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Abstract

We study the implementation of a domain decomposition method for structures with quasi-
incompressible components. We chose a mixed formulation where the pressure field is discontinuous
on the interfaces between substructures. We propose an extension of classical preconditioners to
this class of problems. The numerical simulation of the mechanical behaviour of the flexible bearing
of the nozzle of a solid propellant booster is then conducted using various Newton-Krylov parallel
approaches. We present the main mechanical results and compare the numerical performance of the
parallel approaches to a sequential approach.

Nous étudions la mise en oeuvre d’une méthode de décomposition de domaine pour structures a com-
posants quasi-incompressibles. Une formulation mixte & champ de pression discontinu aux interfaces
entre sous-structures est retenue ; nous proposons, pour cette classe de problémes, une extension
des préconditionneurs classiques. La mise en oeuvre de la simulation numérique du comportement
mécanique d’une butée flexible de tuyére de propulseur a propergol solide par diverses approches par-
alléles itératives de type Newton-Krylov est alors proposée. Nous présentons les principaux résultats
mécaniques ainsi que les performances numériques obtenues par les approches paralléles retenues et
une approche séquentielle.

Keyword: Domain decomposition method, Newton-Krylov, quasi incompressibility, mixed formula-
tion

Mots-clés Méthode de décomposition de domaine, Newton-Krylov, quasi incompressibilité, formu-
lation mixte

1 Introduction

Primal and dual domain decomposition methods [6, 3] are among the first non-overlapping domain
decomposition methods that have demonstrated numerical scalability with respect to both mesh and
subdomain sizes. They have proved their efficiency on many types of problems such as second and
fourth order linear (static and dynamic) elasticity, heterogeneous problems...and they are currently
extended to other problems such as Stokes’ equation [1].

In this paper we focus on the computation of quasi-incompressible elastomeric components using
a primal domain decomposition method. Numerical simulation of the behaviour of such materials
which main properties are the ability to handle large deformations, the non-linear behaviour and
the quasi incompressibility, requires to use mixed displacement-pressure finite elements [6, 2]. More
precisely we deal with the case of discontinuous pressure field on the interface of substructures and
continuous or discontinuous pressure field inside substructures. Such an approach corresponds to
any substructuration when the pressure is discontinuous between finite elements, and to physical
decomposition between different pieces when the continuity of pressure is ensured inside substructures
(e.g. interface between steel and elastomer or two different elastomeric pieces). However, as the
incompressible/compressible heterogeneity is not taken into account in a satisfying way by current
preconditioners, we extend them to this class of problems. Beside, because of non linearities, we
use a non-linear solver leading to the solution to a sequence of ill-conditioned linear systems with
both non invariant matrix and right-hand side. Various strategies to accelerate the solution to
successive systems [9, 10, 11] have already been developed, and evaluated coupled with a dual domain
decomposition method. We assess the performance of such Krylov acceleration approaches coupled
with the primal domain decomposition method.

All numerical assessments relate to a very challenging industrial problem: the numerical simula-
tion of steel-elastomer stratified structures. These structures are widely used in aerospace industry



to provide powerful elastic supports such as suspensions for aircraft engines, filtering supports for
revolving machines, blade-rotor connections of helicopters, rocket-nozzle connections of the Ariane V
launcher. They may take the form of a flexible steel-elastomer structure located between the body
and the nozzle of a solid propellant booster, of which the engine of the powder acceleration stages of
the Ariane V launcher is a typical example.

Thus, we present in section (2) the formulation of the problem and the generic algorithms to
achieve the simulation. We give in section (3) the extension of traditional preconditioners to the
quasi-incompressible case and in section (4) a Krylov acceleration technique to solve the sequence of
linear systems resulting from the linearization of the non-linear problem. In section (5) we present
the flexible bearing which supports the assessments, and associated mechanical results; section (6)
sums up numerical performance. Section (7) concludes this article.

