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Abstra
t

We study the implementation of a domain de
omposition method for stru
tures with quasi-

in
ompressible 
omponents. We 
hose a mixed formulation where the pressure �eld is dis
ontinuous

on the interfa
es between substru
tures. We propose an extension of 
lassi
al pre
onditioners to

this 
lass of problems. The numeri
al simulation of the me
hani
al behaviour of the �exible bearing

of the nozzle of a solid propellant booster is then 
ondu
ted using various Newton-Krylov parallel

approa
hes. We present the main me
hani
al results and 
ompare the numeri
al performan
e of the

parallel approa
hes to a sequential approa
h.

Nous étudions la mise en oeuvre d'une méthode de dé
omposition de domaine pour stru
tures à 
om-

posants quasi-in
ompressibles. Une formulation mixte à 
hamp de pression dis
ontinu aux interfa
es

entre sous-stru
tures est retenue ; nous proposons, pour 
ette 
lasse de problèmes, une extension

des pré
onditionneurs 
lassiques. La mise en oeuvre de la simulation numérique du 
omportement

mé
anique d'une butée �exible de tuyère de propulseur à propergol solide par diverses appro
hes par-

allèles itératives de type Newton-Krylov est alors proposée. Nous présentons les prin
ipaux résultats

mé
aniques ainsi que les performan
es numériques obtenues par les appro
hes parallèles retenues et

une appro
he séquentielle.

Keyword: Domain de
omposition method, Newton-Krylov, quasi in
ompressibility, mixed formula-

tion

Mots-
lés Méthode de dé
omposition de domaine, Newton-Krylov, quasi in
ompressibilité, formu-

lation mixte

1 Introdu
tion

Primal and dual domain de
omposition methods [6, 3℄ are among the �rst non-overlapping domain

de
omposition methods that have demonstrated numeri
al s
alability with respe
t to both mesh and

subdomain sizes. They have proved their e�
ien
y on many types of problems su
h as se
ond and

fourth order linear (stati
 and dynami
) elasti
ity, heterogeneous problems. . . and they are 
urrently

extended to other problems su
h as Stokes' equation [1℄.

In this paper we fo
us on the 
omputation of quasi-in
ompressible elastomeri
 
omponents using

a primal domain de
omposition method. Numeri
al simulation of the behaviour of su
h materials

whi
h main properties are the ability to handle large deformations, the non-linear behaviour and

the quasi in
ompressibility, requires to use mixed displa
ement-pressure �nite elements [6, 2℄. More

pre
isely we deal with the 
ase of dis
ontinuous pressure �eld on the interfa
e of substru
tures and


ontinuous or dis
ontinuous pressure �eld inside substru
tures. Su
h an approa
h 
orresponds to

any substru
turation when the pressure is dis
ontinuous between �nite elements, and to physi
al

de
omposition between di�erent pie
es when the 
ontinuity of pressure is ensured inside substru
tures

(e.g. interfa
e between steel and elastomer or two di�erent elastomeri
 pie
es). However, as the

in
ompressible/
ompressible heterogeneity is not taken into a

ount in a satisfying way by 
urrent

pre
onditioners, we extend them to this 
lass of problems. Beside, be
ause of non linearities, we

use a non-linear solver leading to the solution to a sequen
e of ill-
onditioned linear systems with

both non invariant matrix and right-hand side. Various strategies to a

elerate the solution to

su

essive systems [9, 10, 11℄ have already been developed, and evaluated 
oupled with a dual domain

de
omposition method. We assess the performan
e of su
h Krylov a

eleration approa
hes 
oupled

with the primal domain de
omposition method.

All numeri
al assessments relate to a very 
hallenging industrial problem: the numeri
al simula-

tion of steel-elastomer strati�ed stru
tures. These stru
tures are widely used in aerospa
e industry
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to provide powerful elasti
 supports su
h as suspensions for air
raft engines, �ltering supports for

revolving ma
hines, blade-rotor 
onne
tions of heli
opters, ro
ket-nozzle 
onne
tions of the Ariane V

laun
her. They may take the form of a �exible steel-elastomer stru
ture lo
ated between the body

and the nozzle of a solid propellant booster, of whi
h the engine of the powder a

eleration stages of

the Ariane V laun
her is a typi
al example.

