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Abstrat

We study the implementation of a domain deomposition method for strutures with quasi-

inompressible omponents. We hose a mixed formulation where the pressure �eld is disontinuous

on the interfaes between substrutures. We propose an extension of lassial preonditioners to

this lass of problems. The numerial simulation of the mehanial behaviour of the �exible bearing

of the nozzle of a solid propellant booster is then onduted using various Newton-Krylov parallel

approahes. We present the main mehanial results and ompare the numerial performane of the

parallel approahes to a sequential approah.

Nous étudions la mise en oeuvre d'une méthode de déomposition de domaine pour strutures à om-

posants quasi-inompressibles. Une formulation mixte à hamp de pression disontinu aux interfaes

entre sous-strutures est retenue ; nous proposons, pour ette lasse de problèmes, une extension

des préonditionneurs lassiques. La mise en oeuvre de la simulation numérique du omportement

méanique d'une butée �exible de tuyère de propulseur à propergol solide par diverses approhes par-

allèles itératives de type Newton-Krylov est alors proposée. Nous présentons les prinipaux résultats

méaniques ainsi que les performanes numériques obtenues par les approhes parallèles retenues et

une approhe séquentielle.

Keyword: Domain deomposition method, Newton-Krylov, quasi inompressibility, mixed formula-

tion

Mots-lés Méthode de déomposition de domaine, Newton-Krylov, quasi inompressibilité, formu-

lation mixte

1 Introdution

Primal and dual domain deomposition methods [6, 3℄ are among the �rst non-overlapping domain

deomposition methods that have demonstrated numerial salability with respet to both mesh and

subdomain sizes. They have proved their e�ieny on many types of problems suh as seond and

fourth order linear (stati and dynami) elastiity, heterogeneous problems. . . and they are urrently

extended to other problems suh as Stokes' equation [1℄.

In this paper we fous on the omputation of quasi-inompressible elastomeri omponents using

a primal domain deomposition method. Numerial simulation of the behaviour of suh materials

whih main properties are the ability to handle large deformations, the non-linear behaviour and

the quasi inompressibility, requires to use mixed displaement-pressure �nite elements [6, 2℄. More

preisely we deal with the ase of disontinuous pressure �eld on the interfae of substrutures and

ontinuous or disontinuous pressure �eld inside substrutures. Suh an approah orresponds to

any substruturation when the pressure is disontinuous between �nite elements, and to physial

deomposition between di�erent piees when the ontinuity of pressure is ensured inside substrutures

(e.g. interfae between steel and elastomer or two di�erent elastomeri piees). However, as the

inompressible/ompressible heterogeneity is not taken into aount in a satisfying way by urrent

preonditioners, we extend them to this lass of problems. Beside, beause of non linearities, we

use a non-linear solver leading to the solution to a sequene of ill-onditioned linear systems with

both non invariant matrix and right-hand side. Various strategies to aelerate the solution to

suessive systems [9, 10, 11℄ have already been developed, and evaluated oupled with a dual domain

deomposition method. We assess the performane of suh Krylov aeleration approahes oupled

with the primal domain deomposition method.

All numerial assessments relate to a very hallenging industrial problem: the numerial simula-

tion of steel-elastomer strati�ed strutures. These strutures are widely used in aerospae industry

1



to provide powerful elasti supports suh as suspensions for airraft engines, �ltering supports for

revolving mahines, blade-rotor onnetions of heliopters, roket-nozzle onnetions of the Ariane V

launher. They may take the form of a �exible steel-elastomer struture loated between the body

and the nozzle of a solid propellant booster, of whih the engine of the powder aeleration stages of

the Ariane V launher is a typial example.

Thus, we present in setion (2) the formulation of the problem and the generi algorithms to

ahieve the simulation. We give in setion (3) the extension of traditional preonditioners to the

quasi-inompressible ase and in setion (4) a Krylov aeleration tehnique to solve the sequene of

linear systems resulting from the linearization of the non-linear problem. In setion (5) we present

the �exible bearing whih supports the assessments, and assoiated mehanial results; setion (6)

sums up numerial performane. Setion (7) onludes this artile.

