) → F(gr× gr).

We denote by πd : gr×d → gr the functor obtained by iteration of the free
product (which is the categorical sum in gr) and δd : gr → gr×d the diagonal
functor. The functor δd is right adjoint of the functor πd. We deduce that the
functor given by precomposition δ∗d : F(gr×d) → F(gr) is left adjoint of the functor
given by precomposition π∗

d : F(gr) → F(gr×d).
A graded exponential functor of F(gr) is a sequence E• = (En)n∈N of objects of

F(gr) taking finite dimensional values together with natural isomorphisms E0 ≃
Z and π∗

2(E
m) ≃

⊕

i+j=m

Ei ⊠ Ej . The tensor power (graded) functor T • is not

exponential but we have a similar property which is useful in the computations
below:

(3) π∗
n(T

m ◦ a) ≃
⊕

i1+...+in=m

(T i1 ◦ a⊠ . . .⊠ T in ◦ a) ⊗
Si1×...×Sin

Z[Sm]

where T 0 ◦ a ≃ Z.
The following lemmas will be useful below.

Lemma 2.1. Let Surj(m,n) be the set of surjections from the set having m el-
ements to the one having n elements. For f ∈ Surj(m,n) such that for all k ∈
{1, . . . , n}, |f−1(k)| = ik there are unique maps α ∈ Surj(n, n) and s ∈ Surj(m,n)
such that f = s ◦α where α is the inverse of a (i1, . . . , in)-shuffle and s is an order
preserving surjection.

Lemma 2.2. For functors F ∈ F(gr) and G ∈ F(gr) there is a graded morphism

Ext∗F(gr)(a, F )⊗ Ext∗F(gr)(a, G) → Ext∗F(gr×gr)(a ⊠ a, F ⊠G)

which is an isomorphism if the values of F and Ext∗(a, F ) are torsion free.

Proof. There is a canonical isomorphism PA ⊠ PB ≃ Z[gr× gr
(

(A,B),−
)

] so

HomF(gr×gr)(PA ⊠ PB, F ⊠G) ≃ F (A)⊗G(B)

by the Yoneda lemma. Then the statement is a consequence of the Künneth for-
mula. �

Our first main result is the following theorem.

Theorem 2.3. Let n and m be natural integers, we have an isomorphism:

Ext∗F(gr)(T
n ◦ a, Tm ◦ a) ≃

{

Z[Surj(m,n)] if ∗ = m− n
0 otherwise

where Surj(m,n) is the set of surjections from a set having m elements to a set
having n elements.
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Proof.

Ext∗F(gr)(T
n ◦ a, Tm ◦ a)

≃ Ext∗F(gr×...×gr)(a
⊠n, Tm ◦ a ◦ πn) by the sum-diagonal adjunction

≃ Ext∗F(gr×...×gr)

(

a
⊠n,

⊕

i1+...+in=m

(T i1 ◦ a⊠ . . .⊠ T in ◦ a) ⊗
Si1×...×Sin

Z[Sm]
)

by 3

≃
⊕

i1+...+in=m

Ext∗F(gr×...×gr)

(

a
⊠n, (T i1 ◦ a⊠ . . .⊠ T in ◦ a) ⊗

Si1×...×Sin

Z[Sm]
)

≃
⊕

i1+...+in=m

(

n
⊗

k=1

Ext∗F(gr)(a, T
ik ◦ a)

)

⊗
Si1×...×Sin

Z[Sm] by Lemma 2.2

≃







⊕

i1+...+in=m

ik>0,∀k

(

Z ⊗
Si1×...×Sin

Z[Sm]
)

if ∗ = m− n

0 otherwise

where the last isomorphism follows from Proposition 1.3 and Remark 1.2.
Let f ∈ Surj(m,n), by Lemma 2.1 f admits a unique decomposition of the form

f = s◦α where α is the inverse of a (|f−1(1)|, . . . , |f−1(n)|)-shuffle and s is an order
preserving surjection. So we deduce that the map:

κ : Z[Surj(m,n)] →
⊕

i1+...+in=m

ik>0,∀k

(

Z ⊗
Si1×...×Sin

Z[Sm]
)

given by κ([f ]) = 1⊗ α ∈ Z ⊗
S|f−1(1)|×...×S|f−1(n)|

Z[Sm] is an isomorphism. �

Remark 2.4. The previous theorem is used in [3] to prove that, if n ≤ m, the
homological dimension of the functor T n◦a ∈ Fm(gr) in the category of polynomial
functors of degree ≤ m from gr to Ab is m− n (see [3, Proposition 4.1]).

