
HAL Id: hal-01224436
https://hal.science/hal-01224436v2

Preprint submitted on 11 Apr 2016 (v2), last revised 20 Sep 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extension between functors from groups
Christine Vespa

To cite this version:

Christine Vespa. Extension between functors from groups. 2016. �hal-01224436v2�

https://hal.science/hal-01224436v2
https://hal.archives-ouvertes.fr


EXTENSIONS BETWEEN FUNCTORS FROM GROUPS

CHRISTINE VESPA

Abstract. We compute Ext-groups between tensor powers com-
posed by the abelianization functor. More precisely, we compute
the groups Ext∗

F(gr)(T
n ◦ a, Tm ◦ a) where T n is the n-th tensor

power functor and a is the abelianization functor from the category
of free groups to abelian groups. These groups are shown to be non-
zero if and only if ∗ = m− n ≥ 0 and Extm−n

F(gr)(T
n ◦ a, Tm ◦ a) =

Z[Surj(m,n)] where Surj(m,n) is the set of surjections from the
set having m elements to the one having n elements. We make
explicit the action of symmetric groups on these groups and the
Yoneda and external products. We deduce from these computa-
tions those of other Ext-groups between functors from groups such
as symmetric and exterior powers. Combining these computations
with a recent result of Djament we obtain explicit computations
of stable homology of automorphism groups of free groups with
coefficients given by particular contravariant functors.

Stable homology with twisted coefficients of various families of groups
can be computed thanks to functor homology in a suitable category (see
[6] [15] [4] [5]). In particular, stable homology of automorphism groups
of free groups with coefficients given by a reduced polynomial covari-
ant functor is trivial (see [5]). Recently, Djament proved in [2] that
stable homology (resp. cohomology) of automorphism groups of free
groups with coefficients given by a reduced polynomial contravariant
(resp. covariant) functor is governed by Tor groups (resp. Ext groups)
in the category of functors from finitely generated free groups. The aim
of this paper is to give explicit computations of Ext and Tor groups
between concrete functors from groups to abelian groups in order to ob-
tain explicit computations of stable homology of automorphism groups
of free groups with coefficients given by a contravariant functor. Let
gr be a small skeleton of the category of finitely generated free groups,
F(gr) the category of functors from gr to abelian groups and a the
abelianization functor in F(gr). The principal result of this paper is:

Theorem 0.1. Let n and m be integers, we have an isomorphism:

Ext∗F(gr)(T
n ◦ a, Tm ◦ a) ≃

{

Z[Surj(m,n)] if ∗ = m− n
0 otherwise

where Surj(m,n) is the set of surjections from the set having m ele-
ments to the one having n elements.
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2 CHRISTINE VESPA

The actions of the symmetric groups Sm and Sn on Ext∗F(gr)(T
n ◦

a, Tm◦a) are induced by the composition of surjections via the previous
isomorphism, up to a sign (see Proposition 2.5 for the precise signs).

The Yoneda product is induced by the composition of surjections, up
to a sign, (see Proposition 3.1 for the precise signs) via the previous
isomorphism and the external product is induced by the disjoint union
of sets.

In particular for n = m = 1 we obtain that HomF(gr)(a, a) = Z

and Ext∗F(gr)(a, a) = 0 for ∗ > 0. Let ab be a small skeleton of the

category of finitely generated free abelian groups and F(ab) be the
categoy of functors from ab to abelian groups. The previous groups
should be compared with the groups Ext∗F(ab)(Id, Id) corresponding to
the MacLane homology of Z. This homology is computed by Bökstedt
by topological methods (unpublished) and reobtained in [7] by algebraic
methods and is non trivial. So this result is an illustration of the fact
that functor homology in F(gr) is easier than functor homology in
F(ab) (see also [3] for another illustration of this fact).

Theorem 0.1 is used in [3, Proposition 4.1 and 4.6] in order to com-
pute homological dimension in a category of polynomial functors.

The proof of the first part of Theorem 0.1 can be decomposed into
two steps corresponding to the first two sections of this paper. In the
first step we compute Ext∗F(gr)(a, T

m ◦ a) using an explicit projective
resolution of the abelianization functor a. In the second step we deduce
our result using the sum-diagonal adjunction and an exponential-type
property of tensor power functor T •. The next section is devoted to
the study of products on these Ext-groups and the description of the
PROP governing these Ext-groups. More precisely,

Let gAb− be the category of graded abelian groups where the com-
mutativity is given by: v ⊗ w 7→ (−1)|v|.|w|w ⊗ v.

We deduce from Theorem 0.1 the following results:

Proposition 0.2. (Propositions 3.2 and 3.4)

(1) The graded symmetric sequence Λ = {Λ(n)}n≥0 given by Λ(n) =
Ext∗F(gr)(a, T

n ◦ a) is an operad in gAb−.

(2) The graded category Ω(Λ) having as objects the finite sets n and
such that

HomΩ(Λ)(m,n) = Ext∗F(gr)(T
n ◦ a, Tm ◦ a)

is the graded PROP associated to the operad Λ.

In the last section we deduce from Theorem 0.1 other computations
of Ext-groups between symmetric power functor Sk, exterior power
functor Λk and tensor power functor. In particular, we obtain the
following results.
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Proposition 0.3. Let n and m be natural integers, we have isomor-
phisms:

Ext∗F(gr)((Λ
n ◦ a)⊗Q, (Λm ◦ a)⊗Q) ≃

{

Qρ(m,n) if ∗ = m− n
0 otherwise

where ρ(m,n) denotes the number of partitions of m into n parts.

Ext∗F(gr)((Λ
n ◦a)⊗Q, (Sm ◦a)⊗Q) ≃







Q if n = m = 0 and ∗ = 0
or n = m = 1 and ∗ = 0

0 otherwise

Ext∗F(gr)((Λ
n ◦ a)⊗Q, (Tm ◦ a)⊗Q) ≃

{

QS(m,n) if ∗ = m− n
0 otherwise

where S(m,n) denotes the Stirling partition number (i.e. the number
of ways to partition a set of m elements into n non-empty subsets).