2 Overview of the models and methods

2.1 Lagrangian formulation

We onsider the omputation of the equilibrium position of a bodyΩmade up of a quasi-inompressible

hyperelasti material undergoing large deformation. We hoose a lagrangian formulation where all

variables are de�ned in the referene on�guration. Let f denote the body fore, g the surfae tration
imposed on ∂gΩ, u0 the imposed displaement on the omplementary part of the boundary. Taking

into aount the inompressibility leads to the introdution of an unknown pressure �eld p. The

researh of the equilibrium of the body (dead loading assumption) is equivalent to the researh of the

saddle point of the following lagrangian:

(u, p) ∈ ({u0}+H)× P

L(u, p) =

∫

Ω

W(F )dΩ+

∫

Ω

p(h(J)−
1

2K
p)dΩ−

∫

Ω

fudΩ−

∫

∂gΩ

gudS (1)

The problem then reads:

Find (u, p) ∈ ({u0}+H) ×P / ∀(v, q) ∈ H ×P ,
∫

Ω

∂W

∂F
(Id+∇u) : ∇vdΩ+

∫

Ω

ph′(J)
∂J

∂F
: ∇vdΩ =

∫

Ω

fvdΩ +

∫

∂gΩ

gvdS

∫

Ω

(h(J) −
1

K
p)qdΩ = 0

(2)

Where H and P are the spaes of admissible displaement and pressure �elds, F is the gradient of

the deformation (F = Id + ∇u, J = det(F )), K is the ompressibility modulus of the material.

Free energy W(F ) an be hosen from di�erent models ([12, 5℄). For isotropi materials, it is often

written as a funtion of the C = F TF tensor invariants W(F ) = W̄(I1, I2, J) where I1 = Tr(C) and
I2 = 1

2
(Tr2(C)−Tr(C2)). Among others we ite the Mooney-Rivlin model:

W̄(I1, I2) =
C10

2
(I1 − 3) +

C01

2
(I2 − 3)

Where C01 and C10 are onstants that haraterize the material. Funtion h(J) an also be given by

various models, in the simplest ase (linear model) h(J) = (J − 1).
The numerial solution to this variational problem is lassially onduted using the �nite element

method. Subspaes H and P are replaed with �nite dimension subspaes Hh ⊂ H and Ph ⊂ P . Let
us underline that the onstrution of mixed �nite elements must in partiular omply with ompat-

ibility onditions (Ladyzenska-Babuska-Brezzi ondition [2℄) thus restriting the possible hoies of

approximation spaes. However ommon hoies for 3D problems are the Q2−P1 hexahedral element

(27 displaement nodes, 4 pressure nodes) and the Q2 − Q1 hexahedral element (20 displaement

nodes, 8 pressure nodes).

2.2 Newton-type algorithms

The problem arising from the �nite element method is nonlinear, let us write it F(x) = 0 with

x = (uh, ph). The priniple of Newton's algorithms is to build a sequene of linear systems the

solutions of whih onverge to the solution to the non-linear problem. There are many versions

of Newton's algorithms, the most widely used is Newton-Raphson's. This last method onsists in

iteratively substituting the solution to the equation F(x) = 0 for its �rst order limited development

around xk
:

F(xk) +
dF(xk)

dx
(xk+1 − xk) = 0 (3)

Newton-Raphson's method is known to onverge fast when properly initialized. A very ommon

extension is the inremental algorithm whih onsists in de�ning "steps of loading" and �nding the
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solution to the intermediate problems orresponding to these steps using the solution to the previous

step as an e�ient initialization. The linear system arising from Newton-Raphson's linearization

reads:

(

Kuu Kup

KT
up Kpp

)(

vk

qk

)

