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35512 Cesson Sévigné – France Dublin 2 – Ireland
{gregoire.lefebvre,christophe2.laurent}@francetelecom.com zhengh@tcd.ie

Abstract. This article presents a method aiming at filtering objection-
able image contents. This kind of problem is very similar to object recog-
nition and image classification. In this paper, we propose to use Adaptive-
Subspace Self-Organizing Maps (ASSOM) to generate invariant porno-
graphic features. To reach this goal, we construct local signatures asso-
ciated to salient patches according to adult and benign databases. Then,
we feed these vectors into each specialized ASSOM neural network. At
the end of the learning step, each neural unit is tuned to a particular
local signature prototype. Thus, each input image generates two neural
maps that can be represented by two activation vectors. A supervised
learning is finally done by a Normalized Radial Basis Function (NRBF)
network to decide the image category. This scheme offers very promis-
ing results for image classification with a percentage of 87.8% of correct
classification rates.

1 Introduction

In many computer vision applications such as multimedia data mining, pattern
recognition, image retrieval, etc., evaluating image content is fundamental. Rec-
ognizing harmful images is very challenging in content-based filtering systems.

In the state-of-the-art, different approaches are proposed, focusing on skin
color detection. Forsyth et al. use geometric constraints for detecting naked
people [1] by reconstructing the human anatomic structure from skin areas.
The WIPE system [2] combines Daubechies wavelets, moment analysis and his-
togram indexing to provide semantically meaningful feature vector matching.
Based on the discrete probability distributions obtained from skin and non-skin
histograms, Jones and Rehg [3] filter images according to their skin pixel statis-
tics. Other studies [4, 5] propose a pornographic image detection system based
on skin detection and Multi-Layer Perceptron (MLP) classification.

To avoid inherent skin detection problems, as illumination variations, back-
ground interferences, multiple figures, etc., we consider objectionable image fil-
tering as image classification problem in two categories: adult and benign. Image
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classification consists in partitioning the input image space into a number of re-
gions separated by decision surfaces and labeled by image classes.

For a given image I, the ultimate goal is to search for a function f(·) → JI ,
I → J, where I is the image space and J the image label space. However, due
to the extremely high dimension of an ordinary image, a direct search of the
optimum function f(·) in the original image space I would generally not be
possible.

From this observation, we try to describe the image I in a more compact way
to reduce the dimension of data and obtain the most discriminant informations.
In this purpose, we are interested in generating invariant-feature descriptors by
using ASSOM neural networks [6].

Adaptive-Subspace Self-Organizing Map (ASSOM) is basically a combination
of a subspace method and a competitive selection and cooperative learning as
in the traditional SOM [6]. The single weight vectors at map units in SOM are
replaced by sets of basis vectors that span some linear subspaces in ASSOM. A
long-standing difficulty in the design of feature filters is the variation of input
patterns due to typical transformations such as translation, rotation and scaling.
By setting filters to correspond to pattern subspaces, some transformation groups
can be taken into account automatically.

The input to an ASSOM network is called “episode”, which is a sequence
of pattern vectors that spans some linear subspace. This sequence is contructed
by applying rotation, translation and scaling to the original local signatures. By
learning the episode as a whole, ASSOM is able to capture the transformation
kernels coded in the episode.

To construct these episodes, we focus our attention on regions of interest
(ROI) in the images. Based on some psycho-visual experiments [7], human vision
system executes saccadic eye movements between salient locations to capture
image content. Likewise, Tversky studies [8] showed that when we compare two
images, we detect common and distinct concepts between these regions.

Our method tries to reproduce this extraction and distinction concept with a
codebook learning strategy based on ASSOM algorithm. We firstly search salient
locations in the images to be compared. Local visual features are then extracted
from salient regions and projected onto a set of ASSOM-based learned visual
prototypes, resulting in activation vectors.

Finally, we use these activation features to classify the image in adult or
benign category with a NRBF neural network.

This method has been experimented for an adult content filtering method
where the correct classification rate reaches 87.8%. The database is composed
of 1, 110 adult images and 1, 200 benign images downloaded from Internet. The
second category, known to be the rest of the world, is mainly constituted of
landscapes, portraits and life scenes.