For An and Bn ordered sets of cardinality n and f : An → Bn a bijection,
denote by f̄ : Bn → Bn the unique permutation of Bn such that f̄ ◦ u = f where
u : An → Bn is the unique order preserving map.

In the following proposition we make explicit the actions of the symmetric groups
on Ext∗F(gr)(T

n ◦ a, Tm ◦ a).

Proposition 2.5. The symmetric groups Sm and Sn act on Extm−n
F(gr)(T

n ◦a, Tm◦

a) ≃ Z[Surj(m,n)] in the following way: for σ ∈ Sm, τk,l ∈ Sn the transposition
of k and l where k, l ∈ {1, . . . , n} and f ∈ Surj(m,n)

[f ].σ =
∏

1≤i≤n

ǫ(σ|(f◦σ)−1(i))[f ◦ σ]

where σ|(f◦σ)−1(i) : (f ◦ σ)−1(i) → σ((f ◦ σ)−1(i))

τk,l.[f ] = (−1)(|f
−1(k)|−1)(|f−1(l)|−1)[τk,l ◦ f ].

Proof. Let f be an element of Surj(m,n) such that f = s ◦σ is the unique decom-
position of f of the form described in Lemma 2.1.

For σ ∈ Sm, the action of σ on Z[Surj(m,n)] is given by the following compo-
sition, where φ is the map given by the action of σ on

⊕

i1+...+in=m

(
n
⊗
k=1

Extik−1(a, a⊗ik)
⊗

Si1×...×Sin

Z[Sm])



EXTENSIONS BETWEEN FUNCTORS FROM FREE GROUPS 9

Z[Surj(m,n)]
≃

κ
,2 ⊕

i1+...+in=m

Z
⊗

Si1
×...×Sin

Z[Sm]

≃

��
⊕

i1+...+in=m

(
n
⊗

k=1
Extik−1(a, a⊗ik )

⊗

Si1
×...×Sin

Z[Sm])

φ

��
⊕

i1+...+in=m

(
n
⊗

k=1
Extik−1(a, a⊗ik )

⊗

Si1
×...×Sin

Z[Sm])

≃

��
Z[Surj(m,n)]

⊕

i1+...+in=m

Z
⊗

Si1
×...×Sin

Z[Sm]
κ−1

lr

we have

κ−1 ◦ φ ◦ κ([f ]) = κ−1 ◦ φ ◦ κ([s ◦ α]) = κ−1 ◦ φ
(

(1⊗ [α])|f−1(1)|,...,|f−1(n)|

)

= κ−1(
∏

1≤i≤n

ǫ(σ|(f◦σ)−1(i)) (1⊗[α◦σ])|f−1(1)|,...,|f−1(n)|) =
∏

1≤i≤n

ǫ(σ|(f◦σ)−1(i))[s◦α◦σ]

=
∏

1≤i≤n

ǫ(σ|(f◦σ)−1(i))[f ◦ σ]

where we deduce the third equality from Proposition 1.6 and where (−)i1,...,in
corresponds to the summand indexed by i1, . . . , in.

For τk,l ∈ Sn, we have τk,l ◦ f = τk,l ◦ s ◦ α = s′ ◦ Tk,l ◦ α where s′ is the order
preserving surjection fromm to n such that |s′−1(l)| = |s−1(k)|, |s′−1(k)| = |s−1(l)|
and |s′−1(q)| = |s′−1(q)| for q ∈ {1, . . . ,m} \ {k, l} and Tk,l is the permutation
obtained by the bloc transposition of s−1(k) and s−1(l). Note that Tk,l ◦ α is the
inverse of a (|(τk,l ◦ f)−1(1)|, . . . , |(τk,l ◦ f)−1(n)|)-shuffle.

