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EXTENSIONS BETWEEN FUNCTORS FROM GROUPS

CHRISTINE VESPA

Abstract. We compute Ext-groups between tensor powers com-
posed by the abelianization functor. More precisely, we compute
the groups Ext∗

F(gr)(T
n ◦ a, Tm ◦ a) where T n is the n-th tensor

power functor and a is the abelianization functor from the category
of free groups to abelian groups. These groups are shown to be non-
zero if and only if ∗ = m− n ≥ 0 and Extm−n

F(gr)(T
n ◦ a, Tm ◦ a) =

Z[Ω(m,n)] where Ω(m,n) is the set of surjections from the set hav-
ing m elements to the one having n elements. We make explicit
the action of symmetric groups on these groups and the Yoneda
and external products. We use this computation in order to obtain
other computations of Ext-groups between functors from groups.

Stable homology with twisted coefficients of various families of groups
can be computed thanks to functor homology in a suitable category (see
[5] [9] [3] [4]). In particular, stable homology of automorphism groups
of free groups with coefficients given by a reduced polynomial covari-
ant functor is trivial (see [4]). Recently, Djament proved in [1] that
stable homology (resp. cohomology) of automorphism groups of free
groups with coefficients given by a reduced polynomial contravariant
(resp. covariant) functor is governed by Tor groups (resp. Ext groups)
in the category of functors from finitely generated free groups. The aim
of this paper is to give explicit computations of Ext groups between
concrete functors from groups to abelian groups in order to obtain ex-
plicit computations of stable homology of automorphism groups of free
groups with coefficients given by a contravariant functor or a bifunctor.
Let gr be the category of finitely generated free groups and F(gr) the
category of functors from gr to abelian groups. The principal result of
this paper is:

Theorem. Let n and m be integers, we have an isomorphism:

Ext∗F(gr)(T
n ◦ a, Tm ◦ a) ≃

{

Z[Ω(m,n)] if ∗ = m− n
0 otherwise

where Ω is the category of finite sets with surjections.
The actions of the symmetric groups Sm and Sn on Ext∗F(gr)(T

n ◦

a, Tm ◦a) are induced by the composition in Ω via the previous isomor-
phism, up to a sign (see Proposition 2.3 for the precise signs).
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The Yoneda product is induced by the composition in Ω (up to a sign)
via the previous isomorphism and the external product is induced by the
symmetric monoidal structure on Ω given by the disjoint union (up to
a sign).

In particular for n = m = 1 we obtain that HomF(gr)(a, a) = Z and
Ext∗F(gr)(a, a) = 0 for ∗ > 0. These groups should be compared with

the groups Ext∗F(ab)(Id, Id) corresponding to the MacLane homology
of Z. This homology is computed by Bökstedt by topological methods
(unpublished) and reobtained in [6] by algebraic methods and is non
trivial. So this result is an illustration of the fact that functor homology
in F(gr) is easier than functor homology in F(ab) (see also [2] for
another illustration of this fact).

The proof of this result can be decomposed into two steps corre-
sponding to the first two sections of this paper. In the first step we
compute Ext∗F(gr)(a, T

m ◦ a) using an explicit projective resolution of
the abelianization functor a. In the second step we deduce our result
using the sum-diagonal adjunction and an exponential-type property
of tensor power functor T •. The next section is devoted to the study
of products on this Ext-groups. In the last section we deduce com-
putations of other Ext-groups. In particular, we obtain the following
results.

Proposition. Let n and m be natural integers, we have isomorphisms:

Ext∗F(gr)((Λ
n ◦ a)⊗Q, (Λm ◦ a)⊗Q) ≃

{

Qρ(m,n) if ∗ = m− n
0 otherwise

where ρ(m,n) denotes the number of partitions of m into n parts.