This paper is organized as follows: In Section 2, we first present our image
classification scheme based on ASSOM learning from ROI descriptions. Then,
Section 3 contributes to some experimental results on the proposed classification
schemes. And finally, conclusions are discussed in Section 4.
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2 Image Classification Based on ASSOM Learning and

Salient Regions of Interest

2.1 Multi-ASSOM Scheme (MAS).

As outlined in [9], a classification scheme is generally composed of three main
steps : pre-processing, feature extraction and classification. In this paper, we
mainly focus our attention on the two first items, the last being performed by a
NRBF neural network.
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Fig. 1. The construction of the feature vector yI from patches of the image I in MAS.
|J| ASSOMs compete on these patches and generate a sequence of winning ASSOM
index j∗k , k ∈ {1, 2, . . . , K}. n(·) counts the number of winning times for each ASSOM.
The vector [n(1), . . . , n(j), . . . , n(|J|)]T forms the final feature yI , which is sent to the
NRBF neural network

Our system architecture designs an ASSOM for each category, producing
specific ASSOM units for different categories of image patches. This idea was
explored in [10] in the recognition of handwritten digits and produced promising
results. But in their case, the image size is very small (25×20 pixels), permitting
a direct learning through ASSOM. In their work, 10 ASSOMs are employed, one
trained for each category of handwritten digits. For digit classification, a test
digit is sent simultaneously to all the 10 ASSOMs, which output 10 error values.
The ASSOM with the least reconstruction error determines the digit category.
An obvious deficiency here is that there is no interaction between the different
ASSOMs during the learning phase. An ASSOM learns the features of its own
category, however it does not learn to distinguish features of other categories.
The optimum decision surface is thus not guaranteed.

In our context, the dealt images have much larger sizes. So, we decide to use
a local approach by extracting round image patches at salient locations. RGB
patch informations are directly used to describe the local visual features.

Similar strategies have been developped in [11, 12]. The principal differences
are that the bag-of-keypoints representation is built from a K-means quantization
and the classification is made by a Support Vector Machine(SVM).
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Here, |J| ASSOMs are trained on these local descriptions, category by cat-
egory. J denotes the number of ASSOM. For filtering use, two ASSOM neural
networks are built for adult and benign classes.

To construct the feature vector yI for the final NRBF classification of the
image I (See Figure 1), we operate as follows :

– For each patch xk, the |J| ASSOMs compete on it. The jth ASSOM produces
an output ‖x̂kj‖

2 defined by:

‖x̂kj‖
2 = max

i∈Ij

‖x̂kLi
‖2 , (1)

where Ij is the set of indices of the modules in the jth ASSOM. In words,
‖x̂kj‖

2 is the maximum value of the square of the orthogonal projection of
the patch xk on the subspaces of the modules in the jth ASSOM. The j∗kth
ASSOM with the maximal output wins that patch:

j∗k = arg max
j∈{1,2,...,|J|}

‖x̂kj‖
2 . (2)

– A counter n(j∗k) corresponding to this ASSOM network is accordingly in-
creased by 1. When all the patches of the image I have been presented, the
array of ASSOMs produce |J| counters of the patches won by the respective
ASSOM. The feature vector is defined by:

yI = [n(1), . . . , n(j), . . . , n(|J|)]T , (3)

where the components are:

∀j ∈ {1, 2, . . . , |J|}, n(j) =
∑

k∈{1,2,...,K}
δ(j∗k , j) . (4)

δ(a, b) is the pulse function that takes the value 1 when a = b and 0 otherwise.

2.2 Wavelet-Based Salient Point Detection

According to the active vision mechanisms, the goal of salient point detectors
is to find perceptually relevant image locations. Many detectors have been pro-
posed in the literature [13–15]. The Harris detector [14] aims at locating salient
zones on corners by searching for the maxima of a function based on the lo-
cal autocorrelation matrix of the signal. The detector in [15] proposes to locate
salient points in high contrasted area. The salient point detector in [13] uses a
wavelet analysis to find pixels on sharp region boundaries.

Working with wavelets in our previous work [13] is justified by the consid-
eration of the human visual system for which multi-resolution, orientation and
frequency analysis is of prime importance. In order to extract the salient points,
a wavelet transform is firstly performed on the grayscale image. The obtained
wavelet coefficients are represented by zerotrees as introduced by Shapiro [16].
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This tree is then scanned at a first time from leaves to the root to compute the
saliency value at each node. A second scanning occurs in order to determine the
salient path from the root to the locations on the original image, where the raw
salient points are located. The salient points are listed in order and a threshold
τ , 0 < τ ≤ 1 is set to select the most salient points. By detecting salient points
from luminance information only, the points located on boundaries of highlights
or shadows are apt to be detected as salient. To remove false salient points caused
by lumination conditions, a gradient image is built by using the color invariants
proposed by Geusebroek et al. [17].

This salient point detector reaches photometric invariance by combining the
detection step with a recently proposed color invariance method [17]. Experi-
mental results in [13] show that the detected points are located on perceptually
relevant image areas. Based on the detected salient points, the authors went
further to design the salient signature that combines a color histogram with a
texture measure. The proposed salient point detector and salient signature are
applied to a contented-based retrieval system and the results are quite promising.

