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Abstract

This paper presents a two-scale approximation of the Schur complement of a subdomain’s stiffness
matrix, obtained by combining local (ie. element strips) and global (ie. homogenized) contributions.
This approximation is used in the context of a coupling strategy that is designed to embed local
plasticity and geometric details into a small region of a large linear elastic structure; the strategy
consists in creating a local model which contains the desired features of the concerned region and
then substituting it into the global problem by the means of a non-intrusive solver coupling technique
adapted from domain decomposition methods. Using the two-scale approximation of the Schur com-
plement as a Robin condition on the local model enables to reach high efficiency. Examples include
a large 3D problem provided by our industrial partner Snecma.

Keywords: Structures, Finite element methods, Multiscale analysis, Nonlinear solvers, Schur
complement, Non-intrusive methods

1 INTRODUCTION

Substructuring and domain decomposition methods are very powerful analysis techniques in the field of
structural mechanics. By splitting a large problem into several smaller subproblems, these techniques can
help keeping computational costs at reasonable levels. However, their efficiency depends entirely on how
well the subproblems are bridged together — that is, how well the interactions between each subdomain
and the rest of the structure “that it sees” are described.

In the context of finite element analysis (FEA) applied to static linear elasticity problems, the “me-
chanical impedance” of a region can be described by the Schur complement of its stiffness matrix on
its boundary. This quantity is involved in a broad range of techniques, from static condensation (which
basically consists in computing it straightforwardly) to mixed domain decomposition methods [18, 4], and
to the design of efficient preconditioners for primal or dual domain decomposition methods [16, 6, 19].
A classical technique for its computation is to perform a block Gaussian elimination with specific (and
non-optimal) numbering. However, this technique is usually very expensive on large problems; for that
reason, several approximations of the Schur complement have been investigated in the literature. Some
of those techniques are reviewed in Section 3.

In this paper, a new approximation technique of the Schur complement is presented. Unlike most
common approaches, which retain either short-scale effects (ie. the local influence of the vicinity of
the interface) or long-scale effects (ie. the global influence of a large region around the interface), this
technique consists in combining short-scale and long-scale information in order to obtain a realistic
representation of a subdomain’s stiffness at both scales, that is much cheaper to compute than the
exact Schur complement. This approximation was designed in the framework of a non-intrusive coupling
strategy that was introduced for the first time in [9]; this context explains some of the limitations
and choices of the proposed Schur complement approximation. It should be noted, however, that the
approximation technique we suggest is not restricted to this context, and can probably have many more
applications, such as building preconditioners for domain decomposition methods.

The rest of the paper is structured as follows. In Section 2, we review the basics of the coupling
strategy. Section 3 presents the application of the two-scale Schur complement approximation to the



strategy, as a way to build efficient local boundary conditions. Finally, Section 4 contains results obtained
on a large 3D example provided by our industrial partner Snecma, as a proof of feasibility of the method.

2 A NON-INTRUSIVE COUPLING STRATEGY

2.1 Reference problem and splitted formulation

We consider a static mechanical problem set on a domain 2, under small perturbation hypothesis. We
assume that the behavior of the structure is linear elastic except in a small region denoted €2;, which
is already known; in this region, we assume the constitutive law is elastic-plastic (although other forms
of nonlinearity could as well be considered). The reference problem is shown on Figure 1(a) with its
boundary conditions (schematized by the triangles) and loads (echematized by the arrows).

This problem can be rephrased in a splitted way which enables using a simplified global linear elastic
model (Figure 1(b)), completed by an enhanced nonlinear local model (Figure 1(c)) which may contain
geometric details (like holes) that do not appear in the global model. We assume the global model is
analyzed using commercial (and closed) FEA software, whereas the local model can be analyzed using
dedicated software. Our goal is to find the solution to the reference problem by using the global and local
models and solvers in a non-intrusive way — that is, without modifying them.
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Figure 1: Reference, global and local problems

For that purpose, the “global-local” solution s = (u,g) (where u is the displacement field and g is
the Cauchy stress field) is defined as:

B sh(z) ifzen
s(z) = { s9z) ifze Qé (1)

where Q; denotes the area of interest (described by the local model) and Q¢ = Q \ Q; denotes the rest
of the structure and is called the complement area. Superscripts G and L respectively denote quantities
from the global model (defined on  in its entirety) or the local model (defined on €; alone). The
interface 02y N ) is denoted by I'. Tt is assumed that the local and global meshes are matching on the
interface; non-conforming interfaces have not been considered so far, though a standard mortar technique
[1] should provide an effective answer to this problem.

It was proved in [9] that the “global-local” solution verifies every equation of the reference problem

if, and only if, the following three conditions are satisfied:
(i) the local solution s” verifies each equation written in ; and on 9Q; \ I' (equilibrium, boundary

conditions and elastic-plastic constitutive equations);

(ii) the restriction of the global solution to Qc, s&, verifies each equation written in Q¢ and on 9Qc \T
(equilibrium, boundary conditions and linear elastic constitutive equations);

(iii) both solutions match on I' (displacements are equal and tractions are balanced).