Ext∗F(gr)((S
n ◦ a)⊗Q, (Sm ◦ a)⊗Q) ≃

{

Q if n = m and ∗ = 0
0 otherwise

Ext∗F(gr)((Λ
n ◦a)⊗Q, (Sm ◦a)⊗Q) ≃







Q if n = m = 0 and ∗ = 0
or n = m = 1 and ∗ = 0

0 otherwise

Ext∗F(gr)((S
n ◦a)⊗Q, (Λm ◦a)⊗Q) ≃







Q if n = m = 0 and ∗ = 0
or n = 1 and ∗ = m− 1

0 otherwise

Let qn be the left adjoint of the inclusion functor from polyno-
mial functors of degree ≤ n to F(gr) and P̄ in F(gr) such that
Z[gr(Z,−)] ≃ Z⊕ P̄ , we have:

Proposition. Let m and n be integers such that m ≥ n > 0. We have:

Extm−n(qn(P̄ ), Tm ◦ a) 6= 0.
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Notations: We denote by Gr the category of groups, Ab the cat-
egory of abelian groups , gr (resp. ab), the full subcategory of Gr

(resp. Ab), having as objects finitely generated free objects.
We denote by a : gr → ab the abelianization functor.
Let C be a small pointed category having finite coproduct. We denote

by F(C) the category of functors from C toAb. This category is abelian
and has enough projective and injective objects. We denote by Pn the
representable functor Pn := Z[gr(Z∗n,−)] in F(gr). A reduced functor
F ∈ F(C) satisfies F (0) = 0. We denote by P̄ the reduced part of P1

(i.e. P1 ≃ Z⊕ P̄ ).
For d ∈ N we denote by Fd(gr) the full subcategory of F(gr) of poly-

nomial functors of degree ≤ d and id : Fd(gr) → F(gr) the inclusion
functor. This functor has a left adjoint denoted by qd. The functors
qi(P̄ ) are called Passi functors (see [7]).

1. Computation of Ext∗F(gr)(a, T
m ◦ a)

This section is based on the existence of an explicit projective reso-
lution of a in F(gr). This resolution is already mentioned in [8, Propo-
sition 5.1] and used in [4].

Consider the following simplicial object in F(gr):

(1.0.1) . . . ,2
,2 Pn+1

,2
,2 Pn

,2
,2 . . .

,2
,2
,2,2 P2

,2 ,2,2 P1
,2
,2 P0

where δi : Pn+1 → Pn for 0 ≤ i ≤ n+ 1 are defined by:

δ0[g1, g2, . . . , gn, gn+1] = [g2, . . . , gn, gn+1]

δi[g1, g2, . . . , gn, gn+1] = [g1, . . . , gigi+1, . . . , gn, gn+1] for 1 ≤ i ≤ n

δn+1[g1, g2, . . . , gn, gn+1] = [g1, g2, . . . , gn]

and ǫi : Pn → Pn+1 for 1 ≤ i ≤ n+ 1 are defined by:

ǫi[g1, . . . , gn] = [g1, . . . , gi−1, 1, gi, . . . , gn].

We denote by C• the unnormalized chain complex associated to this
simplicial object and D• = (C•)>1 the complex obtained by reindexing
the truncation above 1 of C•

Recall that the homology of a free group is naturally isomorphic to
its abelianization in degree 1 and is zero in degree > 1. So D• is the
bar resolution of a and we obtain:

Proposition 1.1. (Cf. [8, Proposition 5.1]) The exact sequence in
F(gr):

. . . Pn+1
dn−→ Pn → . . . → P2

d1−→ P1

is a projective resolution of the abelianization functor a : gr → Ab.
The natural transformation dn : Pn → Pn−1 is given on a group G by
the linear map Z[Gn+1] → Z[Gn] such that:

dn([g1, . . . , gn+1]) = [g2, . . . , gn+1]
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+

n
∑

i=1

(−1)i[g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1] + (−1)n+1[g1, . . . , gn]

for all (g1, . . . , gn+1) ∈ Gn+1.

This explicit projective resolution play a crucial rôle in [4].
For F : gr → Ab we have

Ext∗F(gr)(a, F ) = π∗+1(F (Z•))

where F (Z•) is the simplicial abelian group obtained when we apply
HomF(gr)(−, F ) to the simplicial object 1.0.1 and using the natural
isomorphism HomF(gr)(Pn, F ) ≃ F (Z∗n).