In this paper, we will combine the salient point detectors of our previous work
with the ASSOM feature selector. Consequently, the ASSOM networks can be
trained on small image patches centered on these salient points.

2.3 ASSOM Learning

As mentioned in the introduction, ASSOM is basically a combination of a sub-
space method and a competitive selection and cooperative learning as in the
traditional SOM. ASSOM differs from other subspace methods by permitting to
generate a set of topologically-ordered subspaces. That is to say, two units that
are close in the map will represent two feature subspaces closed in the total fea-
ture space. In ASSOM, the unit is composed of several basic vectors that expand
together a linear subspace. This unit is called “module” in an ASSOM neural
network. This method aims to learn data features, without assuming any prior
mathematical forms of their representation, such as Gabor or wavelet transforms,
which are frequently encountered in the traditional image analysis and pattern
recognition techniques [6]. In other words, the forms of the filter functions are
learned directly from the data.

The input to ASSOM is a group of vectors, called “episode”. The vectors in
each episode are supposed to be close up to affine transformations.
There are mainly two phases in a learning process of ASSOM:

1. For an input episode, locate the winning subspace from ASSOM modules ;
2. Adjust the winning subspace and its neighbor modules in order to better

represent the input episode.

For a linear subspace L of dimensionality H, one can find a set of basis
vectors {b1,b2, . . . ,bH}, such that every vector in L can be represented by
a linear combination of these basis vectors. Such sets of basis vectors are not
unique, however they are equivalent in the sense that they expand exactly the
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same subspace. For convenience of mathematical measures, the basis vectors are
orthonormalized by the Gram-Schmidt process.

The orthogonal projection of an arbitrary vector x on the subspace L, notated
as x̂L, is a linear combination of its orthogonal projections on the individual basis
vectors, and can be computed by :

x̂L =

H
∑

h=1

(xTbh)bh. (5)

If x̂L = x, then x belongs to L, else we can define the distance from x to
L as ‖x̃L‖ = ‖x − x̂L‖, by using the Euclidean norm. When several subspaces
exist, the original space is separated from pattern zones and the decision surface
between two subspaces, for example L1 and L2, is determined by those vectors
x such that ‖x̂L1

‖ = ‖x̂L2
‖. By comparing the distances of a vector to all the

subspaces, we can assign this vector to the nearest subspace.
In Kohonen’s realization of ASSOM, the subspace is represented by a two-

layered neural architecture, as in Figure 2. The neurons in the first layer take
the orthogonal projections xTbh of the input vector x on the individual basis
vectors bh. The second layer is composed of a single quadratic neuron and makes
the output square sum from the first layer neuron.

The output of the whole neural module is then ‖x̂L‖2, the square of the norm
of the projection. It can be regarded as a measure of the degree of matching of
the input vector x with the subspace L represented by the neural module. In
the case of an episode, the distance should be calculated from the subspace of
the vectors in the episode and that of the module, which are generally difficult
to compute. Kohonen proposed another much easier but robust definition of
subspace matching : the energy (sum of squares) of orthogonal input vector
projections on the module subspace.

1b 2b Hb

Q

x

1
Tbx

2ˆ
L
x

2
Tbx HbxT

Fig. 2. Neural architecture of orthogonal projection of x on L

Once the first phase occurred, the winning module with its neighbors adjust
their subspaces to represent better the input subspace. A neighborhood function

h
(i)
c is defined on the rectangular or hexagonal lattice (See Figure 3), where c

notates the index of the winning module and i the index of an arbitrary module
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in the lattice. The neighborhood area defined by h
(i)
c shrinks with the learning

step. Through this cooperative learning, the map will end at a topologically-
organized status, where nearby modules have similar subspaces.

c

i
c

i
c

i

Fig. 3. Left: A rectangular topology. Right: A hexagonal topology. Each empty circle
represents a neural module as shown in Fig. 2. The gray areas represent the neighbor-
hood of the winning module indexed by c at a certain learning step.

The classical Kohonen’s ASSOM learning algorithm works as follows:
For the learning step t,

1. Feed the input episode x(s), s ∈ S, where S is the set of indices of vectors
in the input episode. Locate the winning module indexed by c:

c = arg max
i∈I

∑

s∈S

‖x̂Li
(s)‖2, (6)

where I is the set of indices of the neural modules in the ASSOM.
2. For each module i in the neighborhood of c, including c itself, and for each

input vector x(s), s ∈ S, adjust the subspace Li by updating the basis

vectors b
(i)
h , according to the following procedure:

(a) Rotate each basis vector according to:

b
(i)
h = P(i)

c (x, t)b
′(i)
h . (7)

In this updating rule, b
(i)
h is the new basis vector after rotation and b

′(i)
h

the old one. P
(i)
c (x, t) is the rotation operator matrix, which is defined

by:

P(i)
c (x, t) = I + λ(t)h(i)

c (t)
x(s)xT(s)

‖x̂Li
(s)‖‖x(s)‖

, (8)

where I is the identity matrix, λ(t) a learning-rate factor that decreases

with the learning step t. h
(i)
c (t) is the neighborhood function defined on

the ASSOM lattice with the support area shrinking with t.
(b) Dissipate the components b

(i)
hj of the basis vectors b

(i)
h to improve the

stability of the results [6]:

b
∼(i)
hj = sgn(b

(i)
hj )max(0, |b

(i)
hj | − ε), (9)

where ε is the amount of dissipation, chosen proportional to the magni-
tude of the correction of the basis vectors.

(c) Orthonormalize the basis vectors in module i.
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3 Experiments

In our experiment, the MAS scheme is applied to adult image filtering. There
are respectively 733 adult images and 733 benign images in the training set of
the image database. The test database is composed of 377 adult images and 467
benign images. The training of each ASSOM for each category takes T = 200, 000
epochs. The subspace dimension is set to H = 4 and the dimension of the
ASSOM arrays is N = 10 × 10. The radius of a image patch is r = 14.5 pixels
and thus the dimension of the input vector for the ASSOM arrays is 1, 971. These
parameters are chosen by experimental results on the training set.

For our experiments, we configure our ASSOM network with the following
rules to reach good learning results in terms of accurate input data representa-
tion [6]:

– λ(t) = T
T+99t

forms a monotonically decreasing sequence;

– h
(i)
c (t) =

{

1, ||pc − pi|| < µ(t)
0, otherwise.

The Euclidian norm is chosen and pi is the 2D location for the ith neuron in
the network. µ(t) specifies the width of the neighborhood decreasing linearly

during time t from
√

2
2 N to 0.5 .

The classification performance on the training set is a true positive (TP) rate
of 88.5% at a false positive (FP) rate of 13.2%. The TP rate is defined as the
proportion of adult images that are correctly classified and the FP rate is the
proportion of benign images that are incorrectly classified as adult. On the test
set, the TP rate is 89.9% and the FP rate is 13.9%. The confusion matrix is
presented in the Table 1. Some examples of correct and incorrect classification
are then shown in Figure 4.

The performance is really promising, considering the value 0.9448 for the
area under the curve (AUC), drawn in the Receiver Operating Characteristics
(ROC) curve in Figure 5.

This multi-ASSOM architecture outperforms with 87.8% of correct classifica-
tion rates a single ASSOM scheme (85.9%) and a single SOM scheme (78.35%)1.

Thus, we can see that the competition between an adult ASSOM and a benign
ASSOM creates more precise feature vectors for NRBF classification. And the
ASSOM algorithm permits to extract more robust features than the basic SOM
method.

It is also very interesting to see the filters generated for the adult images
and the benign images in Figure 6. We can observe that for the adult images,
one of the basis vectors exhibit a orange color tone, and the other one shows
obvious orientations. Thus, each final subspace tries to represent the data feature
structure. That’s why, when an adult image is fed into our scheme the adult
ASSOM is stronger activated as shown in Figure 6.

1 In our experiment, the best configuration for a single ASSOM scheme is : N =
10 × 10, H = 4, r = 14.5 ; and for a single SOM scheme : N = 20 × 20, r = 3.5.
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Table 1. Confusion matrix of the MAS classification system with a ASSOM array of
dimension 10 × 10. In this table, A=Adult, B=Benign.

Classified as → A B

A 339 38

B 65 402

Fig. 4. The left column presents correctly classified test images. The right column
shows examples for misclassification.

Fig. 5. ROC curve of MAS on classification of adult and benign test images. Horizontal
axis represents the FP rate and vertical axis the TP rate.

(a) (b1) (b2)

Fig. 6. (a)The feature filters generated for adult images and benign images. Top row:
The filters generated for adult images. Bottom row: The filters generated for benign
images. First column: The first basis vectors. Second column: The second basis vectors.
The activation map represents the output energy for each module of adult ASSOM(b1)
and benign ASSOM(b2) when an adult test image is proposed to MAS.
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4 Conclusion

In this paper, we proposed an original classification system using directly patch
information. Based on the three main properties of ASSOM - which are di-
mension reduction, topology preservation and invariant feature emergence -
our scheme filters images in a competitive way. This solution implemented for
content-based image filtering gives us very promising results. A further improve-
ment could be to distinguish model portraits from adult images, because this
case composes chiefly the false detection. To get efficiency, the adult class train-
ing can be achieved with an object-based approach in order to skip background
interferences. Furthermore, MPEG7 descriptors may certainly make the perfor-
mances better than the simple RGB informations.
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