By duality arguments we can obtain similar results for Tor groups.
In [2] Djament gives the description of stable homology of automor-

phisms of free groups with coefficients twisted by contravariant functors
in terms of Tor-groups between functors in F(gr). More precisely, for
N : grop → Q-Mod, Fn the free group in n generators and all integer i,
Djament obtains in [2, Théorème 1.10] the existence of an isomorphism:

colim
n∈N

Hi(Aut(Fn), N(Fn)) ≃
⊕

k+l=i

Torgrk (N,Λl ◦ (a⊗Q))

where Λl is the l-th exterior power functor. This statement is equivalent
to the following: for M : gr → Q-Mod, there exists an isomorphism:

colim
n∈N

H i(Aut(Fn),M(Fn)) ≃
⊕

k+l=i

Extkgr(Λ
l ◦ (a⊗Q),M).

To a covariant functor M : gr → Q-Mod wa can associate a con-
travariant functorN : grop → Q-Mod given byN(G) =M(HomGr(Fn,Q)).
As an application of Proposition 0.3, using the previous result of Dja-
ment, we obtain the following computations of stable homology:

Proposition 0.4. Let Hn = HomGr(Fn,Q). We have

colim
n∈N

H∗(Aut(Fn), T
d ◦ (a⊗Q)(Hn)) ≃

{

QB(d) if ∗ = d
0 otherwise

where B(d) denotes the d-th Bell number (i.e. the number of partitions
of a set of d elements),

colim
n∈N

H∗(Aut(Fn),Λ
d ◦ (a⊗Q)(Hn)) ≃

{

Qρ(d) if ∗ = d
0 otherwise
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where ρ(d) denotes the number of partitions of d, and

colim
n∈N

H∗(Aut(Fn), S
d ◦ (a⊗Q)(Hn)) ≃







Q if ∗ = d = 0
or ∗ = d = 1

0 otherwise

where Sd is the d-th symmetric power.

The two last results of the previous proposition were conjectured by
Randal-Williams in [13] which motivated the present work. More pre-
cisely, combining this proposition with the stable range of such homol-
ogy groups obtained by Randal-Williams and Wahl in [14] we obtain
the conjecture of Randal-Williams in [13, Corollary 6.4]. The previ-
ous proposition is also obtained in a recent work of Randal-Williams
[12] using independent topological methods. Proposition 0.4 answers
partially to Problem 17 asked by Morita in [11].

Last section contains also the following proposition used in the appli-
cation section of [3]. Let qn be the left adjoint of the inclusion functor
from polynomial functors of degree ≤ n to F(gr) and P̄ in F(gr) such
that Z[gr(Z,−)] ≃ Z⊕ P̄ , we have:

Proposition 0.5. Let m and n be integers such that m ≥ n > 0. We
have:

Extm−n(qn(P̄ ), T
m ◦ a) 6= 0.

Notation: We denote by Gr the category of groups, Ab the cat-
egory of abelian groups , gr (resp. ab), a small skeleton of the full
subcategory of Gr (resp. Ab), having as objects finitely generated
free objects. For example, the objects of gr are the groups Z∗n for
n ∈ N where ∗ is the free product.

We denote by a : gr → ab the abelianization functor.
Let C be a small pointed category having finite coproduct. We denote

by F(C) the category of functors from C toAb. This category is abelian
and has enough projective and injective objects. We denote by Pn the
representable functor Pn := Z[gr(Z∗n,−)] in F(gr). A reduced functor
F ∈ F(C) satisfies F (0) = 0. We denote by P̄ the reduced part of P1

(i.e. P1 ≃ Z⊕ P̄ ).
For d ∈ N we denote by Fd(gr) the full subcategory of F(gr) of poly-

nomial functors of degree ≤ d and id : Fd(gr) → F(gr) the inclusion
functor. This functor has a left adjoint denoted by qd. The functors
qi(P̄ ) are called Passi functors (see [9]). For G ∈ gr we have a natu-
ral isomorphism qi(P̄ )(G) ≃ IG/I i+1G where IG is the augmentation
ideal (see, for example [3, Proposition 3.7]).

In the following, we sometimes write Ext∗(F,G) instead ofExt∗F(gr)(F,G)
to shorten formulas.

We denote by gAb− the symmetric monoidal category whose objects
are graded abelian groups V • =

⊕

i∈Z

V i and morphisms are linear maps
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preserving the grading. The symmetric monoidal structure is given
by the tensor product. The commutativity isomorphism V • ⊗W • →
W • ⊗ V • is defined by:

v ⊗ w 7→ (−1)|v|.|w|w ⊗ v.

1. Computation of Ext∗F(gr)(a, T
m ◦ a)

This section is based on the existence of an explicit projective res-
olution of a in F(gr). This resolution is already mentioned in [10,
Proposition 5.1] and used in [5].

Consider the following simplicial object in F(gr):

(1.0.1) . . .
,2

... ,2 Pn+1
,2

... ,2 Pn
,2

... ,2 . . .
,2
,2
,2,2 P2

,2 ,2,2 P1
,2
,2 P0

where δi : Pn+1 → Pn for 0 ≤ i ≤ n+ 1 are defined by:

δ0[g1, g2, . . . , gn, gn+1] = [g2, . . . , gn, gn+1]

δi[g1, g2, . . . , gn, gn+1] = [g1, . . . , gigi+1, . . . , gn, gn+1] for 1 ≤ i ≤ n

δn+1[g1, g2, . . . , gn, gn+1] = [g1, g2, . . . , gn]

and ǫi : Pn → Pn+1 for 1 ≤ i ≤ n+ 1 are defined by:

ǫi[g1, . . . , gn] = [g1, . . . , gi−1, 1, gi, . . . , gn].

We denote by C• the unnormalized chain complex associated to this
simplicial object and D• the complex defined by Di = Ci+1 for i ≥ 0
and Di = 0 for i < 0.

Recall that the homology of a free group is naturally isomorphic to
its abelianization in degree 1 and is zero in degree > 1. So D• is a
resolution of a and we obtain:

Proposition 1.1. (Cf. [10, Proposition 5.1]) The exact sequence in
F(gr):

. . . Pn+1
dn−→ Pn → . . .→ P2

d1−→ P1

is a projective resolution of the abelianization functor a : gr → Ab.
The natural transformation dn : Pn → Pn−1 is given on a group G by
the linear map Z[Gn+1] → Z[Gn] such that:

dn([g1, . . . , gn+1]) = [g2, . . . , gn+1]

+
n

∑

i=1

(−1)i[g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1] + (−1)n+1[g1, . . . , gn]

for all (g1, . . . , gn+1) ∈ Gn+1.