Proposition 1.2. Let m ≥ 1 be a natural integer, we have an isomor-
phism:

Ext∗F(gr)(a, T
m ◦ a) ≃

{

Z if ∗ = m− 1
0 otherwise

Proof. We prove the result by induction on m. To start the induction,
Ext∗F(gr)(a, a) is the homology of the complex:

. . . Zn+1lr Znδnlr . . .lr Z2lr Z
δ1lr

which is trivial for ∗ ≥ 1 and is isomorphic to Z for ∗ = 0. Assume
that the statement is true for m. We have:

ExtnF(gr)(a, T
m+1◦a) ≃ πn+1((T

m+1◦a)(Z∗•)) ≃
⊕

i+j=n+1

πi((T
m◦a)(Z∗•))⊗πj

(

a(Z∗•)
)

by the Künneth formula (Ext∗F(gr)(a, a) is torsion free by the previous

computation). So we have:

ExtnF(gr)(a, T
m+1 ◦ a) ≃

⊕

i+j=n+1

Exti−1
F(gr)(a, T

m ◦ a)⊗ Extj−1
F(gr)(a, a)

and we obtain the result by the inductive step and the computation of
Ext∗F(gr)(a, a).

�

Remark 1.3. Note that

Ext∗F(gr)(a, T
0 ◦ a) ≃ Ext∗F(gr)(a,Z) = 0

The symmetric group Sm acts on Tm by permuting the factors of
the tensor product. This action induces an action of Sm on the exten-
sion groups Extm−1

F(gr)(a, T
m ◦ a) that we make explicit in the following

proposition.

Proposition 1.4. The symmetric group Sm acts on Extm−1
F(gr)(a, T

m◦a)

by the following way: for σ ∈ Sm and E ∈ Extm−1
F(gr)(a, T

m ◦ a)

E.σ = ǫ(σ)E

where ǫ is the signature.
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Proof. Let σ ∈ Sm, the action of σ on Extm−1
F(gr)(a, T

m ◦ a) is given

by the following composition where φ : π1(
m
⊗

i=1

a(Z∗•)) → π1(
m
⊗

i=1

a(Z∗•))

is given by the action of σ on π1(
m
⊗

i=1

a(Z∗•)) and the isomorphism

m
⊗

i=1

π1(a(Z
∗•)) ≃ π1(

m
⊗

i=1

a(Z∗•)) is a consequence of the Künneth formula

(since π1(a(Z
∗•)) is flat by Proposition 1.2):

Extm−1
F(gr)(a, T

m ◦ a)
≃

α ,2
m
⊗

i=1

π1(a(Z
∗•))

≃ ,2 π1(
m
⊗

i=1

a(Z∗•))

φ

��

Extm−1
F(gr)(a, T

m ◦ a)
m
⊗

i=1

π1(a(Z
∗•))

α−1
lr π1(

m
⊗

i=1

a(Z∗•))
≃

lr

We have

α−1φα(E) = α−1φ(x1⊗. . .⊗xn) = α−1(ǫ(σ)xσ(1)⊗. . .⊗xσ(m)) = ǫ(σ)E

where xk is a generator of the k-th copy of π1(a(Z
∗•)) in

m
⊗

i=1

π1(a(Z
∗•)).

�

2. Computation of Ext∗F(gr)(T
n ◦ a, Tm ◦ a)

This section is based on the sum-diagonal adjunction, the exponen-
tial type property of tensor powers and the Künneth formula.

We begin this section with some recollections on these ingredients.
We refer the reader to [3, Appendice B] for more details.

For F and G in F(gr), their external tensor product F ⊠ G is the
functor sending (X, Y ) to F (X)⊗G(Y ). This yields a functor:

−⊠− : F(gr)×F(gr) → F(gr× gr).

We denote by πd : gr
×d → gr the functor obtained by iteration of the

free product (which is the categorical sum in gr) and δd : gr → gr×d the
diagonal functor. The functor δd is right adjoint of the functor πd. We
deduce that the functor given by precomposition δ∗d : F(gr×d) → F(gr)
is left adjoint of the functor given by precomposition π∗

d : F(gr) →
F(gr×d).