2 Overview of the models and methods

2.1 Lagrangian formulation

We consider the computation of the equilibrium position of a body 2 made up of a quasi-incompressible
hyperelastic material undergoing large deformation. We choose a lagrangian formulation where all
variables are defined in the reference configuration. Let f denote the body force, g the surface traction
imposed on 04€2, ug the imposed displacement on the complementary part of the boundary. Taking
into account the incompressibility leads to the introduction of an unknown pressure field p. The
research of the equilibrium of the body (dead loading assumption) is equivalent to the research of the
saddle point of the following lagrangian:

(u,p) € ({uo} +H) x P
E(%p)I/W(F)dQ-&-/p(h(J)— %p)dQ—/fudQ— /gudS (1)
Q

Q Q o)
The problem then reads:
Find (u,p) € uo} +H) x P / Y(v,q) € H x P,

g—);v([d—i—Vu) : Vde—&-/ph'(J)g—; : VodQ) = /fde+ / gvdS
Q Q Q g0 (2)
1
) = fepaae =0
Q

Where H and P are the spaces of admissible displacement and pressure fields, F' is the gradient of
the deformation (F = Id + Vu, J = det(F)), K is the compressibility modulus of the material.
Free energy W(F') can be chosen from different models ([12, 5]). For isotropic materials, it is often
written as a function of the C' = FTF tensor invariants W(F) = W(I1, Iz, J) where I; = Tr(C) and
I, = (Tr*(C) — Tr(C?)). Among others we cite the Mooney-Rivlin model:

_ Cio Co1

Where Co; and Cho are constants that characterize the material. Function h(J) can also be given by
various models, in the simplest case (linear model) h(J) = (J — 1).

The numerical solution to this variational problem is classically conducted using the finite element
method. Subspaces ‘H and P are replaced with finite dimension subspaces H; C H and P, C P. Let
us underline that the construction of mixed finite elements must in particular comply with compat-
ibility conditions (Ladyzenska-Babuska-Brezzi condition [2]) thus restricting the possible choices of
approximation spaces. However common choices for 3D problems are the Q2 — P; hexahedral element
(27 displacement nodes, 4 pressure nodes) and the Q2 — Q1 hexahedral element (20 displacement
nodes, 8 pressure nodes).

2.2 Newton-type algorithms

The problem arising from the finite element method is nonlinear, let us write it F(z) = 0 with
x = (un,pr). The principle of Newton’s algorithms is to build a sequence of linear systems the
solutions of which converge to the solution to the non-linear problem. There are many versions
of Newton’s algorithms, the most widely used is Newton-Raphson’s. This last method consists in
iteratively substituting the solution to the equation F(z) = 0 for its first order limited development
around z*:

Fla*) + —dfd(f ) (@1~ 2%y = 0 (3)

Newton-Raphson’s method is known to converge fast when properly initialized. A very common
extension is the incremental algorithm which consists in defining "steps of loading" and finding the



solution to the intermediate problems corresponding to these steps using the solution to the previous
step as an efficient initialization. The linear system arising from Newton-Raphson’s linearization

reads: . . it .
Ky, Kup v fu ) . { v =u —Uu

with 4

< Kgp Kpp ) ( 4§ ) ( Ip qk:PlﬁLl*Pk @

(Kw(uk,pk))ij = /(am : ) L V®;dQ
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Where functions (®;) and (¥,) are the basis of the displacement and pressure fields. For a more
complete description of Newton’s type algorithm for incompressible non-linear elasticity, readers can
refer to [7].
Remark: When using domain decomposition methods, because of insufficient Dirichlet’s conditions
or internal mechanisms, the stiffness matrix of some substructures may be not invertible; the compu-
tation of the kernel of the matrix is then an important point. As far as we know, there are no general
results which indicate a priori the composition of the kernel. What can be demonstrated for substruc-
tures without mechanism is that the first system is the linearized elasticity system, then the vectors
of the kernel are (rigid body displacements, zero pressure), for following systems vectors composed by
(admissible translations, zero pressure) always belong to the kernel. We have never observed other
kinds of null space modes (translations and rotations for the first system, only translations for the
following systems). So we propose to use a geometrical computation of the rigid body motions for
the first system and just suppress the rotations for the following systems.