This explicit projective resolution play a crucial rôle in [5].
For F : gr → Ab and n an integer, we have

ExtnF(gr)(a, F ) = πn+1(F (Z∗•)) = Hn+1(NF (Z∗•))
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where F (Z∗•) is the cosimplicial abelian group obtained when we apply
HomF(gr)(−, F ) to the simplicial object 1.0.1 and using the natural iso-
morphism HomF(gr)(Pn, F ) ≃ F (Z∗n) and NF (Z∗•) is the normalized
cochain complex.

Proposition 1.2. Let m ≥ 1 be a natural integer, we have an isomor-
phism:

Ext∗F(gr)(a, T
m ◦ a) ≃

{

Z if ∗ = m− 1
0 otherwise

The proof of this proposition is based on the following lemma.

Lemma 1.3. If F : gr → Ab and G : gr → Ab are functors, then
there is a graded morphism

Ext∗F(gr)(a, F )⊗Ext∗F(gr)(a, G) → Ext∗+1
F(gr)(a, F ⊗G)

which is an isomorphism if F and G take values in finitely generated
free abelian groups and Ext∗F(gr)(a, F ) is torsion free.

Proof. Let (F ⊗ G)(Z∗•) be the cosimplicial abelian group obtained
when we apply HomF(gr)(−, F ⊗ G) to the cosimplicial object 1.0.1.
We have

HomF(gr)(Pn, F ⊗G) ≃ (F ⊗G)(n) = F (n)⊗G(n).

So (F ⊗ G)(Z∗•) = F (Z∗•) × G(Z∗•) where × denote the product of
cosimplicial abelian groups. By the Eilenberg-Zilber theorem, the map

N(F (Z∗•)×G(Z∗•)) → NF (Z∗•)⊗NG(Z∗•)

is a quasi-isomorphism. So, we have isomorphisms

Extn+1(a, F⊗G) ≃ Hn+1
(

N(F (Z∗•)×G(Z∗•))
)

≃ Hn+1(NF (Z∗•)⊗NG(Z∗•)).

Since F and G take values in finitely generated free abelian groups, the
complexes NF (Z∗•) and NG(Z∗•) are finitely generated free so, by the
Künneth formula (see [16] Theorem 5.5.11), there is a natural short
exact sequence

0 → Ext∗(a, F )⊗Ext∗(a, G) → H∗(NF (Z∗•)⊗NG(Z∗•)) → Tor1
Z
(Ext∗(a, F ), Ext∗(a, G)) → 0

We deduce the isomorphism of the statement from the torsion free hypothesis. �

Proof of Proposition 1.2. We prove the result by induction on m. To
start the induction, Ext∗F(gr)(a, a) is the homology of the complex:

. . . Zn+1lr Zn
δnlr . . .lr Z2lr Z

δ1lr

which is trivial for ∗ ≥ 1 and is isomorphic to Z for ∗ = 0. In particular
Ext∗F(gr)(a, a) is torsion free. Assume that the statement is true for m.
Applying Lemma 1.3 to a and Tm ◦a which take finitely generated free
values, we have a graded isomorphism:

Ext∗F(gr)(a, T
m+1 ◦ a) ≃ Ext∗F(gr)(a, T

m ◦ a)⊗Ext∗F(gr)(a, a)
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and we obtain the result by the inductive step and the computation of
Ext∗F(gr)(a, a).

�

Remark 1.4. Proposition 1.2 is used in [3] to prove that the global
dimension of the category of polynomial functors of degree ≤ m from
gr to the category of Q-vector spaces has global dimension m− 1 (see
[3, Proposition 4.6]).

Remark 1.5. Note that

Ext∗F(gr)(a, T
0 ◦ a) ≃ Ext∗F(gr)(a,Z) = 0

The symmetric group Sm acts on Tm by permuting the factors of
the tensor product. This action induces an action of Sm on the exten-
sion groups Extm−1

F(gr)(a, T
m ◦ a) that we make explicit in the following

proposition.

Proposition 1.6. The symmetric group Sm acts on Extm−1
F(gr)(a, T

m◦a)

by the following way: for σ ∈ Sm and E ∈ Extm−1
F(gr)(a, T

m ◦ a)

E.σ = ǫ(σ)E

where ǫ is the signature.

The proof of this proposition relies on the following wellknown lemma
(see [1, X 62]).

Lemma 1.7. Let A be a commutative ring, (C, d) and (C ′, d′) be com-
plexes of A-modules. The map σ(C,C ′) : C ⊗

A
C ′ → C ′ ⊗

A
C given by

σ(C,C ′)(x⊗ x′) = (−1)|x| |x′|x′ ⊗ x is an isomorphism of complexes.

Proof of Proposition 1.6. Since Ext∗F(gr)(a, a) is torsion free by Propo-
sition 1.2 and a takes finitely generated free values, by applying itera-
tively Lemma 1.3 for F = a and G = a we obtain that the morphism

ψ :

m
⊗

i=1

Ext∗F(gr)(a, a) → Ext∗+m−1
F(gr) (a, Tm ◦ a)

is an isomorphism.
Let σ ∈ Sm, the action of σ on Extm−1

F(gr)(a, T
m ◦ a) is given by the

following composition where φ :
m
⊗

i=1

Ext∗F(gr)(a, a) →
m
⊗

i=1

Ext∗F(gr)(a, a)

is given by the action of σ on
m
⊗

i=1

Ext∗F(gr)(a, a)

Ext∗+m−1
F(gr) (a, Tm ◦ a)

≃

ψ−1
,2
m
⊗

i=1

Ext∗(a, a)
φ

,2
m
⊗

i=1

Ext∗(a, a)
≃

ψ
,2 Ext∗+m−1

F(gr) (a, Tm ◦ a)

By Lemma 1.7, we have

φ(x1 ⊗ . . .⊗ xn) = ǫ(σ)xσ(1) ⊗ . . .⊗ xσ(m)
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where xk is a generator of the k-th copy ofExt∗F(gr)(a, a) in
m
⊗

i=1

Ext∗F(gr)(a, a).

�

We denote by Λ(m)[m − 1] the symmetric sequence of objects of
gAb− which is equal to the sign representation of Sm placed in degree
m− 1 and 0 in other degrees. It follows from Propositions 1.2 and 1.6
that Ext∗F(gr)(a, T

m ◦ a) = Λ(m)[m− 1].