The tensor power (graded) functor T • is not exponential but we have
a similar property which is useful in the following computations:

(2.0.1) π∗
n(T

m ◦a) ≃
⊕

i1+...+in=m

(T i1 ◦a⊠ . . .⊠T in ◦a) ⊗
Si1

×...×Sin

Z[Sm]

where T 0 ◦ a ≃ Z.
The following easy lemma will be useful in the sequel.
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Lemma 2.1. For f ∈ Ω(m,n) such that for all k ∈ {1, . . . , n}, |f−1(k)| =
ik there are unique maps α ∈ Ω(n, n) and s ∈ Ω(m,n) such that
f = s ◦ α where α is the inverse of a (i1, . . . , in)-shuffle and s is an
order preserving surjection.

Our first main result is the following theorem.

Theorem 2.2. Let n and m be integers, we have an isomorphism:

Ext∗F(gr)(T
n ◦ a, Tm ◦ a) ≃

{

Z[Ω(m,n)] if ∗ = m− n
0 otherwise

Proof.

Ext∗F(gr)(T
n ◦ a, Tm ◦ a)

≃ Ext∗F(gr×...×gr)(a
⊠n, Tm ◦ a ◦ πn) by the sum-diagonal adjunction

≃ Ext∗F(gr×...×gr)

(

a
⊠n,

⊕

i1+...+in=m

(T i1 ◦ a⊠ . . .⊠ T in ◦ a) ⊗
Si1

×...×Sin

Z[Sm]
)

by 2.0.1

≃
⊕

i1+...+in=m

Ext∗F(gr×...×gr)

(

a
⊠n, (T i1 ◦ a⊠ . . .⊠ T in ◦ a) ⊗

Si1
×...×Sin

Z[Sm]
)

By Proposition 1.2 Ext∗F(gr)(a, T
m◦a) is torsion free so, by the Künneth

formula we obtain:

Ext∗F(gr)(T
n ◦ a, Tm ◦ a)

≃
⊕

i1+...+in=m

(

n
⊗

k=1

Ext∗F(gr)(a, T
ik ◦ a)

)

⊗
Si1

×...×Sin

Z[Sm]

≃







⊕

i1+...+in=m

ik>0,∀k

(

Z ⊗
Si1

×...×Sin

Z[Sm]
)

if ∗ = m− n

0 otherwise

where the last isomorphism follows from Proposition 1.2 and Remark
1.3.

Let f ∈ Ω(m,n), by Lemma 2.1 f admits a unique decomposition of
the form f = s ◦ α where α is the inverse of a (|f−1(1)|, . . . , |f−1(n)|)-
shuffle and s is an order preserving surjection. So we deduce that the
map:

κ : Z[Ω(m,n)] →
⊕

i1+...+in=m

ik>0,∀k

(

Z ⊗
Si1

×...×Sin

Z[Sm]
)

given by κ([f ]) = 1⊗α ∈ Z ⊗
S|f−1(1)|×...×S|f−1(n)|

Z[Sm] is an isomorphism.

�

For An and Bn ordered sets of cardinality n and f : An → Bn a
bijection. We denote by f̄ : Bn → Bn the unique permutation of Bn

such that f̄ ◦ u = f where u : An → Bn is the unique order preserving
map.
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In the following proposition we make explicit the actions of symmet-
ric groups on Ext∗F(gr)(T

n ◦ a, Tm ◦ a).

Proposition 2.3. The symmetric groups Sm andSn act on Extm−n
F(gr)(T

n◦

a, Tm ◦ a) ≃ Z[Ω(m,n)] by the following way: for σ ∈ Sm, τk,l ∈ Sn

the transposition of k and l where k, l ∈ {1, . . . , n} and f ∈ Ω(m,n)

[f ].σ =
∏

1≤i≤n

ǫ(σ|(f◦σ)−1(i))[f ◦ σ]

where σ|(f◦σ)−1(i) : (f ◦ σ)−1(i) → σ((f ◦ σ)−1(i))

τk,l.[f ] = (−1)(|f
−1(k)|−1)(|f−1(l)|−1)[τk,l ◦ f ].

Proof. Let f be an element of Ω(m,n) such that f = s◦σ is the unique
decomposition of f of the form described in Lemma 2.1.