For τk,l ∈ Sn, the action of τk,l on Z[Surj(m,n)] is given by the following
composition, where φ′ is the map given by the action of τk,l on

⊕

i1+...+in=m

(
n
⊗
k=1

Extik−1(a, a⊗ik)
⊗

Si1×...×Sin

Z[Sm])

Z[Surj(m,n)]
≃

κ
,2 ⊕

i1+...+in=m

Z
⊗

Si1
×...×Sin

Z[Sm]

≃

��
⊕

i1+...+in=m

(
n
⊗

k=1
Extik−1(a, a⊗ik )

⊗

Si1
×...×Sin

Z[Sm])

φ′

��
⊕

i1+...+in=m

(
n
⊗

k=1
Extik−1(a, a⊗ik )

⊗

Si1
×...×Sin

Z[Sm])

≃

��
Z[Surj(m,n)]

⊕

i1+...+in=m

Z
⊗

Si1
×...×Sin

Z[Sm]
κ−1

lr

we have

κ−1 ◦ φ′ ◦ κ([f ]) = κ−1 ◦ φ′ ◦ κ([s ◦ α]) = κ−1 ◦ φ′
(

(1⊗ [α])|f−1(1)|,...,|f−1(n)|

)
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= κ−1((−1)(ik−1)(il−1)1⊗ [Tk,l ◦ α]|(τk,l◦f)−1(1)|,...,|(τk,l◦f)−1(n)|)

= (−1)(ik−1)(il−1)[s′ ◦ α′] = (−1)(ik−1)(il−1)[τk,l ◦ f ]

where the third equality is a consequence of Lemma 1.7. �

3. Products and the structure of PROP

The aim of this section is to make explicit the Yoneda product and the external
product on Ext∗F(gr)(T

n ◦ a, Tm ◦ a) and to deduce the structure of the PROP

governing the graded groups Ext∗F(gr)(T
n ◦ a, Tm ◦ a).

Proposition 3.1. (1) The Yoneda product:

Y : Extm−l
F(gr)(T

l ◦ a, Tm ◦ a)⊗ Extn−mF(gr)(T
m ◦ a, T n ◦ a) → Extn−lF(gr)(T

l ◦ a, T n ◦ a)

is induced, via the isomorphism of Theorem 2.3, by the map

Y : Z[Surj(m, l)]⊗ Z[Surj(n,m)] → Z[Surj(n, l)]

given by

Y ([g]⊗ [f ]) =

l
∏

k=1

ǫ(τi,j |g−1(k))(−1)(|f
−1(i)|−1)(|f−1(j)|−1)[g ◦ f ]

where f ∈ Surj(n,m) and g ∈ Surj(m, l) is of the form g = s ◦ τi,j where
s is an order preserving surjection and τi,j ∈ Sm denotes the transposition
of i and j.

(2) The external product

Extm−l
F(gr)(T

l◦a, Tm◦a)⊗Extn−pF(gr)(T
p◦a, T n◦a) → Extm+n−l−p

F(gr) (T l+p◦a, Tm+n◦a)

is induced by the disjoint union of sets via the isomorphism of Theorem
2.3.

Proof. (1) Considering the action of HomF(gr)(T
m ◦ a, Tm ◦ a) ≃ Z[Sm] on

Extm−l
F(gr)(T

l ◦ a, Tm ◦ a) and on Extn−mF(gr)(T
m ◦ a, T n ◦ a) we obtain that the

map

Extm−l
F(gr)(T

l ◦ a, Tm ◦ a)⊗ Extn−mF(gr)(T
m ◦ a, T n ◦ a) → Extn−lF(gr)(T

l ◦ a, T n ◦ a)

induces a map:

Extm−l(T l ◦ a, Tm ◦ a) ⊗
Sm

Extn−m(Tm ◦ a, T n ◦ a) → Extn−l(T l ◦ a, T n ◦ a).