Thus, we present in se
tion (2) the formulation of the problem and the generi
 algorithms to

a
hieve the simulation. We give in se
tion (3) the extension of traditional pre
onditioners to the

quasi-in
ompressible 
ase and in se
tion (4) a Krylov a

eleration te
hnique to solve the sequen
e of

linear systems resulting from the linearization of the non-linear problem. In se
tion (5) we present

the �exible bearing whi
h supports the assessments, and asso
iated me
hani
al results; se
tion (6)

sums up numeri
al performan
e. Se
tion (7) 
on
ludes this arti
le.

2 Overview of the models and methods

2.1 Lagrangian formulation

We 
onsider the 
omputation of the equilibrium position of a bodyΩmade up of a quasi-in
ompressible

hyperelasti
 material undergoing large deformation. We 
hoose a lagrangian formulation where all

variables are de�ned in the referen
e 
on�guration. Let f denote the body for
e, g the surfa
e tra
tion
imposed on ∂gΩ, u0 the imposed displa
ement on the 
omplementary part of the boundary. Taking

into a

ount the in
ompressibility leads to the introdu
tion of an unknown pressure �eld p. The

resear
h of the equilibrium of the body (dead loading assumption) is equivalent to the resear
h of the

saddle point of the following lagrangian:

(u, p) ∈ ({u0}+H)× P

L(u, p) =

∫

Ω

W(F )dΩ+

∫

Ω

p(h(J)−
1

2K
p)dΩ−

∫

Ω

fudΩ−

∫

∂gΩ

gudS (1)

The problem then reads:

Find (u, p) ∈ ({u0}+H) ×P / ∀(v, q) ∈ H ×P ,
∫

Ω

∂W

∂F
(Id+∇u) : ∇vdΩ+

∫

Ω

ph′(J)
∂J

∂F
: ∇vdΩ =

∫

Ω

fvdΩ +

∫

∂gΩ

gvdS

∫

Ω

(h(J) −
1

K
p)qdΩ = 0

(2)

Where H and P are the spa
es of admissible displa
ement and pressure �elds, F is the gradient of

the deformation (F = Id + ∇u, J = det(F )), K is the 
ompressibility modulus of the material.

Free energy W(F ) 
an be 
hosen from di�erent models ([12, 5℄). For isotropi
 materials, it is often

written as a fun
tion of the C = F TF tensor invariants W(F ) = W̄(I1, I2, J) where I1 = Tr(C) and
I2 = 1

2
(Tr2(C)−Tr(C2)). Among others we 
ite the Mooney-Rivlin model:

W̄(I1, I2) =
C10

2
(I1 − 3) +

C01

2
(I2 − 3)

Where C01 and C10 are 
onstants that 
hara
terize the material. Fun
tion h(J) 
an also be given by

various models, in the simplest 
ase (linear model) h(J) = (J − 1).
The numeri
al solution to this variational problem is 
lassi
ally 
ondu
ted using the �nite element

method. Subspa
es H and P are repla
ed with �nite dimension subspa
es Hh ⊂ H and Ph ⊂ P . Let
us underline that the 
onstru
tion of mixed �nite elements must in parti
ular 
omply with 
ompat-

ibility 
onditions (Ladyzenska-Babuska-Brezzi 
ondition [2℄) thus restri
ting the possible 
hoi
es of

approximation spa
es. However 
ommon 
hoi
es for 3D problems are the Q2−P1 hexahedral element

(27 displa
ement nodes, 4 pressure nodes) and the Q2 − Q1 hexahedral element (20 displa
ement

nodes, 8 pressure nodes).

2.2 Newton-type algorithms

The problem arising from the �nite element method is nonlinear, let us write it F(x) = 0 with

x = (uh, ph). The prin
iple of Newton's algorithms is to build a sequen
e of linear systems the

solutions of whi
h 
onverge to the solution to the non-linear problem. There are many versions

of Newton's algorithms, the most widely used is Newton-Raphson's. This last method 
onsists in

iteratively substituting the solution to the equation F(x) = 0 for its �rst order limited development

around xk
:

F(xk) +
dF(xk)

dx
(xk+1 − xk) = 0 (3)

Newton-Raphson's method is known to 
onverge fast when properly initialized. A very 
ommon

extension is the in
remental algorithm whi
h 
onsists in de�ning "steps of loading" and �nding the
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solution to the intermediate problems 
orresponding to these steps using the solution to the previous

step as an e�
ient initialization. The linear system arising from Newton-Raphson's linearization

reads:

(

Kuu Kup

KT
up Kpp

)(

vk

qk

)

=

(

fu
fp

)

with

{

vk = uk+1 − uk

qk = pk+1 − pk
(4)

(

Kuu(u
k, pk)

)

ij
=

∫

Ω

(

∂2W

∂F 2
: ∇Φi

)

: ∇ΦjdΩ

+

∫

Ω

pkh′′(J)

(

∂J

∂F
: ∇Φi

)(

∂J

∂F
: ∇Φj

)

dΩ

+

∫

Ω

pkh′(J)

(

∂2J

∂F 2
: ∇Φi

)

: ∇ΦjdΩ

(

Kup(u
k, pk)

)

ib
=

∫

Ω

h′(J)

(

∂J

∂F
: ∇Φi

)

ΨbdΩ
(

Kpp(u
k, pk)

)

ab
= −

1

K

∫

Ω

ΨαΨβdΩ
(

fu(u
k, pk)

)

i
=

∫

Ω

fΦidΩ +

∫

∂gΩ

gΦidS −

∫

Ω

∂W

∂F
: ∇ΦidΩ

−

∫

Ω

pkh′(J)
∂J

∂F
: ∇ΦidΩ

(

fp(u
k, pk)

)

a
= −

∫

Ω

Ψα

(

h(J)−
1

K
pk
)

dΩ

(5)

Where fun
tions (Φi) and (Ψα) are the basis of the displa
ement and pressure �elds. For a more


omplete des
ription of Newton's type algorithm for in
ompressible non-linear elasti
ity, readers 
an

refer to [7℄.

Remark: When using domain de
omposition methods, be
ause of insu�
ient Diri
hlet's 
onditions

or internal me
hanisms, the sti�ness matrix of some substru
tures may be not invertible; the 
ompu-

tation of the kernel of the matrix is then an important point. As far as we know, there are no general

results whi
h indi
ate a priori the 
omposition of the kernel. What 
an be demonstrated for substru
-

tures without me
hanism is that the �rst system is the linearized elasti
ity system, then the ve
tors

of the kernel are (rigid body displa
ements, zero pressure), for following systems ve
tors 
omposed by

(admissible translations, zero pressure) always belong to the kernel. We have never observed other

kinds of null spa
e modes (translations and rotations for the �rst system, only translations for the

following systems). So we propose to use a geometri
al 
omputation of the rigid body motions for

the �rst system and just suppress the rotations for the following systems.

Due to the inversibility of theKpp submatrix, pressure nodes 
an be eliminated from the resolution

pro
ess using a S
hur 
ondensation. One 
an solve the following system for the displa
ement unknown

and 
ompute pressure as post-pro
ess:

K̃vk = f̃ with

{

K̃ = Kuu −KupK
−1
pp KT

up

f̃ = fu −KupK
−1
pp fp

(6)

In the 
ase where there are no nodes on the interelement boundary (dis
ontinuous pressure �eld) whi
h

is the 
ase of the Q2 − P1 hexahedral element, this 
ondensation is usually a
hieved at the element

s
ale at a very low 
ost sin
e the (Ψα) fun
tions 
an be 
hosen orthonormal and then Kpp = − 1
K
Id.

2.3 Primal domain de
omposition method

We brie�y re
all the primal domain de
omposition method [6℄ in a generi
 
ase, the next se
tion

fo
uses on its extension to mixed displa
ement-pressure formulations. We 
onsider the dis
retized

problem (4). Let us make a non-overlapping 
onform partition of dis
retized domain Ω into N
subdomains (Ω(s))16s6N , the interfa
e of a subdomain is de�ned as Υ(s) = ∂Ω(s)\∂Ω, the 
omplete

interfa
e Υ is the union of the interfa
es of all substru
tures.