For σ ∈ Sm, the action of σ on Z[Ω(m,n)] is given by the fol-
lowing composition, where φ is the map given by the action of σ on

⊕

i1+...+in=m

(
n

⊗
k=1

Extik−1(a, a⊗ik)
⊗

Si1
×...×Sin

Z[Sm])

Z[Ω(m,n)]
≃

κ
,2

⊕

i1+...+in=m

Z
⊗

Si1
×...×Sin

Z[Sm]

≃

��
⊕

i1+...+in=m

(
n
⊗
k=1

Extik−1(a, a⊗ik)
⊗

Si1
×...×Sin

Z[Sm])

φ

��
⊕

i1+...+in=m

(
n
⊗
k=1

Extik−1(a, a⊗ik)
⊗

Si1
×...×Sin

Z[Sm])

≃

��
Z[Ω(m,n)]

⊕

i1+...+in=m

Z
⊗

Si1
×...×Sin

Z[Sm]
κ−1

lr

we have

κ−1 ◦φ ◦κ([f ]) = κ−1 ◦φ ◦κ([s ◦α]) = κ−1 ◦φ
(

(1⊗ [α])|f−1(1)|,...,|f−1(n)|

)

= κ−1(
∏

1≤i≤n

ǫ(σ|(f◦σ)−1(i)) (1⊗[α◦σ])|f−1(1)|,...,|f−1(n)|) =
∏

1≤i≤n

ǫ(σ|(f◦σ)−1(i))[s◦α◦σ]

=
∏

1≤i≤n

ǫ(σ|(f◦σ)−1(i))[f ◦ σ]

where we deduce the third equality from Proposition 1.4 and where
−i1,...,in corresponds to the summand i1, . . . , in in the sum

⊕

i1+...+in=m

.

For τk,l ∈ Sn, we have τk,l◦f = τk,l◦s◦α = s′◦Tk,l◦α where s′ is the
order preserving surjection from m to n such that |s′−1(l)| = |s−1(k)|,
|s′−1(k)| = |s−1(l)| and |s′−1(q)| = |s′−1(q)| for q ∈ {1, . . . , m} \ {k, l}
and Tk,l is the permutation obtained by the bloc transposition of s−1(k)
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and s−1(l). Note that Tk,l◦α is the inverse of a (|(τk,l◦f)
−1(1)|, . . . , |(τk,l◦

f)−1(n)|)-shuffle.
For τk,l ∈ Sn, the action of τk,l on Z[Ω(m,n)] is given by the fol-

lowing composition, where φ′ is the map given by the action of τk,l on
⊕

i1+...+in=m

(
n

⊗
k=1

Extik−1(a, a⊗ik)
⊗

Si1
×...×Sin

Z[Sm])

Z[Ω(m,n)]
≃

κ
,2

⊕

i1+...+in=m

Z
⊗

Si1
×...×Sin

Z[Sm]

≃

��
⊕

i1+...+in=m

(
n

⊗
k=1

Extik−1(a, a⊗ik)
⊗

Si1
×...×Sin

Z[Sm])

φ′

��
⊕

i1+...+in=m

(
n
⊗
k=1

Extik−1(a, a⊗ik)
⊗

Si1
×...×Sin

Z[Sm])

≃

��
Z[Ω(m,n)]

⊕

i1+...+in=m

Z
⊗

Si1
×...×Sin

Z[Sm]
κ−1

lr

we have

κ−1◦φ′◦κ([f ]) = κ−1◦φ′◦κ([s◦α]) = κ−1◦φ′
(

(1⊗ [α])|f−1(1)|,...,|f−1(n)|

)

= κ−1((−1)ikil+(ik−1)(il−1)1⊗ [Tk,l ◦ α]|(τk,l◦f)−1(1)|,...,|(τk,l◦f)−1(n)|)

= (−1)ik+il−1[s′ ◦ α′] = (−1)ik+il−1[τk,l ◦ f ].

�

3. Products

The aim of this section is to explicit the Yoneda product and the
external product on Ext∗F(gr)(T

n ◦ a, Tm ◦ a).