Those three conditions form the so-called global/local formulation. They are similar to the formulation of
non-overlapping domain decomposition methods: the overlap of models is eliminated from the equations.

2.2 Interface formulation

A surface coupling algorithm is used to match the two solutions on I': the finite element solvers exchange
the nodal interface displacements u? and ulé and their dual quantities, the nodal interface reaction forces
Af ¢ and Af. More specifically, Af  is the nodal interface force exerted on the complement area (hence
the subscript C) of the global model through T, which is a global internal force, and AL is the nodal
interface force exerted on the local model, which is a local external force (since T is part of Q;’s boundary).

It is convenient to write the equations in each subdomain in condensed form, ie. using only interface
quantities. The global/local formulation can then be translated directly. The global solution (ulg, /\1970)
has to verify equations of ¢, that is:

S?,culg - bﬁc = )\Iq,c (2)

where SIQ’C denotes the Schur complement of the complement domain’s stiffness matrix, and blg,c the

corresponding condensed right hand side vector. Likewise, the local solution (uk,\k) has to verify
equations of 27, that is:
hi(uf) = A 3)

where hi is the local problem’s discrete Steklov-Poincaré operator, ie. the interface stiffness operator
giving the reaction forces Ak as a function of the interface displacements uk. A different notation is used
because this group of equations is nonlinear. Finally, interface displacements must match and interface
nodal reaction forces must be balanced:

uff = uf (4)
Mo+ =0 (5)

This formulation is very similar to nonlinear domain decomposition methods [22]. The difference is
that the global model is never substructured since the approach is non-intrusive; therefore, the complement
area is never separated from the area of interest in the global model, and the quantities Sﬁc and blg,c
cannot be accessed directly. Equivalently, we can say that it is impossible to prescribe tractions directly
on the complement area through I'; only traction discontinuities between Q¢ and €y can be prescribed
in the global model.

The (primal) condensed form of the reference problem would be:

hi(uf) + Sf cuff —bf o =0 (6)

Tt is easy to see that the condensed global/local formulation (2)—(5) implies Equation (6) — that is, that
the solution to (2)—(5) is indeed the reference solution.

2.3 Iterative coupling algorithm

The basic algorithm is a modified Newton method formulated on an interface condition: starting from
a global displacement field ulg , the following three steps are performed at each iteration. Note that the
global forces )\19’0 are computed, whenever required, according to (2).

1. Local analysis: a local solution (uf, AL) is sought, verifying (3) and a boundary condition on T
this condition can be prescribed displacements (4), prescribed forces (5) or a combination of both,
as it will be detailed in Section 3.

2. Residual computation: an interface load vector called the residual is computed. It measures the
non-verification of interface equations; for example, if prescribed displacements are used, then the
residual measures the lack of equilibrium of nodal forces, ie. rr = f(/\ﬁc + AL). Convergence is
tested here: if the residual’s norm is small enough, iterations are stopped.

3. Global correction: the residual is injected into the global problem as an additional interface load.
This is done by first solving a corrective global problem loaded only with the residual (all other loads



and boundary conditions being set to zero); in interface notation, introducing S& = Slg,c + Sﬁ I
the global model’s Schur complement, this writes:

SYAuf =rr (7)
Then the global displacement is updated before going back to step 1:

ug — ulg + Aug (8)

In [9], prescribed displacements were used as local boundary condition at Step 1; this paper focuses on
mized boundary conditions (see Section 3). Note that:

e No Schur complement is computed explicitly: to multiply a Schur complement by a displacement
vector means to prescribe this displacement on the interface of the corresponding model, to run the
finite element analysis with every other load set to zero, and to collect the corresponding interface
reaction forces.

e The basic method is indeed a modified Newton method, since the global stiffness operator is never
modified: the global mesh, constitutive relation and the location of Dirichlet boundary conditions
are retained (prescribed displacements are set to zero but this does not modify the stiffness matrix)
and only additional loads are prescribed. This allows a very simple implementation (see Section
4), since only displacements and forces at the interface nodes are exchanged. This idea was first
suggested in some early global/local literature [23]. A drawback is that convergence can be slow in
presence of moderate nonlinearity, such as plasticity.

e Convergence acceleration techniques can be introduced. The modified Newton algorithm described
above can easily be turned into a quasi-Newton algorithm — namely, the SR1 algorithm (for
Symmetric Rank One) — in a completely non-intrusive way. In [9] this technique greatly improved
convergence rates for negligible additional costs when using displacement boundary conditions.
Section 4 shows that this technique is also efficient with mixed boundary conditions.