2. Computation of Ext∗F(gr)(T
n ◦ a, Tm ◦ a)

This section is based on the sum-diagonal adjunction, the exponen-
tial type property of tensor powers and the Künneth formula.

We begin this section with some recollections on these ingredients.
We refer the reader to [4, Appendice B] for more details.

For F and G in F(gr), their external tensor product F ⊠ G is the
functor sending (X, Y ) to F (X)⊗G(Y ). This yields a functor:

−⊠− : F(gr)×F(gr) → F(gr× gr).

We denote by πd : gr
×d → gr the functor obtained by iteration of the

free product (which is the categorical sum in gr) and δd : gr → gr×d the
diagonal functor. The functor δd is right adjoint of the functor πd. We
deduce that the functor given by precomposition δ∗d : F(gr×d) → F(gr)
is left adjoint of the functor given by precomposition π∗

d : F(gr) →
F(gr×d).

The tensor power (graded) functor T • is not exponential but we have
a similar property which is useful in the following computations:

(2.0.1) π∗
n(T

m ◦a) ≃
⊕

i1+...+in=m

(T i1 ◦a⊠ . . .⊠T in ◦a) ⊗
Si1

×...×Sin

Z[Sm]

where T 0 ◦ a ≃ Z.
The following lemmas will be useful below.

Lemma 2.1. Let Surj(m,n) be the set of surjections from the set
having m elements to the one having n elements. For f ∈ Surj(m,n)
such that for all k ∈ {1, . . . , n}, |f−1(k)| = ik there are unique maps
α ∈ Surj(n, n) and s ∈ Surj(m,n) such that f = s ◦ α where α is the
inverse of a (i1, . . . , in)-shuffle and s is an order preserving surjection.

Lemma 2.2. If F : gr → Ab and G : gr → Ab are functors, then
there is a graded morphism

Ext∗F(gr)(a, F )⊗ Ext∗F(gr)(a, G) → Ext∗F(gr×gr)(a⊠ a, F ⊠G)

which is an isomorphism if F and G take values in finitely generated
free abelian groups and Ext∗(a, F ) is torsion free.

Proof. There is a canonical isomorphism P gr
A ⊠ P gr

B ≃ P gr×gr

(A,B) so

HomF(gr×gr)(P
gr

A ⊠ P gr

B , F ⊠G) ≃ F (A)⊗G(B).
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Then the statement is a consequence of the Künneth formula. �

Our first main result is the following theorem.

Theorem 2.3. Let n and m be integers, we have an isomorphism:

Ext∗F(gr)(T
n ◦ a, Tm ◦ a) ≃

{

Z[Surj(m,n)] if ∗ = m− n
0 otherwise

where Surj(m,n) is the set of surjections from the set having m ele-
ments to the one having n elements.

Proof.

Ext∗F(gr)(T
n ◦ a, Tm ◦ a)

≃ Ext∗F(gr×...×gr)(a
⊠n, Tm ◦ a ◦ πn) by the sum-diagonal adjunction

≃ Ext∗F(gr×...×gr)

(

a
⊠n,

⊕

i1+...+in=m

(T i1 ◦ a⊠ . . .⊠ T in ◦ a) ⊗
Si1

×...×Sin

Z[Sm]
)

by 2.0.1

≃
⊕

i1+...+in=m

Ext∗F(gr×...×gr)

(

a
⊠n, (T i1 ◦ a⊠ . . .⊠ T in ◦ a) ⊗

Si1
×...×Sin

Z[Sm]
)

≃
⊕

i1+...+in=m

(

n
⊗

k=1

Ext∗F(gr)(a, T
ik ◦ a)

)

⊗
Si1

×...×Sin

Z[Sm] by Lemma 2.2

≃







⊕

i1+...+in=m

ik>0,∀k

(

Z ⊗
Si1

×...×Sin

Z[Sm]
)

if ∗ = m− n

0 otherwise

where the last isomorphism follows from Proposition 1.2 and Remark
1.5.

Let f ∈ Surj(m,n), by Lemma 2.1 f admits a unique decomposition
of the form f = s◦α where α is the inverse of a (|f−1(1)|, . . . , |f−1(n)|)-
shuffle and s is an order preserving surjection. So we deduce that the
map:

κ : Z[Surj(m,n)] →
⊕

i1+...+in=m

ik>0,∀k

(

Z ⊗
Si1

×...×Sin

Z[Sm]
)

given by κ([f ]) = 1⊗α ∈ Z ⊗
S|f−1(1)|×...×S|f−1(n)|

Z[Sm] is an isomorphism.

�

Remark 2.4. The previous theorem is used in [3] to prove that the ho-
mological dimension of the functor T n ◦a in the category of polynomial
functors of degree ≤ m from gr to Ab is m − n (see [3, Proposition
4.1]).

For An and Bn ordered sets of cardinality n and f : An → Bn a
bijection. We denote by f̄ : Bn → Bn the unique permutation of Bn

such that f̄ ◦ u = f where u : An → Bn is the unique order preserving
map.
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In the following proposition we make explicit the actions of symmet-
ric groups on Ext∗F(gr)(T

n ◦ a, Tm ◦ a).

Proposition 2.5. The symmetric groups Sm andSn act on Ext
m−n
F(gr)(T

n◦

a, Tm◦a) ≃ Z[Surj(m,n)] by the following way: for σ ∈ Sm, τk,l ∈ Sn

the transposition of k and l where k, l ∈ {1, . . . , n} and f ∈ Surj(m,n)

[f ].σ =
∏

1≤i≤n

ǫ(σ|(f◦σ)−1(i))[f ◦ σ]

where σ|(f◦σ)−1(i) : (f ◦ σ)−1(i) → σ((f ◦ σ)−1(i))

τk,l.[f ] = (−1)(|f
−1(k)|−1)(|f−1(l)|−1)[τk,l ◦ f ].

Proof. Let f be an element of Surj(m,n) such that f = s ◦ σ is the
unique decomposition of f of the form described in Lemma 2.1.

