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Abstract. This paper presents an architecture well suited for natural
image classification or visual object recognition applications. The im-
age content is described by a distribution of local prototype features
obtained by projecting local signatures on a self-organizing map. The
local signatures describe singularities around interest points detected by
a wavelet-based salient points detector. Finally, images are classified by
using a multilayer perceptron receiving local prototypes distribution as
input. This architecture obtains good results both in terms of global clas-
sification rates and computing times on different well known datasets.

1 Introduction

With the dramatic increase of available digital contents, advanced content man-
agement solutions become essential. If we focus on the particular situation of
digital images (Infotrends1 expects that the number of images captured on cam-
era phones will reach 227 billion by 2009), efficient images management solutions
such that supervised image classification have to be found.
The goal of a supervised image classification system is to group images into se-
mantic categories giving thus the opportunity of fast and accurate image search.
To achieve this goal, these applications should be able to group a wide variety of
unlabelled images by using both the information provided by unlabelled query
image as well as the learning databases containing different kind of images la-
belled by human observers.
In practice, a supervised image classification solution requires three main steps
[1]: pre-processing, feature extraction and classification. Based on this architec-
ture, many image classification systems have been proposed, each one distin-
guished from others by the method used to compute the image signature and/or
the decision method used in the classification step. Regarding the signature
computation, the most efficient methods are probably the local aproaches firstly
introduced in [2]. In this case, local signatures are computed around some inter-
est points and their values are chosen in a dictionnary obtained from the training

1 http://www.infotrends-rgi.com/home/Press/itPress/2005/1.11.05.html



database. Local signatures are used to represent the image by a distribution of
local image features easily classifiable as in [3, 4] or are directly used to learn a
model used for the next recognition step [5–7].
In the state of the art, the dictionnary is classically computed thanks to a K-
means algorithm [5] or by a bottom-up clustering procedure[8]. We propose here
to use a self organizing map [9] to generate the visual dictionnary. Furthermore,
in our approach, a Multilayer Perceptron classifier is built with the training
dataset and is used for the last classification step.
The paper is organized as follows. Section 2 describes the method which was
introduced earlier in [10] to detect interest points and extract local image fea-
tures. Section 3 presents the self-organizing map algorithm, the construction of
the vocabulary of local descriptors and the construction of the image feature
vector. The design of the Multilayer Perceptron classifier and the decision rule
are explained in detail in section 4. Experiments are presented in section 5 and
finally, section 6 concludes the paper.

2 Local Features Extraction

The goal of feature extraction is to reduce the amount of data contained in an im-
age by extracting relevant and discriminating features. In local approaches, this
extraction phase results in feature vectors computed around interest points and
an image Ij is thus represented by a set of local signatures S(Ij) = {s1j , . . . , snj}.
It is important to mention here that local approaches result in a lack of ordering
between signatures.

2.1 Interest Points Detection

The goal of interest point detectors is to find image locations that are perceptu-
ally relevant for the next recognition step. Many detectors have been proposed
in the literature, each one focusing on a particular local property of the image
content such as contrast [11], corners [12, 13], edges [10, 14], etc.
The salient points detector presented in [10] uses a wavelet analysis in order to
find relevant pixels located on sharp region boundaries. The use of wavelet anal-
ysis is motivated by observing that multi-resolution, orientation and frequency
analysis are of prime importance for the human visual system during the recogni-
tion step. This detector has proven its efficiency in many vision applications[10]
and thus will be used in the present work.

2.2 Description of Local Singularities

Most local descriptors describe the local neighborhood of salient points by char-
acterizing edges in this area. Edge information thus appears fundamental in the
process of local neighborhood description. To describe edges, gradient orienta-
tion and magnitude are generally used. Nevertheless, from a mathematical point



of view, an edge or more generally a singularity can also be efficiently character-
ized by considering its Hölder exponents. We propose to use this mathematical
notion to design our local descriptor.

Definition 1. f : [a, b] → R is Hölder α ≥ 0 at x0 ∈ R if ∃K > 0, δ > 0 and a

polynom P of degree m = ⌊α⌋: ∀x, x0 − δ ≤ x ≤ x0 + δ, |f(x) − P (x − x0)| ≤
K|x − x0|

α.