3 MIXED BOUNDARY CONDITIONS

The results presented in [9] were obtained using only prescribed displacement conditions. Such conditions
are easy to implement, and the global/local displacement field (defined by (1)) obtained through them is
continuous; for that reason, they are very popular and, for example, often used in global/local [3, 20, 23]
or multi-level FEA (7, 12], as well as hierarchical techniques [5, 8, 21].

However, displacement conditions suffer from a couple of limitations. First, the difference between the
two stiffnesses of the area of interest (from the global and local models) often has a great influence on the
displacement field, which causes the boundary condition to be inaccurate. In other terms, during the first
iterations, global interface displacements are usually quite different from reference interface displacements.
This affects the solution’s accuracy and, therefore, the algorithm’s convergence; a common workaround is
to position the interface far enough from the local details, but this increases the size of the local problem
unnecessarily. Another problem is that if plasticity occurs at integration points located close to the
boundary, we have noticed that the prescribed displacements can cause convergence difficulties.

Mixed boundary conditions are commonly used in domain decomposition methods (see for example
[18, 14]) for these reasons. They are known to be quite insensitive to the difference of stiffnesses and give
accurate results from the first iterations, which implies fast convergence, and they do not have a tendency
to cause stress concentrations or convergence problems. Their increased accuracy was also shown in the
field of global/local analysis [13]. Therefore, they seemed to be a natural choice for the method.

3.1 Basic theory
3.1.1 Formulation

The term “mixed boundary condition” can have several meanings. In this paper, we have chosen to use
Robin boundary conditions. In other words, when we solve the local problem (3), we do not prescribe the



continuity of displacements (4) or the equilibrium of forces (5), but a linear combination of those two
equations. That is,
Ar (uf —uf) + (\Eo+ M) =0 (9)

where Ar is a square matrix representing an interface stiffness, and a parameter of the method. Likewise,
the residual is not computed on Equations (4) or (5), but also on a linear combination of both:

Br (uf —uf) — (A\F ¢ +Af) =0 (10)

where Br is also a parameter of the method.

It should be clear that Equations (9)—(10) are equivalent to Equations (4)—(5) if, and only if, the
matrix Ar + Br is invertible. If this condition is verified and if the algorithm is convergent, then the
solution will converge to the reference solution, as noted in Section 2.3. Apart from this condition, there
is no restriction to the choice of Ar and Br.

3.1.2 Choosing the interface stiffnesses

However, this choice has a huge impact on the convergence rate — especially the choice of the first
stiffness Ar. This can be seen by combining the local problem’s equation (3) with the Robin condition
(9); the mized local problem that is obtained is the following:

hf(uf) + Aruf = Aruf — Af o (11)

In other terms, the interface stiffness Ar is assembled into the local problem and a mixed load vector
Apulg — )\gc is prescribed. This shows that the Robin condition can be a powerful tool for modelling
the stiffness of the rest of the structure, that is the complement domain, as “seen from outside”. More
specifically, it is easy to see that if Ar is equal to the Schur complement of the complement domain Sﬁc,
then the mixed local problem (11) becomes equivalent to the reference problem (6). Therefore, if we
could compute Sﬁc exactly, the analysis strategy would be:

e czact (the local solution would be the exact reference solution),
e direct (this would be true at the very first local analysis, so only one iteration would be needed)
e and completely insensitive to the interface position, unlike the variant with prescribed displacements.

Unfortunately, to compute Sﬁc means to perform static condensation on the complement area, and
this technique is known to be extremely expensive on large 3D problems as explained in the introduction
(in addition to being intrusive...). Therefore, the Schur complement has to be approximated; its approxi-
mation should of course be inexpensive to compute, and at the same time be “close enough” to the exact
value so that fast convergence is obtained. In addition, since the method is aimed to be non-intrusive,
the building of the approximation should work on irregular meshes and require as little user intervention
(such as manual mesh operations) as possible.

Many authors have suggested such approximations; in the context of FEA with large subdomains and
possibly complex geometries, two common approaches are:

e short-scale approzimations, usually based on an element strip at the vicinity of the interface;

e [ong-scale approximations, usually inspired from homogenization, ie. submitting the subdomain to
a small number of “large-scale” interface loads.

In the next subsections, we review those two approaches. We show that when taken individually, none
of them brings significant gains in terms of convergence rates. For that reason, we suggest combining
them to form a two-scale approximation, and we show that such an approximation can lead to very fast
convergence.

3.2 A toy problem

To assess those approximations, we consider the toy problem shown on Figure 1, in the previous section.
It consists in a simple 2D model with a coarse regular mesh and a linear elastic constitutive law; normal
displacements are blocked on the bottom and lower sides edges, and a pressure and a centrifugal loading



Figure 2: A strip of 4 elements of the complement area adjacent to the interface.

are applied, as shown on Figure 1(b). Since the elastic limit is slightly exceeded near the sharp corner
on the left, an elastic-plastic local model is introduced, see Figure 1(c); this model also contains mesh
refinements and five small holes that were not present in the global model. The elastic moduli and
loading are the same as those of the global model (although they could have been different if needed).
Both models are analyzed using Abaqus/Standard, version 6.7.