Due to the inversibility of the K, submatrix, pressure nodes can be eliminated from the resolution
process using a Schur condensation. One can solve the following system for the displacement unknown
and compute pressure as post-process:

_ - K = Kuuw — KupKp K2,

Ko" = f with { L uw up (6)
f="fu— KupKpp fp

In the case where there are no nodes on the interelement boundary (discontinuous pressure field) which

is the case of the Q2 — P; hexahedral element, this condensation is usually achieved at the element

scale at a very low cost since the (¥, ) functions can be chosen orthonormal and then K, = f%fd.

2.3 Primal domain decomposition method

We briefly recall the primal domain decomposition method [6] in a generic case, the next section
focuses on its extension to mixed displacement-pressure formulations. We consider the discretized
problem (4). Let us make a non-overlapping conform partition of discretized domain 2 into N
subdomains (Q2*)),<.<x, the interface of a subdomain is defined as T*) = 9Q(*)\Q, the complete
interface T is the union of the interfaces of all substructures.

Using classical notation (i stands for internal degree of freedom, b for boundary degree of freedom),
the stiffness matrix of the s'* subdomain reads:

() (s)
K — < K" K, ) (7)

The primal approach simply consists in eliminating internal degrees of freedom from the complete
problem which can be done independently on each substructure constructing the local primal Schur
complement s@. Let u be the displacement field of the interface degrees of freedom, the problem to
solve then reads:

s=3 B(S)Sgs)B(S)T b— ZB(S)b(S)
S S
Su = b with S(S) _ K(S) _ KlEiS)Ki(iS)ilKi(lf) (8)

b = £ — KOKP T §



The B matrix projects the local interface T) on the global interface Y. For the primal approach,
opposite to the classical dual method (FETI), crosspoints (points shared by more than 2 substruc-
tures) are not repeated when describing Y.

Due to the existence of efficient preconditioners, system (8) is solved using a Krylov iterative solver
(Conjugate gradient, GMRes. ..) which is well suited to the parallel architecture of modern comput-
ers. The Neumann preconditioner consists in approximating the inverse of the sum of local Schur
complements by the sum of the inverse of local Schur complements. Let M ! be the preconditioner:

M™' = Y DOBR®SHBRET P -
s = S§s>+:5(s>K<s)+5<s)T

B) = (0; Idy) extracts from vectors defined on the subdomain Q(*) their trace on their interface

T, KOF iga pseudo-inverse of matrix K, Sés) is the local dual Schur complement. D is a
diagonal scaling matrix (3 D®) = Idy). When dealing with homogeneous structures, D can be
chosen equal to the inverse of the multiplicity of each degree of freedom. For heterogeneous structures
[13], scaling has to provide information about the difference of stiffness between subdomains, most
often this item of information is extracted from the diagonal of the K ég) matrix:
(B Diag(K{; ) BO™),
(3 B® Diag(Ky;)) B®T):
k

D = (10)

To become scalable with respect to the number of substructures, the primal approach equipped
with the Neumann preconditioner has to be enriched with a coarse problem. The idea is to ensure
that vectors that are multiplied by generalized inverse matrices K@ belong to the image of K®).
This method is reported as balancing method [8] because its mechanical interpretation is to ensure the
equilibrium of each substructure face up to rigid-body loadings. Noting r the residual (r = b — Su),
preconditioning consists in computing M ~1r.

M1y = = D(S)B(S)ﬁ(S)K(S)+5(S)TB(S)TD(S)T

vs 89T BOT DOy € Im(K*)

& Vs ROTAOTBOT DO = 0 with Span(R®) = Ker(K)) (11)
o Vs (D(S)B(S)ﬂ(S)R(S))T’r’ -0
& GTr=0withG= (.. DOBLIFORS )

This condition is imposed using a proper initialization (uo = G(GT SG)GTb) and a projector P =
Id— G(GTSG) 'GTS; the preconditioner then reads PM ™.

3 Extension of primal domain decomposition method to

quasi-incompressible material with discontinuous pressure
field

In this paper we deal with the case of discontinuous pressure fields at the interface of substructures.
The pressure field inside substructures may be either continuous (e.g. hexahedral Q2 — Q1) or not
(e.g. hexahedral Q2 — P1). In the case of continuous pressure field inside substructure, such a model
corresponds to physical decompositions between stuck pieces (whatever their material may be, e.g.
interface between steel and elastomer or two different elastomers or two different pieces of the same
elastomer). Hence all pressure degrees of freedom are considered internal.