So the signs can easily be deduced from Proposition 2.5.
(2) We have

Extm−l(T l ◦ a, Tm ◦ a) ≃
⊕

i1+...+il=m

(
l
⊗
k=1

Extil−1(a, a⊗il)
⊗

Si1×...×Sil

Z[Sm])

Extn−p(T p ◦ a, T n ◦ a) ≃
⊕

j1+...+jp=n

(
p

⊗
k=1

Extjp−1(a, a⊗jp)
⊗

Sj1×...×Sjp

Z[Sn])

and

Extm+n−l−p(T l+p◦a, Tm+n◦a) ≃
⊕

i1+...+il+p=m+n

(
l+p
⊗
k=1

Extil+p−1(a, a⊗il+p)
⊗

Si1×...×Sil+p

Z[Sm+n])

For fixed i1, . . . , il, j1, . . . jk such that i1+ . . .+ il = m and j1+ . . .+ jp = n,
Ek ∈ Extik−1(a, a⊗ik) and Fα ∈ Extjα−1(a, a⊗jα) and σ ∈ Sn and σ′ ∈ Sm

the external product is given by the map

E1 ⊗ . . . El ⊗ σ ⊗ F1 ⊗ . . .⊗ Fp ⊗ σ′ 7→ E1 ⊗ . . .⊗ El ⊗ F1 ⊗ . . .⊗ Fp ⊗ σ ∨ σ′
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where σ∨σ′ : m+n→ m+n is the permutation such that σ∨σ′(i) = σ(i) for
1 ≤ i ≤ n and σ∨σ′(i) = σ′(i) for n+1 ≤ i ≤ n+m. This map corresponds
to the disjoint union via the isomorphism obtained in Theorem 2.3.

�

For i1, . . . , ik integers, iterating the external product, we obtain a graded map

E i1,...,ik : Ext∗F(gr)(a, T
i1◦a)⊗. . .⊗Ext∗F(gr)(a, T

ik◦a) → Ext∗F(gr)(T
k◦a, T i1+...+ik◦a).

This map is Si1 × . . . ×Sik -equivariant by Propositions 1.6 and 2.5. It induces a
map

⊕

i1+...+ik=m

ip>0,∀p

k
⊗

p=1

Ext∗F(gr)(a, T
ip ◦ a) ⊗

Si1×...×Sik

Z[Sm] → Ext∗F(gr)(T
k ◦ a, Tm ◦ a)

which is an isomorphism by the exponential type property (see the proof of Theorem
2.3). We deduce that the elements of Ext∗F(gr)(T

k ◦ a, Tm ◦ a) are obtained from

elements of Ext∗F(gr)(a, T
i ◦ a) using the external product. In other words, the

isomorphism of Theorem 2.3 corresponds to the following statement.

Proposition 3.2. The external product induces, with the respect to the action on
the second variable, an isomorphism

T(
⊕

m≥0

Λ(m)[m− 1])
≃
−→ Ext(T •1 ◦ a, T •2 ◦ a)

where T is the tensor product of symmetric sequences and •1 corresponds to the
tensor length. The action of the symmetric group S•1 corresponds to the usual
signs for the grading [−].

Recall (see for example [9, section 2.1]) that tensor product of symmetric se-
quences M and N is given by

(M ⊗N)(n) =
⊕

p+q=n

IndSn

Sp×Sq
M(p)⊗N(q).

By Proposition 3.1 (2), the graded category E having as objects natural numbers,
where the morphisms from m to l are given by the groups Ext∗F(gr)(T

l ◦ a, Tm ◦ a)

and where the composition is given by the Yoneda product is a graded PROP (i.e.
a graded symmetric monoidal category with objects the natural numbers whose
symmetric monoidal structure is given by the sum of integers). We prove below
that this graded PROP is the PROP associated to its endomorphism operad whose
definition we recall.

Definition 3.3. The endomorphism operad associated to the graded PROP E is the
graded symmetric sequence Q = {Q(n)}n≥0 given by Q(n) = Ext∗F(gr)(a, T

n ◦ a).

The maps

γ(i1, . . . , ik) : Q(k)⊗Q(i1)⊗ . . .Q(ik) → Q(i1 + . . .+ ik)

are given by

γ(i1, . . . , ik)(x, xi1 , . . . , xik) = Y(x, E i1,...,ik(xi1 , . . . , xik ))

for x ∈ Q(k) and xil ∈ Q(il).