Definition 2. The Hölder exponent hf (x0) of f at x0 is the superior bound

value of all α. hf (x0) = sup{α, f is Hölder α at x0}.

The local regularity of a function at a point x0 is thus measured by the value
hf (x0). It is worth noting that the smaller hf (x0), the more singular is the signal
at the point considered. For example, the Hölder exponent of a Dirac impulse
is −1 and 0 for a step function. For an image, the Hölder exponent is measured
in the direction of the minimal regularity of the singularity (in the gradient
direction). The different singularities met in an image are shown on figure 1. To
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Fig. 1. Different Type of Singularities

describe an ROI associated to an interest point in an image Ij , both orientation
and Hölder regularity of singularities contained in that ROI are characterized.
For this purpose, orientation θ(x, y) and gradient magnitude m(x, y) at each
pixel location (x, y) of the ROI are first computed:

m(x, y)2 = (Ij(x + 1, y) − Ij(x − 1, y))
2
+ (Ij(x, y + 1) − Ij(x, y − 1))

2
(1)

θ(x, y) = tan−1

(

Ij(x, y + 1) − Ij(x, y − 1)

Ij(x + 1, y) − Ij(x − 1, y)

)

. (2)

Then, for each singularity, the Hölder exponent h is estimated with foveal wavelets
as presented in [15]. Orientations and Hölder exponents maps are then conjointly
used to construct different 3D histograms. To build such histograms, each ROI
is first partitionned into 4 × 4 blocks and each histogram is computed in a par-
ticular block before being normalized by the block size (See figure 2). This last
step of the signature design is realized in the same spirit as the construction
of the SIFT descriptor presented in [16]. Finally, the signature is obtained by
concatenating the different 3D histograms and thus has a size of n× r× o where



Fig. 2. Principle of the Singularity Descriptor

n is the number of subregions (i.e. the number of interest points), r is the num-
ber of Hölder exponents bins into the range [−1.5, 1.5] and o is the number of
orientations bins into [−π

2
, π

2
]. We typically use 4 orientations, 16 subregions and

3 Hölder exponents bins resulting in a signature size of 192.

3 Image Representation

To use a classical machine learning methods for the last classification step, images
must be represented by a vector of equal size. When local image descriptors
have been extracted, a powerful and recent method is to represent the image by
an histogram of local descriptors, this is the ”bag of keypoints” representation
introduced in [3]. Nevertheless, it supposes that local descriptors are quantized
into a visual dictionnary of fixed size. We propose to build such a dictionnary
by using a self-organizing-map.

3.1 Self Organizing Map Learning

The self-organizing map (SOM) is an unsupervised classification algorithm based
on competitive learning[9]. It is a variant of the k-means algorithm that has the
advantage of preserving the topology of input datas X = {x(t), t = 1, 2, . . .}
with x(t) ∈ D ⊂ R

n and providing thus a better description of them.
The SOM aims at projecting the input data space D into a lower dimensionnal
space (1D, 2D,. . . ) defined by a regular discrete lattice L composed of N nodes.
Therefore, it is a vector quantization algorithm which preserves the topology of
the input space because each node c of the lattice is a neuron with a codebook
vector wc ∈ R

n such that if c1 and c2 are close then wc1
and wc2

are close in R
n.

For this purpose, the SOM is trained thanks to a competitive learning algorithm

Fig. 3. General Principle of a Self Organizing Map



which supposes first that the SOM has been correctly initialized. For example,
wi(0) could have been initialized randomly ∀i = 1, 2, . . . , N . At epoch t of the
learning step, x(t) is compared simultaneously to all wi(t) by using a distance
measure d(x(t), wi(t)) on the input space D and the best candidate vector wc(t)
associated to the node c (the best matching unit or BMU) is chosen such that:

wc(t) = arg min
i

d(x(t), wi(t))i = 1, 2, . . . , N. (3)

The learning scheme uses then a kernel based rule to update the weights:

wi(t + 1) = wi(t) + α(t)hci(t)[x(t) − wi(t)] (4)

where 0 < α(t) < 1 is the monotically decreasing learning rate. Furthermore,
hci denotes a neighborhood function that governs the strength of weight adap-
tation as well as the number of reference vectors to be updated (generally, a
gaussian function is used). It is worth noting that a good choice for the number
of iterations during the learning is 500 times the number of cells in the SOM.