For the following equations ¢ and b stand for internal and boundary displacement degree of freedom,
p for pressure degree of freedom. Since pressure is considered as an internal field, the condensation
shown in (6) can be realized at the substructure scale (if not yet realized at the element scale) without
modifying the global problem. The interface problem then reads:

S =3 B®S®p&T b= BEH®
~ ~ S S
Su = b with S%S) _ Kzst;) _ K;;)(Ki(;))—lKi(;) (12)
B = O~ R (RE) 7
The expression of the matrices and vectors above is the expansion of equation (6):
(s (s s s s)—1 s s s s)—1 s
KY K\ _ (KD -EJKG KD KD -KJKG K
K(S) o K(S)K(S)_IK(S) K(S) o K(S)K(S)_IK(S)
bi bp pp pi bb bp HLpp pb

kD R
T T T
s B = K K gy

bi



Note above all that the resulting stiffness scaling D'*) is built from the diagonal f(é;), that is to

-1
say from the diagonal of the matrix (K,EZ) — Ké;) KISZ) K;’Z ).
However if we do not condense the pressure, we have:

) (o
K(S) = Kp? KP; Kpb (14)
oK) K
S =3 BOSH BT b= BOp®
S S
KO g© 8
. S(S) — K(S) _ ( K(S) K(S) ) i 3 ib
Su=bwith { °1 b b Kep K KO K (15)
© (s) ) ) K_(_S) K.(S) -1 f(s)
b s) _ ( K K ) i 7 P
o no Ky K K0 o

Note that scaling matrix D) associated to the non-condensed pressure problem is then directly
built from the K,EZ) matrix. }

Both problems (whether the pressure is condensed or not) are equal: S = S, b = b. It is then
abnormal that scaling matrices should differ D) # D). In fact the condensation of the pressure
nodes leads to an overestimation of the stiffness; we then propose two different scalings which work
fine whether the materials are compressible or not. The first one is built from the K;i) diagonal
(before condensation). Since obtaining this information may not be easy when using element-scale
condensation, we propose a second scaling, simpler but even better, which is based on the shearing

(s)
modulus g of the different materials D;S) = EH%)
Kj
k

Table (1) summarizes the performance of the different scalings for the industrial structure de-
scribed section (5). The element used is an hexahedra Q2 — P; (27 displacement nodes, 4 internal pres-
sure nodes). The new scalings show their efficiency, they even manage to achieve better results than

-1
the computation of the homogeneous structure. The effect of the perturbation (—Ké;)KI(,Z) K;(;i))

introduced by the condensation can be observed on the usual stiffness scaling: the perturbation is
bigger for the second system then it requires much more iterations to converge.

Decomposition Type of scaling Number of iterations
First system | Second system
6a-1r (6 proc.) Topological 290 > 1000
6a-1r (6 proc.) Usual stiffness (D) 120 726
6a-1r (6 proc.) || Stiffness before condensation 48 44
6a-1r (6 proc.) Shearing modulus 43 39
| 6a-1r (6 proc.) || Homogeneous structure || 93 | 116 |

Table 1: Action of the scaling - mixed element Q2 — Py

Remark: Of course, the same analysis can be conducted from the dual domain decomposition method
(FETI algorithm). New dual scalings can be defined on the basis of the same principle, they proved
similar efficiency.

4 Krylov acceleration strategy: GIRKS

The context of the study is the resolution of a succession of linear systems, let us consider the solving
of the (k4 1)*" system S** 1y ! = p*+1 the aim of the following strategy is to reuse the information
generated during the resolution of previous systems to solve the current system. The resolution of a
linear system with a Krylov iterative solver leads to the construction of at least one basis W**! of
the Krylov subspace for which the I'**! = WHHT SRR matrix is easily invertible. In the case
of a Conjugate Gradient, note that W**1 is then the set of research directions and T**! a diagonal
matrix.

The GIRKS algorithm is a generalization of augmented Krylov subspace methods for multiple
right hand sides [14] to the case of non-invariant matrices (multiple left hand sides). It has two
distinct actions, first an initialization IRKS and a correction of the preconditioner GKC.