Remark 3.4. Note the similarity between the operad Q and the determinant operad
introduced by Ginzburg and Kapranov in [10, 1.3.21]. The determinant operad P
is the operad in gAb− such that P(n) = Λ(n)[1−n] (the sign representation of Sn

placed in degree (1− n)).
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The graded PROP C freely generated by a graded operad P is a graded symmetric
monoidal category such that C(1, n) = P (n). We refer the reader to [11, Definition
1.5] for the concrete description of the composition in this PROP in the ungraded
case, which can be easily extend to the graded case. Note that there are PROPs
which do not come from an operad.

Proposition 3.5. The graded category E is isomorphic to the graded PROP Ω(Q)
freely generated by the operad Q.

Proof. By definition of the graded PROP freely generated by an operad we have a
canonical functor

Ω(Q) → E

which is bijective on objects and on morphisms by Theorem 2.3. So it is an iso-
morphism of categories. �

4. Applications

In this section, we deduce from Theorem 2.3 information on Ext-groups between
some other functors of F(gr).

The next result is used in the proof [3, corollaire 3.3].

Proposition 4.1. Let m and n be integers such that m ≥ n > 0. We have:

Extm−n
F(gr)(qn(P̄ ), T

m ◦ a) 6= 0.

Proof. Let g ∈ Hom(a⊗n, qnP̄ ) be the kernel of the map qnP̄ → qn−1P̄ . More
concretely, for G ∈ gr, g : a⊗n(G) → qnP̄ (G) ≃ IG/In+1G is given by

g(g1 ⊗ . . .⊗ gn) = ([g1]− 1) . . . ([gn]− 1).

We denote by f the canonical generator of HomFn(gr)(qnP̄ , a
⊗n) ≃ Z i.e. the

natural transformation corresponding to 1 ∈ Z by the natural isomorphisms

HomFn(gr)(qnP̄ , a
⊗n) ≃ HomF(gr)(P̄ , a

⊗n) ≃ cr1(a
⊗n)(Z) ≃ Z

where the second isomorphism is given by the Yoneda lemma and where cr1 de-
notes the first cross-effect. More explicitly, for G ∈ gr, the group morphism
f : IG/In+1G ≃ qnP̄ (G) → a⊗n(G) is given by:

f([g]− 1) = g⊗n.

Using the relation ([g1]− 1)([g2]− 1) = ([g1 + g2]− 1)− ([g1]− 1)− ([g2]− 1) in IG,
we obtain

f(([g1]− 1)([g2]− 1) . . . ([gn]− 1)) =
∑

σ∈Sn

gσ(1) ⊗ . . .⊗ gσ(n).

We deduce that the composition a⊗n
g
−→ qnP̄

f
−→ a⊗n is the trace map denoted

by tr. This gives rise to a commutative diagram:

Extm−n
F(gr)(T

n ◦ a, Tm ◦ a)

��

tr∗ ,2 Extm−n
F(gr)(T

n ◦ a, Tm ◦ a)

Extm−n
F(gr)(qn(P̄ ), T

m ◦ a).

18
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

We prove that the map tr∗ is non-zero. Let f ∈ Surj(m,n) be the surjection
defined by f(i) = i for i ∈ {1, . . . , n− 1} and f(k) = n for k ≥ n. By Proposition
2.5 we have:

tr∗(f) =
∑

σ∈Sn

ǫσ[σ ◦ f ] = [f ] +
∑

σ∈Sn\{Id}

ǫσ[σ ◦ f ] 6= 0
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where ǫσ ∈ {−1, 1} and tr∗(f) : Z[Surj(m,n)] → Z[Surj(m,n)] is the map induced
by tr∗ via the isomorphism in Proposition 2.3.

So, we deduce from the previous commutative diagram thatExtm−n
F(gr)(qn(P̄ ), Tm◦

a) is non zero. �

In the rest of this section we deduce from Theorem 2.3 the computation of Ext-
groups between certain functors from gr to the category of Q-modules.