Using 
lassi
al notation (i stands for internal degree of freedom, b for boundary degree of freedom),

the sti�ness matrix of the sth subdomain reads:

K(s) =

(

K
(s)
ii K

(s)
ib

K
(s)
bi K

(s)
bb

)

(7)

The primal approa
h simply 
onsists in eliminating internal degrees of freedom from the 
omplete

problem whi
h 
an be done independently on ea
h substru
ture 
onstru
ting the lo
al primal S
hur


omplement S
(s)
1 . Let u be the displa
ement �eld of the interfa
e degrees of freedom, the problem to

solve then reads:

Su = b with



















S =
∑

s

B(s)S
(s)
1 B(s)T b =

∑

s

B(s)b(s)

S
(s)
1 = K

(s)
bb −K

(s)
bi K

(s)
ii

−1
K

(s)
ib

b(s) = f
(s)
b −K

(s)
bi K

(s)
ii

−1
f
(s)
i

(8)
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The B(s)
matrix proje
ts the lo
al interfa
e Υ(s)

on the global interfa
e Υ. For the primal approa
h,

opposite to the 
lassi
al dual method (FETI), 
rosspoints (points shared by more than 2 substru
-

tures) are not repeated when des
ribing Υ.
Due to the existen
e of e�
ient pre
onditioners, system (8) is solved using a Krylov iterative solver

(Conjugate gradient, GMRes. . .) whi
h is well suited to the parallel ar
hite
ture of modern 
omput-

ers. The Neumann pre
onditioner 
onsists in approximating the inverse of the sum of lo
al S
hur


omplements by the sum of the inverse of lo
al S
hur 
omplements. Let M−1
be the pre
onditioner:

M−1 =
∑

s

D(s)B(s)S
(s)
2 B(s)TD(s)

S
(s)
2 = S

(s)
1

+
= β(s)K(s)+β(s)T

(9)

β(s) = (0i Idb) extra
ts from ve
tors de�ned on the subdomain Ω(s)
their tra
e on their interfa
e

Υ(s)
. K(s)+

is a pseudo-inverse of matrix K(s)
, S

(s)
2 is the lo
al dual S
hur 
omplement. D(s)

is a

diagonal s
aling matrix (

∑

D(s) = IdΥ). When dealing with homogeneous stru
tures, D(s)

an be


hosen equal to the inverse of the multipli
ity of ea
h degree of freedom. For heterogeneous stru
tures

[13℄, s
aling has to provide information about the di�eren
e of sti�ness between subdomains, most

often this item of information is extra
ted from the diagonal of the K
(s)
bb matrix:

D
(s)
i =

(B(s) Diag(K
(s)
bb )B(s)T )i

(
∑

k

B(k) Diag(K
(k)
bb )B(k)T )i

(10)

To be
ome s
alable with respe
t to the number of substru
tures, the primal approa
h equipped

with the Neumann pre
onditioner has to be enri
hed with a 
oarse problem. The idea is to ensure

that ve
tors that are multiplied by generalized inverse matri
es K(s)+
belong to the image of K(s)

.

This method is reported as balan
ing method [8℄ be
ause its me
hani
al interpretation is to ensure the

equilibrium of ea
h substru
ture fa
e up to rigid-body loadings. Noting r the residual (r = b − Su),
pre
onditioning 
onsists in 
omputing M−1r.

M−1r =
∑

s

D(s)B(s)β(s)K(s)+β(s)TB(s)TD(s)r

∀s β(s)TB(s)TD(s)r ∈ Im(Ks)

⇔ ∀s R(s)Tβ(s)TB(s)TD(s)r = 0 with Span(R(s)) = Ker(K(s))

⇔ ∀s (D(s)B(s)β(s)R(s))T r = 0

⇔ GT r = 0 with G =
(

. . . D(s)B(s)β(s)R(s) . . .
)

(11)

This 
ondition is imposed using a proper initialization (u0 = G(GTSG)GT b) and a proje
tor P =
Id−G(GTSG)−1GTS; the pre
onditioner then reads PM−1

.

3 Extension of primal domain de
omposition method to

quasi-in
ompressible material with dis
ontinuous pressure

�eld

In this paper we deal with the 
ase of dis
ontinuous pressure �elds at the interfa
e of substru
tures.

The pressure �eld inside substru
tures may be either 
ontinuous (e.g. hexahedral Q2 − Q1) or not

(e.g. hexahedral Q2 − P1). In the 
ase of 
ontinuous pressure �eld inside substru
ture, su
h a model


orresponds to physi
al de
ompositions between stu
k pie
es (whatever their material may be, e.g.

interfa
e between steel and elastomer or two di�erent elastomers or two di�erent pie
es of the same

elastomer). Hen
e all pressure degrees of freedom are 
onsidered internal.