The IRKS algorithm (Iterative reuse of Krylov subspaces [11]) is based upon an iterative approach
making it possible to evaluate at low cost a relevant initialization of a linear system with respect to
previously generated Krylov subspaces. Once the initialization stage is complete, the algorithm
is subject to a restarting procedure which can be considered as a Conjugate Gradient algorithm
augmented with the Krylov subspace generated during the initialization stage. The GKC (Generalized



Krylov Correction [9]) algorithm corrects the preconditioner, solving approximatively an optimal
preconditioning problem.

Figure (4) gives the complete algorithm of projected preconditioned conjugate gradient with
GIRKS acceleration.

5 Study of the flexible bearing
5.1 Description

The orientation of the nozzle of a booster is achieved with a flexible bearing. This bearing is a stratified
structure with thin spherical steel and elastomer layers, it is maintained by two metallic supports.
The flexible bearing we study (fig. 2) was proposed by SNECMA Moteurs, it was designed to let the
buckling of steel layers appear. This buckling was observed when performing an experimental study
of the solid propellant booster of Ariane 5 rocket.

The structure is clamped on one external ring, a radial displacement imposed on one point at the
bottom of the nozzle models the turning loading (5 degrees), a 4 MPa pressure due to the gases is
imposed at the top of the flexible bearing (fig. 3). The resolution is conducted in two steps: first the
turning problem is solved using two nonlinear increments (10 linear systems), then the compression
problem is solved with 4 nonlinear increments (37 linear systems) or 10 nonlinear increments (48
linear systems) whether we want the buckling to appear or not.

Resulting from the identification of the materials, simple constitutive laws were chosen. Steel is
defined using a Saint-Venant-Kirchoff model (Young modulus E = 2.10° MPa, Poisson’s coefficient
v = 0.3). Nearly incompressible elastomer is defined using a Mooney-Rivlin elastic potential (Cio =
0.2 MPa, Cp1 = 0. MPa, K = 2000 MPa).

Many difficulties arise when carrying out the numerical simulation of this flexible bearing, first
non-linearities due to the large strains, the instabilities and the behaviour of the elastomer, second,
the high heterogeneities (5 degrees of magnitude separate the shearing moduli) and last the large and
massive aspect of this 3D problem. The simulation is conducted using a Q2 hexahedral finite element
(20 displacement nodes) for steel and a Q2 — Q1 hexahedral finite element (20 displacement nodes, 8
pressure nodes) for elastomer, which leads to 75900 degrees of freedom.

5.2 Mechanical results

According to experimental results, the buckling is computed under a 3 MPa pressure. Buckling causes
bifurcations of the displacement of some points (fig. 5, 6).

5.3 Decompositions used for the parallel simulation

The geometry of the structure is axisymmetric (while the loading is not). Substructures are hand-
made decomposing either the axial section or the rotation. The nomenclature of a decomposition
reads Na-Mr where N stands for the number of substructures in the axial section, M for the number
of substructures in the rotation.

In the case of rotation-decomposed substructures, pressure is discontinuous at the elastomer/elastomer
interface and continuous inside substructures. However, mechanical results are identical whatever the
decomposition.

6 Numerical results

All computations presented here were realized on the SGI ORIGIN 2000 of the Pole de Calcul Paris
Sud. We compare performance levels for the buckling and non-buckling problems, of classical primal
approach, GIRKS-primal approach and direct sequential approach. The direct sequential solver
requires 8667s to solve one linear system.

6.1 Non-buckling problem

As said before, this loading history leads to the computation of 48 linear systems with different
matrices and right hand sides. The direct sequential approach is completed in 115h30min. Parallel
performance results are given in table (2).