For M an abelian group, recall that Sn(M) = (T n(M))Sn
where Sn acts by

the permutation of variables and Λn(M)⊗Z[1/2] = (T n(M)⊗Z[1/2])Sn
where Sn

acts by the permutation of variables and the multiplication by the signature.
As Q[Sn] is semi-simple, the functors (Sn ◦ a) ⊗ Q and (Λn ◦ a)⊗ Q are direct

summands of the functor (T n ◦ a) ⊗ Q. This allows us to obtain the rational
computations in the following theorem.

Theorem 4.2. Let n and m be natural integers, we have isomorphisms:

Ext∗F(gr)((Λ
n ◦ a)⊗ Q, (Λm ◦ a)⊗Q) ≃

{

Qρ(m,n) if ∗ = m− n
0 otherwise

where ρ(m,n) denotes the number of partitions of m into n parts.

Ext∗F(gr)((S
n ◦ a)⊗Q, (Sm ◦ a)⊗Q) ≃

{

Q if n = m and ∗ = 0
0 otherwise

Ext∗F(gr)((Λ
n ◦ a)⊗Q, (Sm ◦ a)⊗Q) ≃







Q if n = m = 0 and ∗ = 0
or n = m = 1 and ∗ = 0

0 otherwise

Ext∗F(gr)((S
n ◦ a)⊗Q, (Λm ◦ a)⊗Q) ≃







Q if n = m = 0 and ∗ = 0
or n = 1 and ∗ = m− 1

0 otherwise

Ext∗F(gr)((Λ
n ◦ a)⊗Q, (Tm ◦ a)⊗Q) ≃

{

QS(m,n) if ∗ = m− n
0 otherwise

Ext∗F(gr)((S
n ◦ a)⊗Q, (Tm ◦ a)⊗Q) ≃

{

QS(m,n) if ∗ = m− n
0 otherwise

where S(m,n) denotes the Stirling partition number (i.e. the number of ways to
partition a set of m elements into n non-empty subsets).

Ext∗F(gr)((T
n ◦ a)⊗Q, (Sm ◦ a)⊗Q) ≃

{

Qr(m,n) if m = n and ∗ = 0
0 otherwise

and

Ext∗F(gr)((T
n ◦ a)⊗Q, (Λm ◦ a)⊗Q) ≃

{

Qr(m,n) if ∗ = m− n
0 otherwise

where r(m,n) denotes the number of ordered partition of m into n parts.

The proof of this theorem relies on the following lemma:

Lemma 4.3. Let G be a group and E a G-set. Consider a Q-linear action of G
on Q[E], such that

g.[e] = α(g, e)[g.e]

where α : G× E → {1,−1} is a map, then

Q[E]G ≃ Q[{e ∈ E | ∀g ∈ G s.t. g.e = e we have α(g, e) = 1}/G].
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Proof of Theorem 4.2. For F and G functors of type T k, Sk or Λk we determine
the action of Sn ×Sm on Ext∗F(gr)((T

n ◦ a)⊗Q, (Tm ◦ a)⊗Q) such that

Ext∗F(gr)((F ◦ a)⊗Q, (G ◦ a)⊗Q) ≃ Ext∗F(gr)((T
n ◦ a)⊗Q, (Tm ◦ a)⊗Q)Sn×Sm

≃ Q[Surj(m,n)]Sn×Sm
.

By Lemma 4.3, it is sufficient to determine this action for the elements (σ′, σ′′) ∈
Sn ×Sm such that (σ′, σ′′).f = f .

Let f be an element of Surj(m,n) such that f = s◦σ is the unique decomposition
of f of the form described in Lemma 2.1. The groupSn×Sm acts on Surj(m,n) by
(σ′, σ′′).f = σ′◦f ◦σ′′−1. The elements (σ′, σ′′) ∈ Sn×Sm such that (σ′, σ′′).f = f
are products of elements of the two following forms

• (τi,j , σ
−1Ti,jσ) for i and j such that |f−1(i)| = |f−1(j)| and Ti,j is the

permutation obtained by the bloc transposition of s−1(i) and s−1(j);
• (Id, σi1 . . . σin) where σik is a permutation of f−1(k).