The quality of the approximations is assessed using two simple indicators, giving a measure of the
difference between the local solution and the reference solution. The first indicator measures the global
error in interface displacements, ie.

_[uf — uff|
! [Juf||
This indicator can help estimating convergence, since interface displacements are part of the mixed
boundary condition. However, they are rarely an interesting quantity for the engineer, and this indicator
can be biased since local displacements could very well be close to the reference, whereas local stresses
would not; for those reasons, we also use a second indicator based on the maximum equivalent plastic
strain:
N, = péax — pﬁax
g Plax
This indicator is purely local; in theory, it does not give a reliable measure of the error in the solution,
since it could be very low while the local and reference solutions are very different. However, in the case
of single-step loads, we have found it to be reliable, and much more sensitive to “coupling errors” (that
is, inaccurate boundary conditions) than the displacement indicator. In addition, in applications like
turbine blades of aircraft engines, plastic strains are often a quantity of interest (so would stresses, but
plastic strains are usually more sensitive, as will be shown in Section 4).

3.3 Element strip techniques

We start by reviewing short-scale, or element strip techniques. As the name suggests, those techniques
consist in performing exact static condensation, not on the whole subdomain, but on a strip of elements
adjacent to the interface, usually clamped at the other end [18]. This leads to much lower memory
requirements. In this study, we have built such “strips” by analyzing element connectivity in a recursive
manner (eg. a 2-element strip is defined as “elements that touch elements that touch the interface”). This
process is simple, scriptable and suitable for irregular meshes. Figure 2 shows an example of a 4-element
strip in the complement domain, for the 2D toy problem described above.

Short-scale approaches also include the popular lumped and superlumped approximations, commonly
used as preconditioners in domain decomposition methods. The lumped approximation consists in re-
placing the whole Schur complement of a matrix with the corresponding interface block; that is, if the



Table 1: Error indicators at the first iteration for “short-scale” approximations

‘ Approximation type ‘ Nu ‘ Mp ‘
Ezact 0 0

4-element strip 0,122 | -0,177
2-element strip 0,133 | -0,211
1-element strip 0,140 | -0,247
Lumped 0,147 | -0,274
Superlumped 0,148 | -0,282
Prescribed displacements | 0,153 | -0,313

complement area’s stiffness matrix (or contribution to the global stiffness matrix) is

KG _ |: K%C I%gl—‘ :|
Kre Krre

then its Schur complement is by definition Slg,c = K?F,C - K¢, [Kgc]_l K&; the corresponding
lumped approximation is simply KIGF,C> and the superlumped approximation is its diagonal. Both can
be obtained at no additional cost.

To assess those approximations, a single mixed local analysis was performed, starting from the initial
global solution; then the two indicators introduced in the previous section were computed. Results are
summarized in Table 1. Significant errors can be noticed since, with the best approximation (the 4-element
strip of Figure 2), the displacement error is about 12% (versus 15% with prescribed displacements) and
the maximum plastic strain error is about 18% (versus 31% with prescribed displacements); the mixed
boundary conditions obtained by these approximations do not bring significant gains.

Since the 4-element strip is actually quite large and covers a significant part of the complement domain
(see Figure 2), this result suggests that most of the complement domain must be included in the “strip”
in order to obtain a realistic local solution. In other terms, the information contained in short-scale
approaches may not be sufficient to build efficient approximations at low costs for our problem (although
it works well for designing inexpensive preconditioners).

3.4 Homogenization-like techniques

For that reason, we also investigated long-scale approximations, most of which are inspired from mul-
tiscale homogenization techniques; that is, to prescribe a small number of interface loads on the whole
subdomain, representing their “large-scale” behaviour [12, 14, 10, 11, 7]. In comparison, short-scale tech-
niques consist in prescribing every possible interface load (ie. performing condensation) on a small part
of the subdomain.

3.4.1 Formulation

Two ways are possible: prescribing displacements and collecting reaction forces will give an approxima-
tion to the Schur complement (or primal Schur complement), whereas prescribing forces and collecting
displacements will give an approximation to its inverse (or dual Schur complement). We have chosen the
first option, for three reasons. First, we are actually interested in the primal Schur complement rather
than its inverse. Second, prescribing interface forces on the complement domain would require dissociat-
ing it from the area of interest — that is “cutting” the global model in two, since otherwise the internal
interface forces would not be controlled (remember, the global model is not substructured in our coupling
strategy). This is an intrusive operation; on the other hand, prescribing interface displacements does
not require such a manipulation ()‘1@,0 is then an internal reaction force). Finally, this choice avoids any
potential “floating subdomain” problem, that could occur with prescribed forces and require a specific
algorithm [19, 6].
In this framework, the “homogenized”, approximate Schur complement is defined as:

§¢. — IS¢ 1T (12)
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Figure 3: Affine displacement fields on the interface.

where Il is a linear operator projecting interface forces onto some low-dimensional “macro” space, and its
transpose ITT does the same with interface displacements. This choice guarantees that the approximation
is symmetric. Of course, the matrices in the equation above are never computed explicitly, and the result
is obtained by submitting the global model to simultaneous load vectors.