For σ ∈ Sm, the action of σ on Z[Surj(m,n)] is given by the fol-
lowing composition, where φ is the map given by the action of σ on

⊕

i1+...+in=m

(
n

⊗
k=1

Extik−1(a, a⊗ik)
⊗

Si1
×...×Sin

Z[Sm])

Z[Surj(m,n)]
≃

κ
,2

⊕

i1+...+in=m

Z
⊗

Si1
×...×Sin

Z[Sm]

≃

��
⊕

i1+...+in=m

(
n
⊗
k=1

Extik−1(a, a⊗ik)
⊗

Si1
×...×Sin

Z[Sm])

φ

��
⊕

i1+...+in=m

(
n
⊗
k=1

Extik−1(a, a⊗ik)
⊗

Si1
×...×Sin

Z[Sm])

≃

��
Z[Surj(m,n)]

⊕

i1+...+in=m

Z
⊗

Si1
×...×Sin

Z[Sm]
κ−1

lr

we have

κ−1 ◦φ ◦κ([f ]) = κ−1 ◦φ ◦κ([s ◦α]) = κ−1 ◦φ
(

(1⊗ [α])|f−1(1)|,...,|f−1(n)|

)

= κ−1(
∏

1≤i≤n

ǫ(σ|(f◦σ)−1(i)) (1⊗[α◦σ])|f−1(1)|,...,|f−1(n)|) =
∏

1≤i≤n

ǫ(σ|(f◦σ)−1(i))[s◦α◦σ]

=
∏

1≤i≤n

ǫ(σ|(f◦σ)−1(i))[f ◦ σ]

where we deduce the third equality from Proposition 1.6 and where
−i1,...,in corresponds to the summand i1, . . . , in in the sum

⊕

i1+...+in=m

.

For τk,l ∈ Sn, we have τk,l◦f = τk,l◦s◦α = s′◦Tk,l◦α where s′ is the
order preserving surjection from m to n such that |s′−1(l)| = |s−1(k)|,
|s′−1(k)| = |s−1(l)| and |s′−1(q)| = |s′−1(q)| for q ∈ {1, . . . , m} \ {k, l}
and Tk,l is the permutation obtained by the bloc transposition of s−1(k)
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and s−1(l). Note that Tk,l◦α is the inverse of a (|(τk,l◦f)
−1(1)|, . . . , |(τk,l◦

f)−1(n)|)-shuffle.
For τk,l ∈ Sn, the action of τk,l on Z[Surj(m,n)] is given by the

following composition, where φ′ is the map given by the action of τk,l

on
⊕

i1+...+in=m

(
n

⊗
k=1

Extik−1(a, a⊗ik)
⊗

Si1
×...×Sin

Z[Sm])

Z[Surj(m,n)]
≃

κ
,2

⊕

i1+...+in=m

Z
⊗

Si1
×...×Sin

Z[Sm]

≃

��
⊕

i1+...+in=m

(
n
⊗
k=1

Extik−1(a, a⊗ik)
⊗

Si1
×...×Sin

Z[Sm])

φ′

��
⊕

i1+...+in=m

(
n
⊗
k=1

Extik−1(a, a⊗ik)
⊗

Si1
×...×Sin

Z[Sm])

≃

��
Z[Surj(m,n)]

⊕

i1+...+in=m

Z
⊗

Si1
×...×Sin

Z[Sm]
κ−1

lr

we have

κ−1◦φ′◦κ([f ]) = κ−1◦φ′◦κ([s◦α]) = κ−1◦φ′
(

(1⊗ [α])|f−1(1)|,...,|f−1(n)|

)

= κ−1((−1)(ik−1)(il−1)1⊗ [Tk,l ◦ α]|(τk,l◦f)−1(1)|,...,|(τk,l◦f)−1(n)|)

= (−1)(ik−1)(il−1)[s′ ◦ α′] = (−1)(ik−1)(il−1)[τk,l ◦ f ]

where the third equality is a consequence of Lemma 1.7. �

3. Products and the structure of PROP

The aim of this section is to explicit the Yoneda product and the
external product on Ext∗F(gr)(T

n ◦ a, Tm ◦ a) and to deduce the PROP

governing the graded groups Ext∗F(gr)(T
n ◦ a, Tm ◦ a).

Proposition 3.1. (1) The Yoneda product:

Y : Extm−l
F(gr)(T

l◦a, Tm◦a)⊗Extn−mF(gr)(T
m◦a, T n◦a) → Extn−lF(gr)(T

l◦a, T n◦a)

is induced, via the isomorphism obtained in Theorem 2.3, by
the map

Y : Z[Surj(m, l)]⊗ Z[Surj(n,m)] → Z[Surj(n, l)]

given by

Y ([g]⊗ [f ]) =
l

∏

k=1

ǫ(τi,j |g−1(k))(−1)(|f
−1(i)|−1)(|f−1(j)|−1)[g ◦ f ]
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where g ∈ Z[Surj(m, l)], f ∈ Z[Surj(n,m)] and g = s ◦ τi,j
where s is an order preserving surjection and τi,j ∈ Sm denote
the transposition of i and j.

(2) The external product

Extm−l
F(gr)(T

l◦a, Tm◦a)⊗Extn−pF(gr)(T
p◦a, T n◦a) → Extm+n−l−p

F(gr) (T l+p◦a, Tm+n◦a)

is induced by the disjoint union of sets via the isomorphism
obtained in Theorem 2.3.

Proof. (1) Considering the action of HomF(gr)(T
m ◦ a, Tm ◦ a) ≃

Z[Sm] on Ext
m−l
F(gr)(T

l◦a, Tm◦a) and on Extn−mF(gr)(T
m◦a, T n◦a)

we obtain that the map

Extm−l
F(gr)(T

l◦a, Tm◦a)⊗Extn−mF(gr)(T
m◦a, T n◦a) → Extn−lF(gr)(T

l◦a, T n◦a)

induces a map:

Extm−l(T l◦a, Tm◦a) ⊗
Sm

Extn−m(Tm◦a, T n◦a) → Extn−l(T l◦a, T n◦a).