In the following, for F and G functors of type T k, Sk or Λk and (σ′, σ′′) ∈
Sn×Sm of the previous forms, we determine the map α : (Sn×Sm)×Surj(m,n) →
{1,−1} such that g.[e] = α(g, e)[g.e].

- For F = Λn and G = Λm, we have:

α((τi,j , σ
−1Ti,jσ), f) = ǫ(τi,j)ǫ(σ

−1Ti,jσ) Π
1≤i≤n

ǫ(σ−1Ti,jσ|(f◦(σ−1Ti,jσ)−1(i))(−1)(|f
−1(i)|−1)2 = 1

since
ǫ(σ−1Ti,jσ) = ǫ(Ti,j) = (−1)|f

−1(i)|2

and
ǫ(σ−1Ti,jσ|(f◦(σ−1Ti,jσ)−1(i)) = 1;

and

α((Id, σi1 . . . σin), f) = ǫ(σi1 . . . σin) Π
1≤i≤n

ǫ(σi1 . . . σin |(f◦(σi1 ...σin )−1(i)) = 1

since
ǫ(σi1 . . . σin) = ǫ(σi1) . . . ǫ(σin)

and
ǫ(σi1 . . . σin |(f◦(σi1 ...σin )−1(k)) = ǫ(σik).

By Lemma 4.3 we deduce that

Ext∗F(gr)((Λ
n◦a)⊗Q, (Λm◦a)⊗Q) ≃ Q[Surj(m,n)]Sn×Sm

≃ Q[Surj(m,n)/Sn ×Sm]

≃

{

Qρ(m,n) if ∗ = m− n
0 otherwise

- For F = Sn and G = Sm, we have

α((τi,j , σ
−1Ti,jσ), f) = (−1)|f

−1(i)|2+1,

α((Id, σi1 . . . σin), f) = ǫ(σi1) . . . ǫ(σin).

So, if n 6= m

{f ∈ Surj(m,n) | ∀(σ′, σ′′) ∈ Sn ×Sm s.t. (σ′, σ′′).f = f we have α((σ′, σ′′), f) = 1} = ∅

and if n = m

{f ∈ Surj(m,n) | ∀(σ′, σ′′) ∈ Sn ×Sm s.t. (σ′, σ′′).f = f we have α((σ′, σ′′), f) = 1}

= Surj(m,n).

- For F = Sn and G = Λm,

α((τi,j , σ
−1Ti,jσ), f) = −1,

α((Id, σi1 . . . σin), f) = 1.
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So, if n 6= 1 or n = 0 and m 6= 0

{f ∈ Surj(m,n) | ∀(σ′, σ′′) ∈ Sn ×Sm s.t. (σ′, σ′′).f = f we have α((σ′, σ′′), f) = 1} = ∅

and if n = 1 or n = m = 0

{f ∈ Surj(m,n) | ∀(σ′, σ′′) ∈ Sn ×Sm s.t. (σ′, σ′′).f = f we have α((σ′, σ′′), f) = 1}

is a set of cardinality 1.
- For F = Λn and G = Sm,

α((τi,j , σ
−1Ti,jσ), f) = (−1)|f

−1(i)|2 ,

α((Id, σi1 . . . σin), f) = ǫ(σi1) . . . ǫ(σin).

- For F = Λn and G = Tm, for f ∈ Surj(m,n) and σ′ ∈ Sn we have σ′.f 6= f ,
so

Q[Surj(m,n)]Sn
= Q[Surj(m,n)/Sn] ≃ QS(m,n)

where S(m,n) denotes the Stirling partition number.
- For F = Sn and G = Tm, for f ∈ Surj(m,n) and σ′ ∈ Sn we have σ′.f 6= f ,

so

Q[Surj(m,n)]Sn
= Q[Surj(m,n)/Sn] ≃ QS(m,n).

- For F = T n and G = Sm. We consider the action of Sm on Ext∗F(gr)((T
n ◦

a)⊗Q, (Tm ◦ a)⊗Q). We have:

α(σi1 . . . σin , f) = ǫ(σi1 ) . . . ǫ(σin).