As can be seen, performance levels strongly depend on the choice of the decomposition though the
number of subdomains is almost constant. Two factors justify these variations, first the heterogeneity
of the interface (decompositions giving best results contain only mono-material substructures with
different materials facing, while less efficient decompositions possess multi-materials interfaces with
same materials facing), second the aspect ratio of substructures (due to the lower sparsity of matrices,
massive substructures involve longer computation time for matrix manipulation).



k linear systems (S9u? = b?),=1,.. 1 were solved
for the (¢)!" linear system, we note
W = {wg,...,w?,_,} set of research directions
r? = dim(W?)
7 = WeT' S9W (diagonal matrix)
s? ponderation term (most often 1)

Solution to the (k + 1) system

1. IRKS approach
1.1 Initialization
ip = G(GTSG)~'GTb + Px
7o = b — Stg
1.2 TIterations i=0,...,p /2, =0

k
=P quq—lqul i
qg=1
R A . (2:,81;)
Wi = %+ 3 Fijw; (o = Zo) Yii = —a;.805)
§=0

Tip1 = & + W,
Fip1 =Ty — 0 SW;
1.3 End of IRKS
V= {wo, ce ,’wpfl}
A = VTSV (diagonal matrix)
Q = Id— VA~ 'VTS projection matrix

Ao _(FiZi)
Qi = Ty, 50;)

2. Conjugate Gradient with GKC
2.1 Initialization
To = Tpy1
ro = Fpi1
2.2 TIterationsi=0,...,s
yi =Mt
Successive corrections ¢ =1,...,k
7l = sWaratwaTy, — wara— el gayd—t

k
zi = QPy;
i—1
w; = 2; + Z Yij Wy (wo = Zo)
Jj=0
o (z4,Sws)
Ti+1 = T4 + ;W5 ’71] - (wj,Swj)
Tigl =T — G SW; |y = 7(1577’;;))
1 K

Figure 1: Algorithm: GIRKS with Projected Preconditioned Conjugate Gradient



Figure 2: 3D view of flexible bearing Figure 3: Axial view of reference and deformed

structure
The turning stiffness (fig. 4) decreases 1800 Non bcking cose |
when the pressure inside the booster in-
creases, it can even become negative (the ég 1600
flexible bearing is then driving). This <
evolution, caused by the displacement of é 1400 ¢ ‘
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computation. 5 wor
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Pressure (MPa)
Figure 4: Turning stiffness
Problem Aver. CPU time (s) / sys | It. nb Gain
Decomposition || Method || Factorization |  Total Aver/sys || Seq./Par.
17a-1r (17 proc.) || Primal 14.5 140.7 164 61.6
17a-1r (17 proc.) || GIRKS 14.5 78 50 111.1
6a-3r (18 proc.) Primal 224 412.8 398 21
6a-3r (18 proc.) GIRKS 224 256.7 183 33.7
3a-6r (18 proc.) Primal 144 939.2 362 9.2
3a-6r (18 proc.) || GIRKS 144 400.9 120 21.6

Table 2: Numerical performance Parallel/Sequential (non-buckling)

The Krylov acceleration strategy leads to significant speed-up. The CPU time, thanks to the use
of GIRKS, increases from 38% to 58%. GIRKS enables to solve up to 111 times faster the non-linear
problem than the sequential approach using only 17 processors.

Figures (9) and (10) respectively show the evolution of the average number of conjugate gradient
iterations and the associated average CPU time to solve each linear system. Due to the very low cost
of GIRKS, iterations and CPU time graphs are quite similar. As can be seen, the action of GIRKS
grows as the nonlinear system number increases due to the increasing size of the stored Krylov
subspaces. In the course of the non-linear resolution, it may occur that the information stored in
Krylov subspaces becomes non-relevant and leads to a perturbation leading to stagnation. The linear
resolution is then restarted with deletion of the stack of Krylov subspaces. The restarting procedure
can be observed on figure (9) when two points are associated to the same linear system.

6.2 Buckling problem

This loading history leads to the computation of 37 linear systems with different matrices and right
hand sides. The direct sequential approach is completed in 89h. The performance results of the
parallel approaches are given in table (3). For the buckling problem, GIRKS is not as efficient as for
the previous problem, but it still has a positive impact. The best result is then a resolution 67 times
faster than the sequential approach using only 17 processors.