3.2 Bag of Local Descriptors Representation

As previously emphasized, at this stage of the algorithm, an image Ij is described
by a set of local signatures S(Ij) = {s1j , . . . , snj} representing 3D histograms
around interest points presented in section 2.2. Thus, this kind of representation
could not be directly interpreted by a classifier because of the lack of ordering
between signatures. Moreover, the number of signatures could be different for
two images (due to different number of interest points detected). Thus, to build
and use an image classifier, the image Ij should be represented by a feature vec-
tor H(Ij) = [h1j , . . . , hNj]. For this purpose, an indexing step should be used to
transform the set of local signatures into a precise and compact representation
of the image content.
This is a classical problem met in text categorization where a document com-
posed of a set of words has to be characterized by a vector describing its content.
For this purpose, a text is often represented by a vector of term weights, where
the terms are chosen in the codebook (a set of meaningful words for the under-
standing of texts); this is the well known ”Bag of Words” representation. This
approach has influenced the work presented in [3] and denoted ”Bag of Key-
points” which proposed to adapt text categorization methods to the computer
vision problems.
Similarly, we propose to represent the image content by the probabilistic distri-
bution H over local images features. This distribution is in fact the activation
histogram of the SOM previously learned. For this purpose, each local signature
of the image activates a particular cell (The BMU) and participates to an update
of the histogram H(Ij). The bins hlj are defined as follow:

hlj = card{sk ∈ Ij , ||sk − wl|| < ||sk − wi||∀l 6= j, k ∈ {1, . . . , n}}. (5)



4 Neural Network Classification

At this stage of the algorithm, each image is represented by a unique feature
vector denoted H . The natural image classification problem is thus reduced to a
multi-class supervised classification problem. For this purpose, we have tested a
multilayer perceptron (MLP), a Radial Basis Function network classifier (RBF)
and a Support Vector Machine classifier (SVM). Experimentally MLP exhibited
better results than the RBF and equivalent results than the SVM. Thus we re-
strict our discussion on this classifier.
MLPs can be used for classification problems and are multi layers feedforward
neural networks fully connected. Thanks to their fundamental property of parci-
monious approximation, they are well suited to modelize any continuous function
g : R

N → R
p, where N is the dimension of the input space and p is the num-

ber of classes. However, it supposes that sufficient neurons are chosen during
the definition of the network architecture. A three layer perceptron architecture
with N intputs, nh hidden neurons and p output neurons is presented on figure
4.

Fig. 4. General Principle of a Multilayer Perceptron

For an input data X = [x1, . . . , xN ] ∈ R
N , the output of the kth output neuron

of this MLP is given by the discriminant function:

gk(X, W ) = ϕ





nh
∑

j=1

wkjϕ

(

N
∑

i=1

wjixi + wj0

)

+ wk0



 ∀k ∈ {1, . . . , p} (6)

where W = {wij} is the set of weights of the neural network considered and ϕ

is the activation of the neurons of both the hidden and ouput layer. This one
should be non-linear allowing the MLP networks to model nonlinear mappings
well and is the standart sigmoidal function in the following.
MLPs are trained with the backpropagation algorithm which adapts the weights
of the network in W to their optimal values for the given pairs (Xl, t(Xl))∀l ∈
{1, . . . , NL} in the training dataset. If the target vector t(Xl) gives the correct



class of Xl and is such that tk(Xl) = 1 if Xl ∈ Ck and 0 otherwise then the
trained network approximates the correct a posteriori probabilities concerning
the classification problem: gk(X, W ) ≈ P (Ck|X). An input data X can thus be
easily classified by regarding the maximal value of the output neurons.

5 Experimental Results

In this section, the system scheme is tested on different well known datasets. The
experiments particularly emphasize on the influence of the vocabulary size(i.e.
the size of the SOM) on the classification results. These results are analyzed by
evaluating global classification rates. Furthermore, the analysis of ROC curves by
computing the area under curve (AUC) for the best parameters will be presented
providing a direct comparison to other algorithms. It is worth noting that the
MLPs used in the experiments have a number of nodes in the hidden layer which
is the mean of the number of nodes in the input and ouput layer nh = N+p

2
. It

permits to achieve good classification results in reasonable computing times.