So, if n 6= m

{f ∈ Surj(m,n) | ∀σ′′ ∈ Sm s.t. σ′′.f = f we have α(σ′′, f) = 1} = ∅

and if n = m

{f ∈ Surj(m,n) | ∀σ′′ ∈ Sm s.t. σ′′.f = f we have α(σ′′, f) = 1} = Surj(m,n)

so

Q[Surj(m,n)]Sm
= Q[Surj(m,n)/Sm] ≃ Qr(m,n)

where r(m,n) is the number of ordered partitions of m into n parts.
- For F = T n and G = Λm. We have:

α(σi1 . . . σin , f) = (ǫ(σi1 ) . . . ǫ(σin))
2 = 1.

So,

{f ∈ Surj(m,n) | ∀σ′′ ∈ Sm s.t. σ′′.f = f we have α(σ′′, f) = 1} = Surj(m,n)

so

Q[Surj(m,n)]Sm
= Q[Surj(m,n)/Sm] ≃ Qr(m,n)

where r(m,n) is the number of ordered partitions of m into n parts.
�

We deduce from Theorem 4.2 computations of rational Tor-groups. In fact, for
N : grop → Q-Mod we denote by N∨ the postcomposition of N with the duality
functor V 7→ Hom(V,Q). The Tor-groups can be deduced from the following
natural graded isomorphism:

(4) Hom(Torgr• (N,M),Q) ≃ Ext•F(gr)(M,N∨)

where M : gr → Q-Mod (see [4, Appendice A]).
For N : grop → Q-Mod, Fn the free group in n generators and an integer i,

Djament has shown [2, Théorème 1.10] that there is an isomorphism:

(5) colim
n∈N

Hi(Aut(Fn), N(Fn)) ≃
⊕

k+l=i

Torgrk (N,Λl ◦ (a⊗Q)).
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As an application of Theorem 4.2, using the previous result of Djament, we obtain
the following computations of stable homology:

Theorem 4.4. Let Hn = HomGr(Fn,Q). We have

colim
n∈N

H∗(Aut(Fn), T
d ◦ (a ⊗Q)(Hn)) ≃

{

QB(d) if ∗ = d
0 otherwise

where B(d) denotes the dth Bell number (i.e. the number of partitions of a set of d
elements);

colim
n∈N

H∗(Aut(Fn),Λ
d ◦ (a⊗Q)(Hn)) ≃

{

Qρ(d) if ∗ = d
0 otherwise

where ρ(d) denotes the number of partitions of d, and

colim
n∈N

H∗(Aut(Fn), S
d ◦ (a⊗Q)(Hn)) ≃







Q if ∗ = d = 0
or ∗ = d = 1

0 otherwise

where Sd is the d-th symmetric power.

Proof. For F : gr → Q-Mod such that for all k ∈ N

ExtkF(gr)(Λ
l ◦ (a⊗Q), F ◦ (a⊗Q))

is a finite vector space, we have the isomorphisms

colim
n∈N

Hi(Aut(Fn), F◦(a⊗Q)(Hn)) ≃
⊕

k+l=i

Torgrk (F◦(a⊗Q)◦HomGr(−,Q),Λl◦(a⊗Q))

≃
⊕

k+l=i

Hom(ExtkF(gr)(Λ
l ◦ (a⊗Q), F ◦ (a ⊗Q)),Q)

where the first isomorphism is Djament’s isomorphism (5) and the second is the
Tor-Ext isomorphism (4).

For F = T d, by Theorem 4.2 we obtain:

colim
n∈N

Hi(Aut(Fn), T
d◦(a⊗Q)(Hn)) ≃







0 if i 6= d
⊕

k+l=d

QS(d,l) =
d
⊕

l=0

QS(d,l) = QB(d) if i = d

The other results are obtained in a similar way. �
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Algèbre homologique. [Algebra. Chapter 10. Homological algebra]. MR 610795 (82j:18022)
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plectiques à coefficients tordus, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), no. 3, 395–459.
MR 2667021

5. , Sur l’homologie des groupes d’automorphismes des groupes libres à coefficients poly-
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Université de Strasbourg, Institut de Recherche Mathématique Avancée, Stras-
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