=

(

fu
fp

)

with

{

vk = uk+1 − uk

qk = pk+1 − pk
(4)

(

Kuu(u
k, pk)

)

ij
=

∫

Ω

(

∂2W

∂F 2
: ∇Φi

)

: ∇ΦjdΩ

+

∫

Ω

pkh′′(J)

(

∂J

∂F
: ∇Φi

)(

∂J

∂F
: ∇Φj

)

dΩ

+

∫

Ω

pkh′(J)

(

∂2J

∂F 2
: ∇Φi

)

: ∇ΦjdΩ

(

Kup(u
k, pk)

)

ib
=

∫

Ω

h′(J)

(

∂J

∂F
: ∇Φi

)

ΨbdΩ
(

Kpp(u
k, pk)

)

ab
= −

1

K

∫

Ω

ΨαΨβdΩ
(

fu(u
k, pk)

)

i
=

∫

Ω

fΦidΩ +

∫

∂gΩ

gΦidS −

∫

Ω

∂W

∂F
: ∇ΦidΩ

−

∫

Ω

pkh′(J)
∂J

∂F
: ∇ΦidΩ

(

fp(u
k, pk)

)

a
= −

∫

Ω

Ψα

(

h(J)−
1

K
pk
)

dΩ

(5)

Where funtions (Φi) and (Ψα) are the basis of the displaement and pressure �elds. For a more

omplete desription of Newton's type algorithm for inompressible non-linear elastiity, readers an

refer to [7℄.

Remark: When using domain deomposition methods, beause of insu�ient Dirihlet's onditions

or internal mehanisms, the sti�ness matrix of some substrutures may be not invertible; the ompu-

tation of the kernel of the matrix is then an important point. As far as we know, there are no general

results whih indiate a priori the omposition of the kernel. What an be demonstrated for substru-

tures without mehanism is that the �rst system is the linearized elastiity system, then the vetors

of the kernel are (rigid body displaements, zero pressure), for following systems vetors omposed by

(admissible translations, zero pressure) always belong to the kernel. We have never observed other

kinds of null spae modes (translations and rotations for the �rst system, only translations for the

following systems). So we propose to use a geometrial omputation of the rigid body motions for

the �rst system and just suppress the rotations for the following systems.

Due to the inversibility of theKpp submatrix, pressure nodes an be eliminated from the resolution

proess using a Shur ondensation. One an solve the following system for the displaement unknown

and ompute pressure as post-proess:

K̃vk = f̃ with

{

K̃ = Kuu −KupK
−1
pp KT

up

f̃ = fu −KupK
−1
pp fp

(6)

In the ase where there are no nodes on the interelement boundary (disontinuous pressure �eld) whih

is the ase of the Q2 − P1 hexahedral element, this ondensation is usually ahieved at the element

sale at a very low ost sine the (Ψα) funtions an be hosen orthonormal and then Kpp = − 1
K
Id.

2.3 Primal domain deomposition method

We brie�y reall the primal domain deomposition method [6℄ in a generi ase, the next setion

fouses on its extension to mixed displaement-pressure formulations. We onsider the disretized

problem (4). Let us make a non-overlapping onform partition of disretized domain Ω into N
subdomains (Ω(s))16s6N , the interfae of a subdomain is de�ned as Υ(s) = ∂Ω(s)\∂Ω, the omplete

interfae Υ is the union of the interfaes of all substrutures.