Proposition 3.1. (1) The Yoneda product:

Extm−l
F(gr)(T

l◦a, Tm◦a)⊗Extn−m
F(gr)(T

m◦a, T n◦a) → Extn−l
F(gr)(T

l◦a, T n◦a)

is induced by the composition in the category Ω via the isomor-
phism obtained in Theorem 2.2 (up to a sign).

(2) The external product

Extm−l
F(gr)(T

l◦a, Tm◦a)⊗Extn−p

F(gr)(T
p◦a, T n◦a) → Extm+n−l−p

F(gr) (T l+p◦a, Tm+n◦a)

is induced by the monoidal structure of Ω via the isomorphism
obtained in Theorem 2.2 (up to a sign).

The proof of this proposition and the precise signs will be given in
an update version of this preprint.
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4. Applications

In this section, we deduce from Theorem 2.2 the computation of
some other Ext-groups between functors from gr to Ab.

For M an abelian group, recall that Sn(M) = (T n(M))Sn
where Sn

acts by the permutation of variables and Λn(M)⊗Z[1/2] = (T n(M)⊗
Z[1/2])Sn

where Sn acts by the permutation of variables and the mul-
tiplication by the signature.

Proposition 4.1. Let n and m be natural integers, we have isomor-
phisms:

Ext∗F(gr)((Λ
n ◦ a)⊗Q, (Λm ◦ a)⊗Q) ≃

{

Qρ(m,n) if ∗ = m− n
0 otherwise

where ρ(m,n) denotes the number of partitions of m into n parts.

Ext∗F(gr)((S
n ◦ a)⊗Q, (Sm ◦ a)⊗Q) ≃

{

Q if n = m and ∗ = 0
0 otherwise

Ext∗F(gr)((Λ
n ◦a)⊗Q, (Sm ◦a)⊗Q) ≃







Q if n = m = 0 and ∗ = 0
or n = m = 1 and ∗ = 0

0 otherwise

Ext∗F(gr)((S
n ◦a)⊗Q, (Λm ◦a)⊗Q) ≃







Q if n = m = 0 and ∗ = 0
or n = 1 and ∗ = m− 1

0 otherwise

The proof of this proposition relies on the following lemma:

Lemma 4.2. Let G be a group and E a G-set. Consider an action of
G on the group ring Q[E] given by

g.[e] = α(g, e)[g.e]

where α : G × E → {1,−1} is a map such that, for e ∈ E, α(−, e) is
a group morphism, then

Q[E]G ≃ Q[{e ∈ E | ∀g ∈ G s.t. g.e = e we have α(g, e) = 1}/G].

Proof of Proposition 4.1. Let f be an element of Ω(m,n) such that f =
s ◦σ is the unique decomposition of f of the form described in Lemma
2.1. The group Sn ×Sm acts on Ω(m,n) by (σ′, σ′′).f = σ′′ ◦ f ◦ σ′−1.
The elements (σ′, σ′′) ∈ Sn×Sm such that (σ′, σ′′).f = f are products
of elements of the two following forms

• (τi,j , σ
−1Ti,jσ) for i and j such that |f−1(i)| = |f−1(j)| and Ti,j

is the permutation obtained by the bloc transposition of s−1(i)
and s−1(j);

• (Id, σi1 . . . σin) where σik is a permutation of f−1(k).
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We have

Ext∗F(gr)((Λ
n◦a)⊗Q, (Λm◦a)⊗Q) ≃ Ext∗F(gr)((T

n◦a)⊗Q, (Tm◦a)⊗Q)Sn×Sm

≃ Q[Ω(m,n)]Sn×Sm

where the action of (σ′, σ′′) ∈ Sn ×Sm on Q[Ω(m,n)] is given by:

(σ′, σ′′).[f ] = α((σ′, σ′′), f)[(σ′, σ′′).f ].

For (σ′, σ′′) = (τi,j , σ
−1Ti,jσ) we have

α((τi,j, σ
−1Ti,jσ), f) = ǫ(τi,j)ǫ(σ

−1Ti,jσ) Π
1≤i≤n

ǫ(σ−1Ti,jσ|(f◦(σ−1Ti,jσ)−1(i))(−1)(|f
−1(i)|−1)2 = 1

since
ǫ(σ−1Ti,jσ) = ǫ(Ti,j) = (−1)|f

−1(i)|2

and
ǫ(σ−1Ti,jσ|(f◦(σ−1Ti,jσ)−1(i)) = 1.