For the following equations i and b stand for internal and boundary displa
ement degree of freedom,

p for pressure degree of freedom. Sin
e pressure is 
onsidered as an internal �eld, the 
ondensation

shown in (6) 
an be realized at the substru
ture s
ale (if not yet realized at the element s
ale) without

modifying the global problem. The interfa
e problem then reads:

S̃u = b̃ with















S̃ =
∑

s

B(s)S̃
(s)
1 B(s)T b̃ =

∑

s

B(s)b̃(s)

S̃
(s)
1 = K̃

(s)
bb − K̃

(s)
bi (K̃

(s)
ii )−1K̃

(s)
ib

b̃(s) = f̃
(s)
b − K̃

(s)
bi (K̃

(s)
ii )−1f̃

(s)
i

(12)

The expression of the matri
es and ve
tors above is the expansion of equation (6):

(

K̃
(s)
ii K̃

(s)
ib

K̃
(s)
bi K̃

(s)
bb

)

=

(

K
(s)
ii −K

(s)
ip K

(s)
pp

−1
K

(s)
pi K

(s)
ib −K

(s)
ip K

(s)
pp

−1
K

(s)
pb

K
(s)
bi −K

(s)
bp K

(s)
pp

−1
K

(s)
pi K

(s)
bb −K

(s)
bp K

(s)
pp

−1
K

(s)
pb

)

(

f̃
(s)
i

f̃
(s)
b

)

=

(

f
(s)
i −K

(s)
ip K−1

pp f
(s)
p

f
(s)
b −K

(s)
bp K−1

pp f
(s)
p

)

(13)
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Note above all that the resulting sti�ness s
aling D̃(s)
is built from the diagonal K̃

(s)
bb , that is to

say from the diagonal of the matrix (K
(s)
bb −K

(s)
bp K

(s)
pp

−1
K

(s)
pb ).

However if we do not 
ondense the pressure, we have:

K(s) =









(

K
(s)
ii K

(s)
ip

K
(s)
pi K

(s)
pp

) (

K
(s)
ib

K
(s)
pb

)

(

K
(s)
bi K

(s)
bp

)

K
(s)
bb









(14)

Su = b with







































S =
∑

s

B(s)S
(s)
1 B(s)T b =

∑

s

B(s)b(s)

S
(s)
1 = K

(s)
bb −

(

K
(s)
bi K

(s)
bp

)

(

K
(s)
ii K

(s)
ip

K
(s)
pi K

(s)
pp

)

−1(

K
(s)
ib

K
(s)
pb

)

b(s) = f
(s)
b −

(

K
(s)
bi K

(s)
bp

)

(

K
(s)
ii K

(s)
ip

K
(s)
pi K

(s)
pp

)

−1(

f
(s)
i

f
(s)
p

)

(15)

Note that s
aling matrix D(s)
asso
iated to the non-
ondensed pressure problem is then dire
tly

built from the K
(s)
bb matrix.

Both problems (whether the pressure is 
ondensed or not) are equal: S̃ = S, b̃ = b. It is then
abnormal that s
aling matri
es should di�er D̃(s) 6= D(s)

. In fa
t the 
ondensation of the pressure

nodes leads to an overestimation of the sti�ness; we then propose two di�erent s
alings whi
h work

�ne whether the materials are 
ompressible or not. The �rst one is built from the K
(s)
bb diagonal

(before 
ondensation). Sin
e obtaining this information may not be easy when using element-s
ale


ondensation, we propose a se
ond s
aling, simpler but even better, whi
h is based on the shearing

modulus µ of the di�erent materials D
(s)
j =

µ
(s)
j

∑

k

µ
(k)
j

.

Table (1) summarizes the performan
e of the di�erent s
alings for the industrial stru
ture de-

s
ribed se
tion (5). The element used is an hexahedra Q2−P1 (27 displa
ement nodes, 4 internal pres-
sure nodes). The new s
alings show their e�
ien
y, they even manage to a
hieve better results than

the 
omputation of the homogeneous stru
ture. The e�e
t of the perturbation (−K
(s)
bp K

(s)
pp

−1
K

(s)
pb )

introdu
ed by the 
ondensation 
an be observed on the usual sti�ness s
aling: the perturbation is

bigger for the se
ond system then it requires mu
h more iterations to 
onverge.