Using lassial notation (i stands for internal degree of freedom, b for boundary degree of freedom),

the sti�ness matrix of the sth subdomain reads:

K(s) =

(

K
(s)
ii K

(s)
ib

K
(s)
bi K

(s)
bb

)

(7)

The primal approah simply onsists in eliminating internal degrees of freedom from the omplete

problem whih an be done independently on eah substruture onstruting the loal primal Shur

omplement S
(s)
1 . Let u be the displaement �eld of the interfae degrees of freedom, the problem to

solve then reads:

Su = b with



















S =
∑

s

B(s)S
(s)
1 B(s)T b =

∑

s

B(s)b(s)

S
(s)
1 = K

(s)
bb −K

(s)
bi K

(s)
ii

−1
K

(s)
ib

b(s) = f
(s)
b −K

(s)
bi K

(s)
ii

−1
f
(s)
i

(8)
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The B(s)
matrix projets the loal interfae Υ(s)

on the global interfae Υ. For the primal approah,

opposite to the lassial dual method (FETI), rosspoints (points shared by more than 2 substru-

tures) are not repeated when desribing Υ.
Due to the existene of e�ient preonditioners, system (8) is solved using a Krylov iterative solver

(Conjugate gradient, GMRes. . .) whih is well suited to the parallel arhiteture of modern omput-

ers. The Neumann preonditioner onsists in approximating the inverse of the sum of loal Shur

omplements by the sum of the inverse of loal Shur omplements. Let M−1
be the preonditioner:

M−1 =
∑

s

D(s)B(s)S
(s)
2 B(s)TD(s)

S
(s)
2 = S

(s)
1

+
= β(s)K(s)+β(s)T

(9)

β(s) = (0i Idb) extrats from vetors de�ned on the subdomain Ω(s)
their trae on their interfae

Υ(s)
. K(s)+

is a pseudo-inverse of matrix K(s)
, S

(s)
2 is the loal dual Shur omplement. D(s)

is a

diagonal saling matrix (

∑

D(s) = IdΥ). When dealing with homogeneous strutures, D(s)
an be

hosen equal to the inverse of the multipliity of eah degree of freedom. For heterogeneous strutures

[13℄, saling has to provide information about the di�erene of sti�ness between subdomains, most

often this item of information is extrated from the diagonal of the K
(s)
bb matrix:

D
(s)
i =

(B(s) Diag(K
(s)
bb )B(s)T )i

(
∑

k

B(k) Diag(K
(k)
bb )B(k)T )i

(10)

To beome salable with respet to the number of substrutures, the primal approah equipped

with the Neumann preonditioner has to be enrihed with a oarse problem. The idea is to ensure

that vetors that are multiplied by generalized inverse matries K(s)+
belong to the image of K(s)

.

This method is reported as balaning method [8℄ beause its mehanial interpretation is to ensure the

equilibrium of eah substruture fae up to rigid-body loadings. Noting r the residual (r = b − Su),
preonditioning onsists in omputing M−1r.

M−1r =
∑

s

D(s)B(s)β(s)K(s)+β(s)TB(s)TD(s)r

∀s β(s)TB(s)TD(s)r ∈ Im(Ks)

⇔ ∀s R(s)Tβ(s)TB(s)TD(s)r = 0 with Span(R(s)) = Ker(K(s))

⇔ ∀s (D(s)B(s)β(s)R(s))T r = 0

⇔ GT r = 0 with G =
(

. . . D(s)B(s)β(s)R(s) . . .
)

(11)

This ondition is imposed using a proper initialization (u0 = G(GTSG)GT b) and a projetor P =
Id−G(GTSG)−1GTS; the preonditioner then reads PM−1

.

3 Extension of primal domain deomposition method to

quasi-inompressible material with disontinuous pressure

�eld

In this paper we deal with the ase of disontinuous pressure �elds at the interfae of substrutures.

The pressure �eld inside substrutures may be either ontinuous (e.g. hexahedral Q2 − Q1) or not

(e.g. hexahedral Q2 − P1). In the ase of ontinuous pressure �eld inside substruture, suh a model

orresponds to physial deompositions between stuk piees (whatever their material may be, e.g.

interfae between steel and elastomer or two di�erent elastomers or two di�erent piees of the same

elastomer). Hene all pressure degrees of freedom are onsidered internal.