3.4.2 Choosing the “macro” spaces

The efficiency of the method obviously depends on the choice of those “macro” spaces. For “macro”
displacements, a common choice is the space of interface rigid body motions (translations and rotations);
this allows a convenient definition of “macro” forces by duality arguments. In this study, we have chosen
the space of affine fields as the “macro” displacement space; this includes translations and rotations, but
also stretching and distorting modes, as shown on Figure 3. For the sake of simplicity, we always handle
the interface as a whole: decomposing it would probably require user intervention in the case of very
irregular meshes.

Concerning “macro” forces, two definitions are possible. The simplest choice, used for example in the
LaTIn micro/macro method [14], is to use the same “macro” space as for the displacements. If E is a
rectangular matrix whose columns form an orthonormal basis of that space (ie. so that ETE = I), the
projector can then be defined as:

ImI=1"=EET (13)

that is, as an orthogonal projector (represented as a symmetric matrix).

However, that choice may seem too restrictive because a “macro” space that makes sense for nodal
displacements does not necessarily make sense for nodal forces'. For that reason, we also considered
different “macro” space and projectors for the two quantities (we require, however, their dimensions to
be the same). If E and F are the rectangular matrices whose columns respectively define the displacement
and force “macro” bases, and if we assume those bases are biorthonormal (ie. ETF = FTE = I), then
the projectors can be defined as:

I1 = FET (14)
n* = Er” (15)
Since “macro” displacements include unit translations and rotations, the corresponding “macro” forces
will have unit resultants and moments. Apart from this, there is no restriction to the choice of the
“macro” force space. For reasons that will be explained later, we have chosen to define this space as the
space of reaction forces to prescribed “macro” displacements. Thus, once these reaction forces have been

computed, its basis F is sought as:
F = S{ EP (16)

where P is a basis transformation matrix; the biorthogonality condition then gives

E"SC EP =1 (17)

which means P has to be the inverse or pseudoinverse of ETSIC{CE. Once this pseudoinverse is computed,
the “macro” force basis F is directly formed by (16). Those “macro” basis vectors do not correspond

1For example, a translation motion is represented by a uniform nodal displacement vector, but a uniform traction field,
that could be a possible “macro force” candidate, is usually not represented by a uniform nodal force vector.
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Figure 4: Lack of convergence of the “long-scale” mixed approximation.

to particularly noticeable force distributions; however, they have the desirable properties of having unit
resultants or moments (or higher order moments, due to the stretching and distortion terms), and of
containing relevant mechanical information on the subdomain’s response.

3.4.3 Results

Those two variants were tested on the 2D toy problem described in the previous sections. Figure 4
represents the evolution of the displacement error indicator versus the iteration numbers, for the “basic”
algorithm (the letters L and G refer to local and global steps of each iteration); it can be noticed that
the indicator stagnates, and does not converge to zero. A more careful examination shows that the error
actually increases during the local analysis. This shows that the information obtained using this method
is not sufficient to create efficient boundary conditions.

3.5 A two-scale Schur complement approximation

The previous subsections have shown that neither short-scale nor long-scale approximations contain
enough information to give a good representation of the complement area’s influence. It seems necessary
to represent both the vicinity of the interface and the global behaviour of the subdomain correctly. In
this section, we propose an original technique for combining those approximations, in order to build an
efficient representation of a subdomain’s stiffness; it was only applied to the complement domain in the
case of our strategy, but could certainly have more applications, for example to building preconditioners
in domain decomposition methods.

3.5.1 A consequence of Saint-Venant’s principle

This technique is based on Saint-Venant’s principle, which is a well-known empirical principle commonly
used in mechanical engineering in general, and in the beam theory in particular; a discussion is given in
[15] for linear elasticity. This principle states that “... the strains that can be produced in a body by the
application, to a small part of its surface, of a system of forces statically equivalent to zero force and zero
couple, are of negligible magnitude at distances which are large compared with the linear dimensions of
that part” [17].

In other words, at large distances from the system of forces, the motion of the “body” is almost
rigid (since strains are negligible). If we could identify this rigid body motion and substract it from the
displacement field, then the residual (non-rigid) displacements would be almost zero. Therefore, clamping
that “body” at a sufficient distance from the system of forces should not introduce a significant error
in any component of the solution, see Figure 5. This should be true, in particular, for displacements of
points where the forces are applied.