For (σ′, σ′′) = (Id, σi1 . . . σin) we have

α((Id, σi1 . . . σin), f) = ǫ(σi1 . . . σin) Π
1≤i≤n

ǫ(σi1 . . . σinσ|(f◦(σi1
...σin )−1(i)) = 1

since
ǫ(σi1 . . . σin) = ǫ(σi1) . . . ǫ(σin)

and
ǫ(σi1 . . . σin |(f◦(σi1

...σin )
−1(k)) = ǫ(σik).

By Lemma 4.2 we deduce that

Ext∗F(gr)((Λ
n◦a)⊗Q, (Λm◦a)⊗Q) ≃ Q[Ω(m,n)]Sn×Sm

≃ Q[Ω(m,n)/Sn ×Sm]

≃

{

Qρ(m,n) if ∗ = m− n
0 otherwise

Computations of the other Ext-groups are obtained by exactly the
same method.

For Ext∗F(gr)((S
n ◦ a)⊗Q, (Sm ◦ a)⊗Q) we have

α((τi,j, σ
−1Ti,jσ), f) = (−1)|f

−1(i)|2+1,

α((Id, σi1 . . . σin), f) = ǫ(σi1) . . . ǫ(σin).

So, if n 6= m

{f ∈ Ω(m,n) | ∀(σ′, σ′′) ∈ Sn ×Sm s.t. (σ′, σ′′).f = f we have α((σ′, σ′′), f) = 1} = ∅

and if n = m

{f ∈ Ω(m,n) | ∀(σ′, σ′′) ∈ Sn ×Sm s.t. (σ′, σ′′).f = f we have α((σ′, σ′′), f) = 1} = Ω(m,n).

For Ext∗F(gr)((S
n ◦ a)⊗Q, (Λm ◦ a)⊗Q),

α((τi,j, σ
−1Ti,jσ), f) = −1,

α((Id, σi1 . . . σin), f) = 1.

So, if n 6= 1 or n = 0 and m 6= 0

{f ∈ Ω(m,n) | ∀(σ′, σ′′) ∈ Sn ×Sm s.t. (σ′, σ′′).f = f we have α((σ′, σ′′), f) = 1} = ∅
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and if n = 1 or n = m = 0

{f ∈ Ω(m,n) | ∀(σ′, σ′′) ∈ Sn ×Sm s.t. (σ′, σ′′).f = f we have α((σ′, σ′′), f) = 1}

is a set of cardinality 1.
For Ext∗F(gr)((Λ

n ◦ a)⊗Q, (Sm ◦ a)⊗Q),

α((τi,j, σ
−1Ti,jσ), f) = (−1)|f

−1(i)|2 ,

α((Id, σi1 . . . σin), f) = ǫ(σi1) . . . ǫ(σin).

�

The next result is used in the proof of corollaire 3.3 in [2].

Proposition 4.3. Let m and n be integers such that m ≥ n > 0. We
have:

Extm−n
F(gr)(qn(P̄ ), Tm ◦ a) 6= 0.

Proof. For f the canonical generator of Hom(qnP̄ , a⊗n) ≃ Z and g ∈
Hom(a⊗n, qnP̄ ) the kernel of the map qnP̄ → qn−1P̄ , the composition

a⊗n g
−→ qnP̄

f
−→ a⊗n is the norm map denoted by N . This gives rise to

a commutative diagram:

Extm−n
F(gr)(T

n ◦ a, Tm ◦ a)

��

N∗
,2 Extm−n

F(gr)(T
n ◦ a, Tm ◦ a)

Extm−n
F(gr)(qn(P̄ ), Tm ◦ a)

18
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

where the mapN∗ is non zero by Lemma 2.3. So Extm−n
F(gr)(qn(P̄ ), Tm◦a)

is non zero. �

Remark 4.4. In an update version of this preprint, we will compute
completely Ext∗F(gr)(qn(P̄ ), Tm ◦ a).
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