So the signs can easily be deduced from Proposition 2.5.
(2) We have

Extm−l(T l ◦ a, Tm ◦ a) ≃
⊕

i1+...+il=m

(
l

⊗
k=1

Extil−1(a, a⊗il)
⊗

Si1
×...×Sil

Z[Sm])

Extn−p(T p ◦ a, T n ◦ a) ≃
⊕

j1+...+jp=n

(
p

⊗
k=1

Extjp−1(a, a⊗jp)
⊗

Sj1
×...×Sjp

Z[Sn])

and

Extm+n−l−p(T l+p◦a, Tm+n◦a) ≃
⊕

i1+...+il+p=m+n

(
l+p
⊗
k=1

Extil+p−1(a, a⊗il+p)
⊗

Si1
×...×Sil+p

Z[Sm+n])

For fixed i1, . . . , il, j1, . . . jk such that i1 + . . .+ il = m and j1 +
. . . + jp = n, Ek ∈ Extik−1(a, a⊗ik) and Fα ∈ Extjα−1(a, a⊗jα)
and σ ∈ Sn and σ′ ∈ Sm the external product is given by the
map

E1⊗ . . . El⊗σ⊗F1⊗ . . .⊗Fp⊗σ
′ 7→ E1⊗ . . .⊗El⊗F1⊗ . . .⊗Fp⊗σ∨σ

′

where σ ∨ σ′ : m + n → m + n is the permutation such that
σ ∨ σ′(i) = σ(i) for 1 ≤ i ≤ n and σ ∨ σ′(i) = σ′(i) for n+ 1 ≤
i ≤ n+m. This map corresponds to the disjoint union via the
isomorphism obtained in Theorem 2.3.

�

For i1, . . . , ik integers, iterating the external product, we obtain a
graded map

E i1,...,ik : Ext∗F(gr)(a, T
i1◦a)⊗. . .⊗Ext∗F(gr)(a, T

ik◦a) → Ext∗F(gr)(T
k◦a, T i1+...+ik◦a).
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This map is Si1 × . . .×Sik -equivariant by Propositions 1.6 and 2.5. It
induces a map

⊕

i1+...+ik=m

ip>0,∀p

k
⊗

p=1

Ext∗F(gr)(a, T
ip◦a) ⊗

Si1
×...×Sik

Z[Sm] → Ext∗F(gr)(T
k◦a, Tm◦a)

which is an isomorphism by the exponential property (see the proof of
Theorem 2.3). We deduce that the elements of Ext∗F(gr)(T

k ◦ a, Tm ◦ a)

are obtained from elements of Ext∗F(gr)(a, T
i ◦ a) using the external

product.
By Proposition 3.1 (2), the graded category Ω(Λ) having as objects

natural numbers and where the morphisms from m to l are given by
the groups Ext∗F(gr)(T

l ◦ a, Tm ◦ a) is a graded PROP (i.e. a graded
symmetric monoidal category with objects the natural numbers whose
symmetric monoidal structure is given by the sum of integer). In the
following, we prove that this graded PROP is the PROP associated to
the following operad.

Proposition 3.2. Let Λ = {Λ(n)}n≥0 be the graded symmetric se-
quence given by Λ(n) = Ext∗F(gr)(a, T

n ◦ a). The maps

γ(i1, . . . , ik) : Λ(k)⊗ Λ(i1)⊗ . . .Λ(ik) → Λ(i1 + . . .+ ik)

given by

γ(i1, . . . , ik)(x, xi1 , . . . , xik) = Y(x, E i1,...,ik(xi1 , . . . , xik))

for x ∈ Λ(k) and xil ∈ Λ(il), define an operad structure on Λ.

Proof. Using Proposition 1.6, we verify easily that γ is associative,
unital and equivariant. �

Remark 3.3. Notice the similarity between the operad Λ and the de-
terminant operad introduced by Ginzburg and Kapranov in [8, 1.3.21].
The determinant operad P is the operad in gAb− such that P(n) =
Λ(n)[1− n] (the sign representation of Sn placed in degree (1− n)).

Recall that we can associate a unique graded PROP C to an operad
P in a graded symmetric monoidal category such that C(1, n) = P (n).
We refer the reader to [9, Definition 1.5] for the concrete description
of the composition in this PROP in the ungraded case, which can be
easily extend to the graded case. However there exists PROPs which
do not come from an operad.

Theorem 2.3 and Proposition 3.1 imply the following proposition:

Proposition 3.4. The graded category Ω(Λ) is the graded PROP as-
sociated to the operad Λ.
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4. Applications

In this section, we deduce from Theorem 2.3 the computation of
some other Ext-groups between functors from gr to Ab.

For M an abelian group, recall that Sn(M) = (T n(M))Sn
where Sn

acts by the permutation of variables and Λn(M)⊗Z[1/2] = (T n(M)⊗
Z[1/2])Sn

where Sn acts by the permutation of variables and the mul-
tiplication by the signature.

Proposition 4.1. Let n and m be natural integers, we have isomor-
phisms:

Ext∗F(gr)((Λ
n ◦ a)⊗Q, (Λm ◦ a)⊗Q) ≃

{

Qρ(m,n) if ∗ = m− n
0 otherwise

where ρ(m,n) denotes the number of partitions of m into n parts.

Ext∗F(gr)((S
n ◦ a)⊗Q, (Sm ◦ a)⊗Q) ≃

{

Q if n = m and ∗ = 0
0 otherwise

Ext∗F(gr)((Λ
n ◦a)⊗Q, (Sm ◦a)⊗Q) ≃







Q if n = m = 0 and ∗ = 0
or n = m = 1 and ∗ = 0

0 otherwise

Ext∗F(gr)((S
n ◦a)⊗Q, (Λm ◦a)⊗Q) ≃







Q if n = m = 0 and ∗ = 0
or n = 1 and ∗ = m− 1

0 otherwise

Ext∗F(gr)((Λ
n ◦ a)⊗Q, (Tm ◦ a)⊗Q) ≃

{

QS(m,n) if ∗ = m− n
0 otherwise

Ext∗F(gr)((S
n ◦ a)⊗Q, (Tm ◦ a)⊗Q) ≃

{

QS(m,n) if ∗ = m− n
0 otherwise

where S(m,n) denotes the Stirling partition number (i.e. the number
of ways to partition a set of m elements into n non-empty subsets).

Ext∗F(gr)((T
n ◦a)⊗Q, (Sm ◦a)⊗Q) ≃

{

Qr(m,n) if m = n and ∗ = 0
0 otherwise

and

Ext∗F(gr)((T
n ◦ a)⊗Q, (Λm ◦ a)⊗Q) ≃

{

Qr(m,n) if ∗ = m− n
0 otherwise

where r(m,n) denotes the number of ordered partition ofm into n parts.