Let us apply this principle to the complement domain, subjected to interface forces Ar. Assume that
ET)Ar = 0; since E contains interface translations and rotations, then Ap’s resultant force and moment
are zero. Therefore, the principle above states that the complement domain could be replaced with an
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Figure 5: A consequence of Saint-Venant’s principle.

element strip such as those presented in Section 3.3, clamped at a sufficient distance from the interface;
denoting its Schur complement by Dr, one should then have:

[Slg,c] 71)\1« ~ D1?1>\p + Ex

where x is a (possibly unknown) amplitude vector, and Ex represents the rigid body motion that was
omitted; x might be zero if each of the complement area’s rigid body modes are blocked. Moreover,
since every equation written in the complement area is linear, this rigid body motion has to be a linear
function of the loading; that is, there exists a rectangular matrix C such that:

X:C)\F

Determining this matrix could be difficult in practice, but luckily it will not be needed in the final result.

By combining the two equations above, the following postulate is obtained: for any interface load vector
)\F7

if E'Ap = 0, then S& ' Ar ~ [Di' + EC| Ar (18)

3.5.2 Interface force splitting

We can now introduce our two-scale approximation to the Schur complement. It basically consists in
splitting, using the projectors defined in Section 3.4.2, the space of interface forces in two:

e a “micro” space, design to contain only loads with zero resultant force and moment, thus that can
be analyzed on a short-scale approximation, like those in Section 3.3;

e and a “macro” space with a low dimension, that will be analyzed on the whole complement area
with homogenization-like techniques, like in Section 3.4.

The formulation is a straightforward application of this idea. First, notice that both definitions of the
“macro” force projector II, that are (13) and (14), imply the following property: for any interface force
)\Fv

ET(I-I) A\ =0 (19)

This means that (I —II) Ar’s resultant force and moment are always zero. Therefore, if we take an
arbitrary A\r and write the following “macro/micro” decomposition:

Ar =IIMp + (I —1I) Ap
and left-multiply it by [SEC] 71, then the postulate (18) gives:
[S€c] "Ar ~ [SE€c] 'Hr + [D' + EC] (I-T) A
And since this is true for any arbitrary A, the following approximation is obtained:
[Sfc]™" ~ [8fc] I + [Dr' +EC] (1-10) (20)

At first glance, this definition seems to involve the response of the complement domain to prescribed
“macro” forces, due to the [Sﬁc]flﬂ term; as explained in the previous section, prescribing interface

10



forces on the complement domain is an intrusive operation. However, this difficulty can be lifted by
choosing the “macro” force space accordingly — that is, by defining it as the space of reaction forces
to prescribed “macro” displacements, as specified by Equations (14)—(17). With this definition, once

those reactions forces have been computed, obtaining [Sf—ic]flﬂ is no longer a problem. In addition,
Equations (14), (16) and (17) give the following identities:

sG] 'm=1"[sE.] "

—0"[s¢.] 'n
—E[E"S¢ E] 'ET (21)

that is, the response to prescribed “macro” forces is always a “macro” displacement, and the response to
a prescribed “macro” displacement is always “macro” forces. In other terms, the following decomposition
holds:

[Sfc] ™ = mrsfo] '+ 1-m' [sf] T (@-1m) (22)

This decomposition is a direct consequence of the relation between the “macro” force and displacement
spaces, and does not hold with other definitions (ie. when the two spaces are chosen to be the same).

Another difficulty is that the expression in (20) looks unsymmetric, and thus seems to violate a
fundamental property of linear elasticity. More precisely, we know that the actual Schur complement
is symmetric in our problem, therefore it is desirable to have a symmetric approximation. However,
the identities (21) show that the “macro” term is already symmetric, and only the “micro” term (with
(I —1II)) is unsymmetric. Several ways of making it symmetric can be thought of; similarly to the
decomposition (22), we have chosen to slightly adapt Equation (20) as follows:

[S¢c]™ =~ OT[s¢.]"'H + 1-1)" [Dy! + EC] (I - ) (23)

Only the “micro” term changes between the two equations; this change consists in using the short-scale
approximation to calculate the “micro” response to “micro” forces only. Note that this expression is still
a valid consequence of Saint-Venant’s principle: when comparing it to (22), which is an ezact equation,
only the response to “micro” forces is approximated.

Finally, taking the transpose of Equation (19) shows that the rigid body term (with EC) vanishes.
Thus there is no need to identify rigid body modes and compute the matrix C, and the final, symmetric
two-scale Schur complement approximation is:

8¢ ~ mT[sfy] ' + 1-I)" DF' (1 - 1) (24)

In practice, the inverse of this equation is computed by writing it as Dy ! plus a small-rank corrective
term, and using Woodbury’s matrix identity to obtain directly an approximation to the primal Schur
complement. The total cost of the operation is quite low, since it requires:

e a global analysis with 6 simultaneous load vectors (for the “long-scale” part), and
e full condensation of a small element-strip model (for the “short-scale” part)

which is usually much cheaper than performing full condensation of the complement domain, at least on
large 3D problems.