For the following equations i and b stand for internal and boundary displaement degree of freedom,

p for pressure degree of freedom. Sine pressure is onsidered as an internal �eld, the ondensation

shown in (6) an be realized at the substruture sale (if not yet realized at the element sale) without

modifying the global problem. The interfae problem then reads:

S̃u = b̃ with















S̃ =
∑

s

B(s)S̃
(s)
1 B(s)T b̃ =

∑

s

B(s)b̃(s)

S̃
(s)
1 = K̃

(s)
bb − K̃

(s)
bi (K̃

(s)
ii )−1K̃

(s)
ib

b̃(s) = f̃
(s)
b − K̃

(s)
bi (K̃

(s)
ii )−1f̃

(s)
i

(12)

The expression of the matries and vetors above is the expansion of equation (6):

(

K̃
(s)
ii K̃

(s)
ib

K̃
(s)
bi K̃

(s)
bb

)

=

(

K
(s)
ii −K

(s)
ip K

(s)
pp

−1
K

(s)
pi K

(s)
ib −K

(s)
ip K

(s)
pp

−1
K

(s)
pb

K
(s)
bi −K

(s)
bp K

(s)
pp

−1
K

(s)
pi K

(s)
bb −K

(s)
bp K

(s)
pp

−1
K

(s)
pb

)

(

f̃
(s)
i

f̃
(s)
b

)

=

(

f
(s)
i −K

(s)
ip K−1

pp f
(s)
p

f
(s)
b −K

(s)
bp K−1

pp f
(s)
p

)

(13)
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Note above all that the resulting sti�ness saling D̃(s)
is built from the diagonal K̃

(s)
bb , that is to

say from the diagonal of the matrix (K
(s)
bb −K

(s)
bp K

(s)
pp

−1
K

(s)
pb ).

However if we do not ondense the pressure, we have:

K(s) =









(

K
(s)
ii K

(s)
ip

K
(s)
pi K

(s)
pp

) (

K
(s)
ib

K
(s)
pb

)

(

K
(s)
bi K

(s)
bp

)

K
(s)
bb









(14)

Su = b with







































S =
∑

s

B(s)S
(s)
1 B(s)T b =

∑

s

B(s)b(s)

S
(s)
1 = K

(s)
bb −

(

K
(s)
bi K

(s)
bp

)

(

K
(s)
ii K

(s)
ip

K
(s)
pi K

(s)
pp

)

−1(

K
(s)
ib

K
(s)
pb

)

b(s) = f
(s)
b −

(

K
(s)
bi K

(s)
bp

)

(

K
(s)
ii K

(s)
ip

K
(s)
pi K

(s)
pp

)

−1(

f
(s)
i

f
(s)
p

)

(15)

Note that saling matrix D(s)
assoiated to the non-ondensed pressure problem is then diretly

built from the K
(s)
bb matrix.

Both problems (whether the pressure is ondensed or not) are equal: S̃ = S, b̃ = b. It is then
abnormal that saling matries should di�er D̃(s) 6= D(s)

. In fat the ondensation of the pressure

nodes leads to an overestimation of the sti�ness; we then propose two di�erent salings whih work

�ne whether the materials are ompressible or not. The �rst one is built from the K
(s)
bb diagonal

(before ondensation). Sine obtaining this information may not be easy when using element-sale

ondensation, we propose a seond saling, simpler but even better, whih is based on the shearing

modulus µ of the di�erent materials D
(s)
j =

µ
(s)
j

∑

k

µ
(k)
j

.

Table (1) summarizes the performane of the di�erent salings for the industrial struture de-

sribed setion (5). The element used is an hexahedra Q2−P1 (27 displaement nodes, 4 internal pres-
sure nodes). The new salings show their e�ieny, they even manage to ahieve better results than

the omputation of the homogeneous struture. The e�et of the perturbation (−K
(s)
bp K

(s)
pp

−1
K

(s)
pb )

introdued by the ondensation an be observed on the usual sti�ness saling: the perturbation is

bigger for the seond system then it requires muh more iterations to onverge.