The proof of this proposition relies on the following lemma:



EXTENSIONS BETWEEN FUNCTORS FROM GROUPS 15

Lemma 4.2. Let G be a group, E a G-set and Q[E] the Q-vector space
having E as a basis. Consider an action of G on Q[E], given by

g.[e] = α(g, e)[g.e]

where α : G × E → {1,−1} is a map such that, for e ∈ E, α(−, e) is
a group morphism, then

Q[E]G ≃ Q[{e ∈ E | ∀g ∈ G s.t. g.e = e we have α(g, e) = 1}/G].

Proof of Proposition 4.1. For F and G functors of type T k, Sk or Λk we
determine the action of Sn×Sm on Ext∗F(gr)((T

n◦a)⊗Q, (Tm◦a)⊗Q)
such that

Ext∗F(gr)((F◦a)⊗Q, (G◦a)⊗Q) ≃ Ext∗F(gr)((T
n◦a)⊗Q, (Tm◦a)⊗Q)Sn×Sm

≃ Q[Surj(m,n)]Sn×Sm
.

By Lemma 4.2, it is sufficient to determine this action for the elements
(σ′, σ′′) ∈ Sn ×Sm such that (σ′, σ′′).f = f .

Let f be an element of Surj(m,n) such that f = s ◦ σ is the unique
decomposition of f of the form described in Lemma 2.1. The group
Sn×Sm acts on Surj(m,n) by (σ′, σ′′).f = σ′◦f ◦σ′′−1. The elements
(σ′, σ′′) ∈ Sn ×Sm such that (σ′, σ′′).f = f are products of elements
of the two following forms

• (τi,j , σ
−1Ti,jσ) for i and j such that |f−1(i)| = |f−1(j)| and Ti,j

is the permutation obtained by the bloc transposition of s−1(i)
and s−1(j);

• (Id, σi1 . . . σin) where σik is a permutation of f−1(k).

In the following, for F and G functors of type T k, Sk or Λk and
(σ′, σ′′) ∈ Sn × Sm of the previous forms, we determine the map α :
(Sn ×Sm)× Surj(m,n) → {1,−1} such that g.[e] = α(g, e)[g.e].

- For F = Λn and G = Λm, we have:

α((τi,j, σ
−1Ti,jσ), f) = ǫ(τi,j)ǫ(σ

−1Ti,jσ) Π
1≤i≤n

ǫ(σ−1Ti,jσ|(f◦(σ−1Ti,jσ)−1(i))(−1)(|f
−1(i)|−1)2 = 1

since
ǫ(σ−1Ti,jσ) = ǫ(Ti,j) = (−1)|f

−1(i)|2

and
ǫ(σ−1Ti,jσ|(f◦(σ−1Ti,jσ)−1(i)) = 1;

and

α((Id, σi1 . . . σin), f) = ǫ(σi1 . . . σin) Π
1≤i≤n

ǫ(σi1 . . . σin |(f◦(σi1 ...σin )−1(i)) = 1

since
ǫ(σi1 . . . σin) = ǫ(σi1) . . . ǫ(σin)

and
ǫ(σi1 . . . σin |(f◦(σi1 ...σin )−1(k)) = ǫ(σik).

By Lemma 4.2 we deduce that

Ext∗F(gr)((Λ
n◦a)⊗Q, (Λm◦a)⊗Q) ≃ Q[Surj(m,n)]Sn×Sm

≃ Q[Surj(m,n)/Sn ×Sm]
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≃

{

Qρ(m,n) if ∗ = m− n
0 otherwise

- For F = Sn and G = Sm, we have

α((τi,j, σ
−1Ti,jσ), f) = (−1)|f

−1(i)|2+1,

α((Id, σi1 . . . σin), f) = ǫ(σi1) . . . ǫ(σin).

So, if n 6= m

{f ∈ Surj(m,n) | ∀(σ′, σ′′) ∈ Sn ×Sm s.t. (σ′, σ′′).f = f we have α((σ′, σ′′), f) = 1} = ∅

and if n = m

{f ∈ Surj(m,n) | ∀(σ′, σ′′) ∈ Sn ×Sm s.t. (σ′, σ′′).f = f we have α((σ′, σ′′), f) = 1}

= Surj(m,n).

- For F = Sn and G = Λm,

α((τi,j, σ
−1Ti,jσ), f) = −1,

α((Id, σi1 . . . σin), f) = 1.

So, if n 6= 1 or n = 0 and m 6= 0

{f ∈ Surj(m,n) | ∀(σ′, σ′′) ∈ Sn ×Sm s.t. (σ′, σ′′).f = f we have α((σ′, σ′′), f) = 1} = ∅

and if n = 1 or n = m = 0

{f ∈ Surj(m,n) | ∀(σ′, σ′′) ∈ Sn ×Sm s.t. (σ′, σ′′).f = f we have α((σ′, σ′′), f) = 1}

is a set of cardinality 1.
- For F = Λn and G = Sm,

α((τi,j, σ
−1Ti,jσ), f) = (−1)|f

−1(i)|2 ,

α((Id, σi1 . . . σin), f) = ǫ(σi1) . . . ǫ(σin).

- For F = Λn and G = Tm, for f ∈ Surj(m,n) and σ′ ∈ Sn we have
σ′.f 6= f , so

Q[Surj(m,n)]Sn
= Q[Surj(m,n)/Sn] ≃ QS(m,n)

where S(m,n) denotes the Stirling partition number.
- For F = Sn and G = Tm, for f ∈ Surj(m,n) and σ′ ∈ Sn we have

σ′.f 6= f , so

Q[Surj(m,n)]Sn
= Q[Surj(m,n)/Sn] ≃ QS(m,n).

- For F = T n and G = Sm. We consider the action of Sm on
Ext∗F(gr)((T

n ◦ a)⊗Q, (Tm ◦ a)⊗Q). We have:

α(σi1 . . . σin , f) = ǫ(σi1) . . . ǫ(σin).