De
omposition Type of s
aling Number of iterations

First system Se
ond system

6a-1r (6 pro
.) Topologi
al 290 > 1000

6a-1r (6 pro
.) Usual sti�ness (D̃) 120 726
6a-1r (6 pro
.) Sti�ness before 
ondensation 48 44
6a-1r (6 pro
.) Shearing modulus 43 39

6a-1r (6 pro
.) Homogeneous stru
ture 93 116

Table 1: A
tion of the s
aling - mixed element Q2 − P1

Remark: Of 
ourse, the same analysis 
an be 
ondu
ted from the dual domain de
omposition method

(FETI algorithm). New dual s
alings 
an be de�ned on the basis of the same prin
iple, they proved

similar e�
ien
y.

4 Krylov a

eleration strategy: GIRKS

The 
ontext of the study is the resolution of a su

ession of linear systems, let us 
onsider the solving

of the (k+1)th system Sk+1uk+1 = bk+1
, the aim of the following strategy is to reuse the information

generated during the resolution of previous systems to solve the 
urrent system. The resolution of a

linear system with a Krylov iterative solver leads to the 
onstru
tion of at least one basis W k+1
of

the Krylov subspa
e for whi
h the Γk+1 = W k+1TSk+1W k+1
matrix is easily invertible. In the 
ase

of a Conjugate Gradient, note that W k+1
is then the set of resear
h dire
tions and Γk+1

a diagonal

matrix.

The GIRKS algorithm is a generalization of augmented Krylov subspa
e methods for multiple

right hand sides [14℄ to the 
ase of non-invariant matri
es (multiple left hand sides). It has two

distin
t a
tions, �rst an initialization IRKS and a 
orre
tion of the pre
onditioner GKC.

The IRKS algorithm (Iterative reuse of Krylov subspa
es [11℄) is based upon an iterative approa
h

making it possible to evaluate at low 
ost a relevant initialization of a linear system with respe
t to

previously generated Krylov subspa
es. On
e the initialization stage is 
omplete, the algorithm

is subje
t to a restarting pro
edure whi
h 
an be 
onsidered as a Conjugate Gradient algorithm

augmented with the Krylov subspa
e generated during the initialization stage. The GKC (Generalized

5



Krylov Corre
tion [9℄) algorithm 
orre
ts the pre
onditioner, solving approximatively an optimal

pre
onditioning problem.

Figure (4) gives the 
omplete algorithm of proje
ted pre
onditioned 
onjugate gradient with

GIRKS a

eleration.

5 Study of the �exible bearing

5.1 Des
ription

The orientation of the nozzle of a booster is a
hieved with a �exible bearing. This bearing is a strati�ed

stru
ture with thin spheri
al steel and elastomer layers, it is maintained by two metalli
 supports.

The �exible bearing we study (�g. 2) was proposed by SNECMA Moteurs, it was designed to let the

bu
kling of steel layers appear. This bu
kling was observed when performing an experimental study

of the solid propellant booster of Ariane 5 ro
ket.

The stru
ture is 
lamped on one external ring, a radial displa
ement imposed on one point at the

bottom of the nozzle models the turning loading (5 degrees), a 4 MPa pressure due to the gases is

imposed at the top of the �exible bearing (�g. 3). The resolution is 
ondu
ted in two steps: �rst the

turning problem is solved using two nonlinear in
rements (10 linear systems), then the 
ompression

problem is solved with 4 nonlinear in
rements (37 linear systems) or 10 nonlinear in
rements (48
linear systems) whether we want the bu
kling to appear or not.

Resulting from the identi�
ation of the materials, simple 
onstitutive laws were 
hosen. Steel is

de�ned using a Saint-Venant�Kir
ho� model (Young modulus E = 2.105 MPa, Poisson's 
oe�
ient

ν = 0.3). Nearly in
ompressible elastomer is de�ned using a Mooney-Rivlin elasti
 potential (C10 =
0.2 MPa, C01 = 0. MPa, K = 2000 MPa).