Deomposition Type of saling Number of iterations

First system Seond system

6a-1r (6 pro.) Topologial 290 > 1000

6a-1r (6 pro.) Usual sti�ness (D̃) 120 726
6a-1r (6 pro.) Sti�ness before ondensation 48 44
6a-1r (6 pro.) Shearing modulus 43 39

6a-1r (6 pro.) Homogeneous struture 93 116

Table 1: Ation of the saling - mixed element Q2 − P1

Remark: Of ourse, the same analysis an be onduted from the dual domain deomposition method

(FETI algorithm). New dual salings an be de�ned on the basis of the same priniple, they proved

similar e�ieny.

4 Krylov aeleration strategy: GIRKS

The ontext of the study is the resolution of a suession of linear systems, let us onsider the solving

of the (k+1)th system Sk+1uk+1 = bk+1
, the aim of the following strategy is to reuse the information

generated during the resolution of previous systems to solve the urrent system. The resolution of a

linear system with a Krylov iterative solver leads to the onstrution of at least one basis W k+1
of

the Krylov subspae for whih the Γk+1 = W k+1TSk+1W k+1
matrix is easily invertible. In the ase

of a Conjugate Gradient, note that W k+1
is then the set of researh diretions and Γk+1

a diagonal

matrix.

The GIRKS algorithm is a generalization of augmented Krylov subspae methods for multiple

right hand sides [14℄ to the ase of non-invariant matries (multiple left hand sides). It has two

distint ations, �rst an initialization IRKS and a orretion of the preonditioner GKC.

The IRKS algorithm (Iterative reuse of Krylov subspaes [11℄) is based upon an iterative approah

making it possible to evaluate at low ost a relevant initialization of a linear system with respet to

previously generated Krylov subspaes. One the initialization stage is omplete, the algorithm

is subjet to a restarting proedure whih an be onsidered as a Conjugate Gradient algorithm

augmented with the Krylov subspae generated during the initialization stage. The GKC (Generalized
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Krylov Corretion [9℄) algorithm orrets the preonditioner, solving approximatively an optimal

preonditioning problem.

Figure (4) gives the omplete algorithm of projeted preonditioned onjugate gradient with

GIRKS aeleration.

5 Study of the �exible bearing

5.1 Desription

The orientation of the nozzle of a booster is ahieved with a �exible bearing. This bearing is a strati�ed

struture with thin spherial steel and elastomer layers, it is maintained by two metalli supports.

The �exible bearing we study (�g. 2) was proposed by SNECMA Moteurs, it was designed to let the

bukling of steel layers appear. This bukling was observed when performing an experimental study

of the solid propellant booster of Ariane 5 roket.

The struture is lamped on one external ring, a radial displaement imposed on one point at the

bottom of the nozzle models the turning loading (5 degrees), a 4 MPa pressure due to the gases is

imposed at the top of the �exible bearing (�g. 3). The resolution is onduted in two steps: �rst the

turning problem is solved using two nonlinear inrements (10 linear systems), then the ompression

problem is solved with 4 nonlinear inrements (37 linear systems) or 10 nonlinear inrements (48
linear systems) whether we want the bukling to appear or not.

Resulting from the identi�ation of the materials, simple onstitutive laws were hosen. Steel is

de�ned using a Saint-Venant�Kirho� model (Young modulus E = 2.105 MPa, Poisson's oe�ient

ν = 0.3). Nearly inompressible elastomer is de�ned using a Mooney-Rivlin elasti potential (C10 =
0.2 MPa, C01 = 0. MPa, K = 2000 MPa).

Many di�ulties arise when arrying out the numerial simulation of this �exible bearing, �rst

non-linearities due to the large strains, the instabilities and the behaviour of the elastomer, seond,

the high heterogeneities (5 degrees of magnitude separate the shearing moduli) and last the large and

massive aspet of this 3D problem. The simulation is onduted using a Q2 hexahedral �nite element

(20 displaement nodes) for steel and a Q2 −Q1 hexahedral �nite element (20 displaement nodes, 8
pressure nodes) for elastomer, whih leads to 75900 degrees of freedom.