3.5.3 Results

The values of the two error indicators obtained after the first local analysis, on the 2D toy problem, are
given in Table 2. The “long-scale” part uses prescribed affine displacements and biorthonormal bases,
as explained previously; for the “short-scale” part, the same approximations as those of Section 3.3 were
tested. Local results appear to be much better than with the long-scale or short-scale approximations
alone, and errors are 3 to 6 times lower than with the displacement condition. This proves that combining
information obtained from both scales is a promising way for building realistic approximations to the
Schur complement (or stiffness) of a subdomain.

In Figure 6, the corresponding local solution (Figure 6(a)) is compared to the local solution obtained
with prescribed displacements (Figure 6(c)), again at the first iteration and in terms of equivalent plastic
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Table 2: Error indicators at the first iteration for two-scale approximations

‘ Short-scale term ‘ Na ‘ Np ‘
Ezact 0 0

4-element strip 0,028 | -0,050
2-element strip 0,032 | -0,054
1-element strip 0,039 | -0,064

Lumped 0,047 | -0,076
Superlumped 0,051 | -0,085

Using prescribed displacements | 0,153 | -0,313

SDV1
(Avg: 75%)

(a) First local iteration, two- (b) Reference (c) First local iteration, dis-
scale mixed condition placement condition

Figure 6: Contour plots of equivalent plastic strains obtained with various methods

strains: it is clearly much closer to the reference solution (Figure 6(b)). Therefore, mixed boundary
conditions that use this technique can lead to improved local solutions, at realistic costs.

On a side note, this two-scale approximation can certainly be used in other applications than the
strategy described above; it can probably be useful in the context of preconditioning or mixed domain
decomposition methods, in particular when the subdomains are large.

3.6 Convergence results

Convergence of the plastic strain error indicator is represented on Figure 7, for the four variants of the
method. Grey curves correspond to the prescribed displacement conditions (also called primal, as in
domain decomposition methods), and black curves to mixed conditions; dotted curves were obtained
using the “basic” (ie. modified Newton) algorithm, and plain curves using the “accelerated” (ie. quasi-
Newton) algorithm. Iterations are numbered so that the first global and local analyses, which correspond
to a weak “one-way” coupling, correspond to iteration zero; thus they give the number of additional
analyses carried out by the strategy.

The mixed boundary condition seems to bring significant improvements in convergence rates, espe-
cially with the basic algorithm; an error of 1072 on the maximum plastic strain (which is a quite strict
threshold, by engineering standards) is reached after 2 iterations using the mixed condition, versus 7
iterations using the primal condition. Gains in terms of iteration numbers are less evident with the
accelerated algorithm (2 iterations versus 3), but it still can be noticed that the error indicator decreases
faster. Last, convergence acceleration does not impact the mixed variant’s speed as much as it does to the
primal variant (see also [9]), but it still provides a significant increase in convergence rates for negligible
additional costs.

4 AN INDUSTRIAL EXAMPLE

Finally, the feasibility and performance of this variant were assessed by running additional tests on a
larger 3D test case provided by Snecma. This case consists of two Abaqus/Standard models represented
on Figure 8 and is based on an aircraft engine’s turbine blade, with an extremely simplified geometry for
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Figure 7: Convergence of maximum plastic strains on the 2D example

Area of
interest

Figure 8: Global and local meshes of the 3D test case

confidentiality purposes. The global model is subjected to a complex set of loads that includes centrifugal
forces, a pressure field on the blade’s surface, and a precomputed temperature field; normal displacements
are blocked on the slanted surfaces at the bottom, and the constitutive law is linear elastic. It contains
about 500,000 DOFs. The local model is located at the bottom of the blade and contains the plastic area,
with reasonable margins; it features an elastic-plastic constitutive law and its mesh is locally identical to
the global mesh (no refinements or geometric details were introduced). It contains 80,000 DOFs. The
interface consists of three planes and totals 6,400 DOF's.

4.1 Implementation

The two models had initially been designed to be analyzed with submodeling, which is a very common
global/local analysis procedure available in most major FEA software, and is basically equivalent to the
first iteration of our method (as a consequence, it only ensures an incomplete, “one-way” coupling, since
the global influence of the local modifications are ignored). Since the strategy is designed to be modular
and non-intrusive as explained in Section 2, only a few lines had to be modified in the input files in order
to adapt them to the strategy.

The algorithm itself was coded as a simple Python script of a few hundred lines, reading results from
output databases using Abaqus’ built-in methods, processing them, writing boundary conditions or addi-
tional loads to text files, and submitting jobs. For the mixed boundary condition, scripts were also used
to build the “macro” problems (from the node coordinate table) and the element strip models (from the
element connectivity table), to analyze them and to compute the approximate Schur complement auto-
matically, with almost no user intervention. Typically, starting from an operational submodeling data set
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Figure 9: Convergence of maximum plastic strains on the 3D example

and tested Python scripts, preparing the models for the strategy could take a few minutes (displacement
variant) to one hour (mixed variant), which seems quite affordable; this is the main advantage of using
a non-intrusive framework.