So, if n 6= m

{f ∈ Surj(m,n) | ∀σ′′ ∈ Sm s.t. σ′′.f = f we have α(σ′′, f) = 1} = ∅

and if n = m

{f ∈ Surj(m,n) | ∀σ′′ ∈ Sm s.t. σ′′.f = f we have α(σ′′, f) = 1} = Surj(m,n)
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so
Q[Surj(m,n)]Sm

= Q[Surj(m,n)/Sm] ≃ Qr(m,n)

where r(m,n) is the number of ordered partitions of m into n parts.
- For F = T n and G = Λm. We have:

α(σi1 . . . σin , f) = (ǫ(σi1) . . . ǫ(σin))
2 = 1.

So,

{f ∈ Surj(m,n) | ∀σ′′ ∈ Sm s.t. σ′′.f = f we have α(σ′′, f) = 1} = Surj(m,n)

so
Q[Surj(m,n)]Sm

= Q[Surj(m,n)/Sm] ≃ Qr(m,n)

where r(m,n) is the number of ordered partitions of m into n parts.
�

Note that we can deduce from Proposition 4.1 computations of Tor-
groups between functors. In fact, for N : grop → Q−Mod we denote
by N∨ the postcomposition of N with the functor of duality of vector
spaces V 7→ Hom(V,Q). The Tor-groups can be deduced from the
following natural graded isomorphism:

(4.2.1) Hom(Torgr• (N,M),Q) ≃ Ext•F(gr)(M,N∨)

where M : gr → Q−Mod (see [4, Appendice A]).
For N : grop → Q-Mod, Fn the free group in n generators and all

integer i, Djament obtains in [2, Théorème 1.10] the existence of an
isomorphism:

(4.2.2) colim
n∈N

Hi(Aut(Fn), N(Fn)) ≃
⊕

k+l=i

Torgrk (N,Λl ◦ (a⊗Q))

where Λl is the l-th exterior power functor. As an application of Propo-
sition 4.1, using the previous result of Djament, we obtain the following
computations of stable homology:

Proposition 4.3. Let Hn = HomGr(Fn,Q). We have

colim
n∈N

H∗(Aut(Fn), T
d ◦ (a⊗Q)(Hn)) ≃

{

QB(d) if ∗ = d
0 otherwise

where B(d) denotes the dth Bell number (i.e. the number of partitions
of a set of d elements);

colim
n∈N

H∗(Aut(Fn),Λ
d ◦ (a⊗Q)(Hn)) ≃

{

Qρ(d) if ∗ = d
0 otherwise

where ρ(d) denotes the number of partitions of d, and

colim
n∈N

H∗(Aut(Fn), S
d ◦ (a⊗Q)(Hn)) ≃







Q if ∗ = d = 0
or ∗ = d = 1

0 otherwise

where Sd is the d-th symmetric power.
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Proof. For F : gr → Q-Mod such that for all k ∈ N

ExtkF(gr)(Λ
l ◦ (a⊗Q), F ◦ (a⊗Q))

is a finite vector space, we have the isomorphisms

colim
n∈N

Hi(Aut(Fn), F◦(a⊗Q)(Hn)) ≃
⊕

k+l=i

Torgrk (F◦(a⊗Q)◦HomGr(−,Q),Λl◦(a⊗Q))

≃
⊕

k+l=i

Hom(ExtkF(gr)(Λ
l ◦ (a⊗Q), F ◦ (a⊗Q)),Q)

where the first isomorphism if the Djament’s isomorphism (4.2.2) and
the second is the Tor-Ext isomorphism (4.2.1).

For F = T d, by Proposition 4.1 we obtain:

colim
n∈N

Hi(Aut(Fn), T
d◦(a⊗Q)(Hn)) ≃







0 if i 6= d
⊕

k+l=d

QS(d,l) =
d
⊕

l=0

QS(d,l) = QB(d) if i = d

The other results are obtained in a similar way. �

The next result is used in the proof of corollaire 3.3 in [3].

Proposition 4.4. Let m and n be integers such that m ≥ n > 0. We
have:

Extm−n
F(gr)(qn(P̄ ), T

m ◦ a) 6= 0.

Proof. Let g ∈ Hom(a⊗n, qnP̄ ) be the kernel of the map qnP̄ → qn−1P̄ .
More concretely, for G ∈ gr, g : a⊗n(G) → qnP̄ (G) ≃ IG/In+1G is
given by

g(g1 ⊗ . . .⊗ gn) = ([g1]− 1) . . . ([gn]− 1).

We denote by f the canonical generator of Fn(gr)(qnP̄ , a
⊗n) ≃ Z

i.e. the natural transformation corresponding to 1 ∈ Z by the natural
isomorphisms

Fn(gr)(qnP̄ , a
⊗n) ≃ F(gr)(P̄ , a⊗n) ≃ cr1(a

⊗n)(Z) ≃ Z

where the second isomorphism is given by the Yoneda lemma. More ex-
plicitely, for G ∈ gr, the group morphism f : IG/In+1G ≃ qnP̄ (G) →
a⊗n(G) is given by:

f([g]− 1) = g⊗n.

Using the relation ([g1]−1)([g2]−1) = ([g1+g2]−1)−([g1]−1)−([g2]−1)
in IG we obtain

f(([g1]− 1)([g2]− 1) . . . ([gn]− 1)) =
∑

σ∈Sn

gσ(1) ⊗ . . .⊗ gσ(n).
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We deduce that the composition a⊗n
g
−→ qnP̄

f
−→ a⊗n is the trace map

denoted by tr. This gives rise to a commutative diagram:

Extm−n
F(gr)(T

n ◦ a, Tm ◦ a)

��

tr∗ ,2 Extm−n
F(gr)(T

n ◦ a, Tm ◦ a)

Extm−n
F(gr)(qn(P̄ ), T

m ◦ a).

18
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

We prove that the map tr∗ is non zero. Let f ∈ Surj(m,n) be the
surjection defined by: f(i) = i for i ∈ {1, . . . , n− 1} and f(k) = n for
k ≥ n. By Proposition 2.5 we have:

tr∗(f) =
∑

σ∈Sn

ǫσ[σ ◦ f ] = [f ] +
∑

σ∈Sn\{Id}

ǫσ[σ ◦ f ] 6= 0

where ǫσ ∈ {−1, 1} and tr∗(f) : Z[Surj(m,n)] → Z[Surj(m,n)] is the
map induced by tr∗ via the isomorphism in Proposition 2.3.

So, we deduce from the previous commutative diagram thatExtm−n
F(gr)(qn(P̄ ), T

m◦

a) is non zero. �
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