5.2 Mehanial results

Aording to experimental results, the bukling is omputed under a 3MPa pressure. Bukling auses

bifurations of the displaement of some points (�g. 5, 6).

5.3 Deompositions used for the parallel simulation

The geometry of the struture is axisymmetri (while the loading is not). Substrutures are hand-

made deomposing either the axial setion or the rotation. The nomenlature of a deomposition

reads Na-Mr where N stands for the number of substrutures in the axial setion, M for the number

of substrutures in the rotation.

In the ase of rotation-deomposed substrutures, pressure is disontinuous at the elastomer/elastomer

interfae and ontinuous inside substrutures. However, mehanial results are idential whatever the

deomposition.

6 Numerial results

All omputations presented here were realized on the SGI ORIGIN 2000 of the P�le de Calul Paris

Sud. We ompare performane levels for the bukling and non-bukling problems, of lassial primal

approah, GIRKS-primal approah and diret sequential approah. The diret sequential solver

requires 8667s to solve one linear system.

6.1 Non-bukling problem

As said before, this loading history leads to the omputation of 48 linear systems with di�erent

matries and right hand sides. The diret sequential approah is ompleted in 115h30min. Parallel

performane results are given in table (2).

As an be seen, performane levels strongly depend on the hoie of the deomposition though the

number of subdomains is almost onstant. Two fators justify these variations, �rst the heterogeneity

of the interfae (deompositions giving best results ontain only mono-material substrutures with

di�erent materials faing, while less e�ient deompositions possess multi-materials interfaes with

same materials faing), seond the aspet ratio of substrutures (due to the lower sparsity of matries,

massive substrutures involve longer omputation time for matrix manipulation).
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k linear systems (Squq = bq)q=1,...,k were solved

for the (q)th linear system, we note

W q = {wq
0, . . . , w

q

rq−1} set of researh diretions

rq = dim(W q)

Γq = W qTSqW q
(diagonal matrix)

sq ponderation term (most often 1)

Solution to the (k + 1)th system

1. IRKS approach

1.1 Initialization

û0 = G(GTSG)−1GT b+ Pχ
r̂0 = b− Sû0

1.2 Iterations i = 0, . . . , p /ẑp = 0

ẑi = P

[

k
∑

q=1
W qΓq−1W qT

]

r̂i

ŵi = ẑi +
i−1
∑

j=0

γ̂ijŵj (ŵ0 = ẑ0) γ̂ij = −
(ẑi,Sŵj)
(ŵj ,Sŵj)

x̂i+1 = x̂i + α̂iŵi

r̂i+1 = r̂i − α̂iSŵi

∣

∣

∣

∣

α̂i =
(r̂i,ẑi)

(ŵi,Sŵi)

1.3 End of IRKS

V = {w0, . . . , wp−1}
Λ = V TSV (diagonal matrix)

Q = Id− V Λ−1V TS projetion matrix

2. Conjugate Gradient with GKC

2.1 Initialization

x0 = x̂p+1

r0 = r̂p+1

2.2 Iterations i = 0, . . . , s
yi = M−1ri
Successive corrections q = 1, . . . , k

r̃qi = sqW
qΓq−1W qT ri −W qΓq−1W qTSqyq−1

i

yqi = yq−1
i + r̃qi

zi = QPyki

wi = zi +
i−1
∑

j=0

γijwj (w0 = z0)

xi+1 = xi + αiwi

ri+1 = ri − αiSwi

∣

∣

∣

∣

γij = − (zi,Swi)
(wj ,Swj)

αi =
(ri,zi)

(wi,Swi)

Figure 1: Algorithm: GIRKS with Projeted Preonditioned Conjugate Gradient
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Figure 2: 3D view of �exible bearing Figure 3: Axial view of referene and deformed

struture

The turning sti�ness (�g. 4) dereases

when the pressure inside the booster in-

reases, it an even beome negative (the

�exible bearing is then driving). This

evolution, aused by the displaement of

piees, is properly simulated during the

omputation.
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Figure 4: Turning sti�ness

Problem Aver. CPU time (s) / sys It. nb Gain

Deomposition Method Fatorization Total Aver/sys Seq./Par.