Many di�
ulties arise when 
arrying out the numeri
al simulation of this �exible bearing, �rst

non-linearities due to the large strains, the instabilities and the behaviour of the elastomer, se
ond,

the high heterogeneities (5 degrees of magnitude separate the shearing moduli) and last the large and

massive aspe
t of this 3D problem. The simulation is 
ondu
ted using a Q2 hexahedral �nite element

(20 displa
ement nodes) for steel and a Q2 −Q1 hexahedral �nite element (20 displa
ement nodes, 8
pressure nodes) for elastomer, whi
h leads to 75900 degrees of freedom.

5.2 Me
hani
al results

A

ording to experimental results, the bu
kling is 
omputed under a 3MPa pressure. Bu
kling 
auses

bifur
ations of the displa
ement of some points (�g. 5, 6).

5.3 De
ompositions used for the parallel simulation

The geometry of the stru
ture is axisymmetri
 (while the loading is not). Substru
tures are hand-

made de
omposing either the axial se
tion or the rotation. The nomen
lature of a de
omposition

reads Na-Mr where N stands for the number of substru
tures in the axial se
tion, M for the number

of substru
tures in the rotation.

In the 
ase of rotation-de
omposed substru
tures, pressure is dis
ontinuous at the elastomer/elastomer

interfa
e and 
ontinuous inside substru
tures. However, me
hani
al results are identi
al whatever the

de
omposition.

6 Numeri
al results

All 
omputations presented here were realized on the SGI ORIGIN 2000 of the P�le de Cal
ul Paris

Sud. We 
ompare performan
e levels for the bu
kling and non-bu
kling problems, of 
lassi
al primal

approa
h, GIRKS-primal approa
h and dire
t sequential approa
h. The dire
t sequential solver

requires 8667s to solve one linear system.

6.1 Non-bu
kling problem

As said before, this loading history leads to the 
omputation of 48 linear systems with di�erent

matri
es and right hand sides. The dire
t sequential approa
h is 
ompleted in 115h30min. Parallel

performan
e results are given in table (2).

As 
an be seen, performan
e levels strongly depend on the 
hoi
e of the de
omposition though the

number of subdomains is almost 
onstant. Two fa
tors justify these variations, �rst the heterogeneity

of the interfa
e (de
ompositions giving best results 
ontain only mono-material substru
tures with

di�erent materials fa
ing, while less e�
ient de
ompositions possess multi-materials interfa
es with

same materials fa
ing), se
ond the aspe
t ratio of substru
tures (due to the lower sparsity of matri
es,

massive substru
tures involve longer 
omputation time for matrix manipulation).
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k linear systems (Squq = bq)q=1,...,k were solved

for the (q)th linear system, we note

W q = {wq
0, . . . , w

q

rq−1} set of resear
h dire
tions

rq = dim(W q)

Γq = W qTSqW q
(diagonal matrix)

sq ponderation term (most often 1)

Solution to the (k + 1)th system

1. IRKS approach

1.1 Initialization

û0 = G(GTSG)−1GT b+ Pχ
r̂0 = b− Sû0

1.2 Iterations i = 0, . . . , p /ẑp = 0

ẑi = P

[

k
∑

q=1
W qΓq−1W qT

]

r̂i

ŵi = ẑi +
i−1
∑

j=0

γ̂ijŵj (ŵ0 = ẑ0) γ̂ij = −
(ẑi,Sŵj)
(ŵj ,Sŵj)

x̂i+1 = x̂i + α̂iŵi

r̂i+1 = r̂i − α̂iSŵi

∣

∣

∣

∣

α̂i =
(r̂i,ẑi)

(ŵi,Sŵi)

1.3 End of IRKS

V = {w0, . . . , wp−1}
Λ = V TSV (diagonal matrix)

Q = Id− V Λ−1V TS proje
tion matrix

2. Conjugate Gradient with GKC

2.1 Initialization

x0 = x̂p+1

r0 = r̂p+1

2.2 Iterations i = 0, . . . , s
yi = M−1ri
Successive corrections q = 1, . . . , k

r̃qi = sqW
qΓq−1W qT ri −W qΓq−1W qTSqyq−1

i

yqi = yq−1
i + r̃qi

zi = QPyki

wi = zi +
i−1
∑

j=0

γijwj (w0 = z0)

xi+1 = xi + αiwi

ri+1 = ri − αiSwi

∣

∣

∣

∣

γij = − (zi,Swi)
(wj ,Swj)

αi =
(ri,zi)

(wi,Swi)

Figure 1: Algorithm: GIRKS with Proje
ted Pre
onditioned Conjugate Gradient
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Figure 2: 3D view of �exible bearing Figure 3: Axial view of referen
e and deformed

stru
ture

The turning sti�ness (�g. 4) de
reases

when the pressure inside the booster in-


reases, it 
an even be
ome negative (the

�exible bearing is then driving). This

evolution, 
aused by the displa
ement of

pie
es, is properly simulated during the


omputation.
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Figure 4: Turning sti�ness

Problem Aver. CPU time (s) / sys It. nb Gain

De
omposition Method Fa
torization Total Aver/sys Seq./Par.