7 Conclusion

In this paper we considered the resolution of highly heterogeneous structures involving quasi-incompressible
materials with a primal domain decomposition method. We extended the definition of scaling ma-
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Figure 5: Buckling of one reinforcement Figure 6: Radial displacement of an internal bound-

ary point of a reinforcement
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Figure 7: 17a decomposition Figure 8: 3a-6r decomposition
Problem Aver. CPU time (s) / sys It. nb Gain

Decomposition || Method || Factorization |  Total Aver/sys || Seq./Par.
17a-1r (17 proc.) || Primal 14.9 139 162 62.3
17a-1r (17 proc.) || GIRKS 14.9 130 102 66.7

Table 3: Numerical performance Parallel/Sequential (buckling)

trices to the case where pressure is condensed, restoring the scalability of the method to this class
of problems. The resolution of the challenging assessment was successfully achieved using a Newton-
Krylov approach. We showed that the reuse of Krylov subspaces with the GIRKS algorithm always
lead to better performance, the speed-up compared to the classical primal approach can be 60%.
Compared to the direct sequential approach, the resolution is conducted in the best case 111 times
faster using only 17 processors. In order to avoid stagnation and restarting associated to GIRKS, we
now develop new Krylov reuse strategies based on an exact coarse grid solver. Due to the significant
computational cost of this new approach we couple it with a selective reuse of Krylov subspaces based
on a spectral analysis of the linear systems [4].

Acknowledgements: The authors acknowledge support of computational resources by the Centre
Informatique National Enseignement Supérieur and the Péle de Calcul Paris Sud.

References
[1] Proceedings of the 14th international conference on domain decomposition methods, mexico,
2002.

[2] F. Brezzi and M. Fortin. Mized and hybrid finite element methods. Springer series in Computa-
tional Mathematics, 1991.

[3] Charbel Farhat and Frangois-Xavier Roux. Implicit parallel processing in structural mechanics.
Computational Mechanics Advances, 2:1-24, 1994.



Average iteration number

[4]

B
6
7
]
[
[10]
[11]
[12]

[13]

[14]

160

200
@ 140
150 | .g
5 120
o
100 @)
o 100
L Xxix\“*&fxxw%xw oo g x
DR IHR X 505 ek [ 7%
S0 F TERO0000gR0ed 3: 80 % XXXX‘XX%X%XX%X*XX%xxxx%xx—xxxxxxsc
ob— v v 0¥
1 5 9 13 17 21 25 29 33 37 41 45 1 5 9 13 17 21 25 29 33 37 41 45
Linear system Linear system
igure 9: : nb of iterations igure 10: : ime
F 9: GIRKS: nb of iterat F 10: GIRKS: CPU t

Pierre Gosselet and Christian Rey. On a selective reuse of krylov subspaces for newton krylov
approaches in non-linear elasticity. In 14th international conference on domain decomposition
methods, Mexico, 2002.

Julie Lambert-Diani and Christian Rey. New phenomenological behavior laws for rubbers and
thermoplastic elastomers. Eur. J. Mech. A/Solids, 18:1027-1043, 1999.

P. LeTallec. Domain decomposition methods in computational mechanics. In Computational
Mechanics Adv., volume 1. 1994.

Patrick LeTallec. Numerical methods for non-linear three-dimensional elasticity. In Ciarlet PG
and Lions JL., editors, Handbook of numerical analysis, volume 3. Elsevier, 1994.

J. Mandel. Balancing domain decomposition. Comm. Appl. Numer. Meth., 9:233-241, 1993.

Christian Rey. Une technique d’accélération de la résolution de problémes d’élasticité non-linéaire
par décomposition de domaines. In Comptes rendus de ’académie des sciences, volume 322 of
II b, pages 601-606. 1996.

Christian Rey and Franck Risler. A rayleigh-ritz preconditioner for the iterative solution to large
scale nonlinear problems. Numerical Algorithms, 17:279-311, 1998.

Franck Risler and Christian Rey. Iterative accelerating algorithms with krylov subspaces for the
solution to large-scale non-linear problems. Numer. Algorithms, 23:1-30, 2000.

R.S. Rivlin and D.W. Saunders. Large elastic deformation of isotropic materials. experiments
on the deformation of rubber. Phil. Trans. Roy. Soc., A243:251-288, 1951.

Daniel Rixen and Charbel Farhat. A simple and efficient extension of a class of substructure
based preconditioners to heterogeneous structural mechanics problems. Int. J. Num. Meth.
Engrg., 44, 1999.

Youssef Saad. On the lanczos method for solving symmetric linear systems with several right-
hand sides. Math. Comp., 48:651-662, 1987.