17a-1r (17 pro.) Primal 14.5 140.7 164 61.6

17a-1r (17 pro.) GIRKS 14.5 78 50 111.1

6a-3r (18 pro.) Primal 22.4 412.8 398 21

6a-3r (18 pro.) GIRKS 22.4 256.7 183 33.7

3a-6r (18 pro.) Primal 144 939.2 362 9.2

3a-6r (18 pro.) GIRKS 144 400.9 120 21.6

Table 2: Numerial performane Parallel/Sequential (non-bukling)

The Krylov aeleration strategy leads to signi�ant speed-up. The CPU time, thanks to the use

of GIRKS, inreases from 38% to 58%. GIRKS enables to solve up to 111 times faster the non-linear

problem than the sequential approah using only 17 proessors.

Figures (9) and (10) respetively show the evolution of the average number of onjugate gradient

iterations and the assoiated average CPU time to solve eah linear system. Due to the very low ost

of GIRKS, iterations and CPU time graphs are quite similar. As an be seen, the ation of GIRKS

grows as the nonlinear system number inreases due to the inreasing size of the stored Krylov

subspaes. In the ourse of the non-linear resolution, it may our that the information stored in

Krylov subspaes beomes non-relevant and leads to a perturbation leading to stagnation. The linear

resolution is then restarted with deletion of the stak of Krylov subspaes. The restarting proedure

an be observed on �gure (9) when two points are assoiated to the same linear system.

6.2 Bukling problem

This loading history leads to the omputation of 37 linear systems with di�erent matries and right

hand sides. The diret sequential approah is ompleted in 89h. The performane results of the

parallel approahes are given in table (3). For the bukling problem, GIRKS is not as e�ient as for

the previous problem, but it still has a positive impat. The best result is then a resolution 67 times

faster than the sequential approah using only 17 proessors.

7 Conlusion

In this paper we onsidered the resolution of highly heterogeneous strutures involving quasi-inompressible

materials with a primal domain deomposition method. We extended the de�nition of saling ma-
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Figure 5: Bukling of one reinforement
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Figure 6: Radial displaement of an internal bound-

ary point of a reinforement

Figure 7: 17a deomposition Figure 8: 3a-6r deomposition

Problem Aver. CPU time (s) / sys It. nb Gain

Deomposition Method Fatorization Total Aver/sys Seq./Par.

17a-1r (17 pro.) Primal 14.9 139 162 62.3

17a-1r (17 pro.) GIRKS 14.9 130 102 66.7

Table 3: Numerial performane Parallel/Sequential (bukling)

tries to the ase where pressure is ondensed, restoring the salability of the method to this lass

of problems. The resolution of the hallenging assessment was suessfully ahieved using a Newton-

Krylov approah. We showed that the reuse of Krylov subspaes with the GIRKS algorithm always

lead to better performane, the speed-up ompared to the lassial primal approah an be 60%.

Compared to the diret sequential approah, the resolution is onduted in the best ase 111 times

faster using only 17 proessors. In order to avoid stagnation and restarting assoiated to GIRKS, we

now develop new Krylov reuse strategies based on an exat oarse grid solver. Due to the signi�ant

omputational ost of this new approah we ouple it with a seletive reuse of Krylov subspaes based

on a spetral analysis of the linear systems [4℄.

Aknowledgements: The authors aknowledge support of omputational resoures by the Centre

Informatique National Enseignement Supérieur and the P�le de Calul Paris Sud.
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