4.2 Submodeling errors and convergence

Results are shown on Figure 9; three variants of the method were tested. Notice the high initial value
of the indicator for the two “primal” curves, of about 60%; this initial value corresponds to the first
local solution, that would be obtained by traditional submodeling. This means that ignoring the global
influence of local plasticity leads to underestimating the maximum equivalent plastic strain by 60%, which
is probably unacceptable if this quantity is important for the application.

Of course, this test case is quite different from actual turbine blade problems since it uses a monotonic
load and an elastic-plastic constitutive law, whereas turbine blades are subjected to cyclic loads and
exhibit important viscous effects. However, this example shows that submodeling can actually introduce
huge errors on some important output quantities, even when more common quantities such as stresses
do not seem to be affected (the relative error on the maximum Von Mises stress is much smaller, about
0.5%). Once again, the mixed boundary condition is quite efficient in reducing this error; at “iteration
zero”, an error of about 13% is obtained, which is probably not sufficient but is 5 times better than with
the displacement condition.

When the method is carried out until convergence, the basic primal algorithm appears to be quite
slow, as expected: it takes 9 iterations to bring the plastic strain error indicator down to 1072, which is a
common threshold for engineering standards. The accelerated primal algorithm takes 4 iterations before
reaching that level, whereas the additional cost per iteration is completely negligible. The “mixed” re-
sults were obtained using the two-scale Schur complement approximation; computing this approximation
consists in:

e performing static condensation on a 3 element wide strip (“short-scale” part)

e running a global computation with 12 simultaneous right-hand sides, corresponding to the pre-
scribed affine “macro” displacements (“long-scale” part)

Then the algorithm takes 2 iterations only to reach the threshold, which shows once again the efficiency
of the two-scale approximation.

However notice that the proposed approximation to the Schur complement is a dense matrix whose
handling is CPU-time consuming, and that Abaqus/Standard (6.7-1) comes with limitations on the reuse
of the global stiffness matrix which penalize our strategy. As a consequence, on this single increment case,
our strategy uses more CPU time than the direct solution of the reference problem. We are currently
investigating solutions that should reduce the cost per iteration while maintaining high convergence rates.
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5 CONCLUSIONS

In this paper, a two-scale Schur complement approximation was introduced. By combining short-scale
and long-scale information, this approximation can give a realistic representation of the stiffness of a
large subdomain at realistic costs. It was derived and tested in the framework of a non-intrusive coupling
strategy, that consisted in introducing local plasticity and geometric details in a small region of a large
finite element problem by the means of an additional local model; in this paper, this local model used
mixed boundary conditions, and using a two-scale approximation of the Schur complement of the rest
of the structure led to very fast convergence, whereas short-scale or long-scale approximations were not
sufficient by themselves. This approximation can probably be useful in various situations found in domain
decomposition methods, such as preconditioning or building mixed interface conditions.

Concerning the coupling strategy, it has currently been tested on problems limited to one single
load increment. To handle multiple increments, two possibilities are foreseen: either incrementation is
performed and exchanges are carried out at each increment (like in traditional implicit coupling schemes)
or, conversely, exchanges are performed and each global or local problem contains a whole loading history.
The latter option, called non-incremental, seems more promising for several reasons. First, it would
be more convenient to implement around FEA software such as Abaqus, which is designed to analyze
complete loading histories on a given problem, and not just one specific increment: one would only
have to exchange data between whole analysis jobs, whereas implicit incremental coupling schemes are
not supported in the version we use (Abaqus/Standard 6.7-1). Second, the non-incremental approach
minimizes information transfers between the solvers, and reduces the number of decompositions of the
global stiffness matrix, which are time-consuming (during the global correction step, the right-hand side
vectors corresponding to the residuals at every time step could be processed at the same time). Finally,
it would easily allow using different time steps for the two models. In order to do this, the formulation
and algorithm should be adapted to a non-incremental form, such as those used in the LaTIn method
(see for example [2]).

Apart from this, we envision three extensions of the method. One is about handling non-matching
meshes between the two models, with an appropriate technique such as the mortar method [1]; this
would certainly allow the strategy to address a more general class of locally nonlinear problems, and to
be a more flexible structural reanalysis and model coupling tool. Another is about handling two different
solvers; namely, a commercial FEA package for the global problem, coupled with in-house software for
the local problem. This would allow testing advanced models or solution techniques, that are almost
impossible to implement in commercial software at the moment, on complex industrial problems that
cannot be solved with “research software” alone; a possible example would be the inclusion of localized
damage on a large aircraft part made out of laminated composites. Finally, many more configurations
can be thought of, such as multiple areas of interest (ée. several local models) or multiple zooming levels
(ie. more than two); this could be useful in a number of engineering situations and give more reliability
to the usual “global-to-local” simulation scheme, used in many industrial applications of computational
mechanics.
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