17a-1r (17 pro
.) Primal 14.5 140.7 164 61.6

17a-1r (17 pro
.) GIRKS 14.5 78 50 111.1

6a-3r (18 pro
.) Primal 22.4 412.8 398 21

6a-3r (18 pro
.) GIRKS 22.4 256.7 183 33.7

3a-6r (18 pro
.) Primal 144 939.2 362 9.2

3a-6r (18 pro
.) GIRKS 144 400.9 120 21.6

Table 2: Numeri
al performan
e Parallel/Sequential (non-bu
kling)

The Krylov a

eleration strategy leads to signi�
ant speed-up. The CPU time, thanks to the use

of GIRKS, in
reases from 38% to 58%. GIRKS enables to solve up to 111 times faster the non-linear

problem than the sequential approa
h using only 17 pro
essors.

Figures (9) and (10) respe
tively show the evolution of the average number of 
onjugate gradient

iterations and the asso
iated average CPU time to solve ea
h linear system. Due to the very low 
ost

of GIRKS, iterations and CPU time graphs are quite similar. As 
an be seen, the a
tion of GIRKS

grows as the nonlinear system number in
reases due to the in
reasing size of the stored Krylov

subspa
es. In the 
ourse of the non-linear resolution, it may o

ur that the information stored in

Krylov subspa
es be
omes non-relevant and leads to a perturbation leading to stagnation. The linear

resolution is then restarted with deletion of the sta
k of Krylov subspa
es. The restarting pro
edure


an be observed on �gure (9) when two points are asso
iated to the same linear system.

6.2 Bu
kling problem

This loading history leads to the 
omputation of 37 linear systems with di�erent matri
es and right

hand sides. The dire
t sequential approa
h is 
ompleted in 89h. The performan
e results of the

parallel approa
hes are given in table (3). For the bu
kling problem, GIRKS is not as e�
ient as for

the previous problem, but it still has a positive impa
t. The best result is then a resolution 67 times

faster than the sequential approa
h using only 17 pro
essors.

7 Con
lusion

In this paper we 
onsidered the resolution of highly heterogeneous stru
tures involving quasi-in
ompressible

materials with a primal domain de
omposition method. We extended the de�nition of s
aling ma-
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Figure 5: Bu
kling of one reinfor
ement
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Figure 6: Radial displa
ement of an internal bound-

ary point of a reinfor
ement

Figure 7: 17a de
omposition Figure 8: 3a-6r de
omposition

Problem Aver. CPU time (s) / sys It. nb Gain

De
omposition Method Fa
torization Total Aver/sys Seq./Par.

17a-1r (17 pro
.) Primal 14.9 139 162 62.3

17a-1r (17 pro
.) GIRKS 14.9 130 102 66.7

Table 3: Numeri
al performan
e Parallel/Sequential (bu
kling)

tri
es to the 
ase where pressure is 
ondensed, restoring the s
alability of the method to this 
lass

of problems. The resolution of the 
hallenging assessment was su

essfully a
hieved using a Newton-

Krylov approa
h. We showed that the reuse of Krylov subspa
es with the GIRKS algorithm always

lead to better performan
e, the speed-up 
ompared to the 
lassi
al primal approa
h 
an be 60%.

Compared to the dire
t sequential approa
h, the resolution is 
ondu
ted in the best 
ase 111 times

faster using only 17 pro
essors. In order to avoid stagnation and restarting asso
iated to GIRKS, we

now develop new Krylov reuse strategies based on an exa
t 
oarse grid solver. Due to the signi�
ant


omputational 
ost of this new approa
h we 
ouple it with a sele
tive reuse of Krylov subspa
es based

on a spe
tral analysis of the linear systems [4℄.
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