5.1 Presentation of the Datasets

The first dataset is extracted from the SIMPLICITY database2. It contains 500
images of size 384×256 and is divided into a learning dataset of 250 images and
a test dataset of 250 images. There are five clusters: beaches, buildings, buses,
elephants and flowers as shown on figure 5.

Fig. 5. Images from the SIMPLICITY Database

The Pascal database3 is used to compare results with other major approaches of
the state of the art presented during the PASCAL visual object classes challenge
2005. It is composed of four clusters (bikes, bicycles, persons and cars) as shown
on figure 6. The test set contains 688 images whereas the training set contains
684 images. This base is representative of what a person has on his computer,
they are of various sizes and have been shot from various viewpoints.

5.2 Influence of the Self Organizing Map Size

The influence of the vocabulary size on the classification results is conjointly
tested with the number of interest points extracted from the image. The SOM is

2 http://wang.ist.psu.edu/ jwang/test1.tar
3 http://www.pascal-network.org/challenges/VOC/



Fig. 6. Images from the PASCAL Database

rectangular and its size varies from 5×5 to 15×15 which constitutes a vocabulary
from 25 to 225 prototypes. On figure 7, the global classification rates are shown.
For the two dataset used, the optimal SOM size is 15 × 15 which constitutes a
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Fig. 7. Global Classification Rates for SIMPLICITY (a) and Pascal (b) datasets

small dictionnary of 250 prototypes. Nevertheless, the results between 15 × 15
and 10 × 10 are not so different compared from those obtained with a 5 × 5
lattice. Moreover, a study has shown that the quantization error does not decay
very fast if the SOM is larger. It is thus not necessary to improve the dictionnary
size.
For the two dataset, 3000 interest points are a good compromise in term of
computing times and global classification rates. In this case, the method obtains
a global classification rate of 86.4% for the SIMPLICITY dataset (86.4% for the
SVM and 82% for the RBF) and 82.9% for the PASCAL database (81.7% for
the SVM and 75% for the RBF).

5.3 ROC Curve Analysis and Confusion Matrix

On figure 8, AUC and confusion matrix are displayed for the parameters exhib-
ited in the previous section. For the PASCAL dataset, the results are good and
comparable to those obtained during the PASCAL 2005 recognition challenge.

5.4 Computing Times

The system must be efficient both in classification results and in computing
times in order to be attractive for a human. Whereas features extraction, SOM
and MLP learning are realized offline and could thus be long, the classification



Class AUC

Beaches 0.9125

Buildings 0.9330

Buses 0.9959

Elephants 0.9844

Flowers 0.9971

Beach Buildings Buses Elephants Flowers classified as

37 6 2 3 2 Beach

8 37 0 4 1 Buildings

2 1 47 0 0 Buses

4 1 0 45 0 Elephants

0 0 0 0 50 Flowers

Class AUC

Bicycles 0.926

Cars 0.9622

Motorbikes 0.9793

People 0.8862

Bicycles Cars Motorbikes People classified as

71 23 14 6 Bicycles

7 252 5 11 Cars

7 3 202 4 Motorbikes

13 18 7 46 People

Fig. 8. AUC and Confusion Matrix for the SIMPLICITY and Pascal Dataset

of a query image must be fast. The computing times obtained on a Pentium
IV with 3Ghz are shown on figure 9. Moreover the features extraction for the
entire training set takes 290s for the SIMPLICITY database and 1301s for the
PASCAL database. The training steps (SOM and MLP learning) are not too long
and so totally realistic in an offline mode. It is worth noting that SOM learning
does not depend on the database size and the interest point number but only
on the dimension of the SOM as emphasized in section 3.1 because the number
of iterations is 500 times the number of cells in the SOM. The classification of
a new instance is very fast and could thus be realized online in a professional
application.

Dataset SIMPLICITY PASCAL

Size of the SOM 5 × 5 10 × 10 15 × 15 5 × 5 10 × 10 15 × 15

SOM learning 4s 46s 185s 5s 46s 195s

MLP learning 12s 127s 665s 30s 413s 1706s

MLP classification 0.00012s 0.00064s 0.00244s 0.00012s 0.00073s 0.00232s

Fig. 9. Computing Times

6 Conclusion

This paper presents a neural network architecture for natural image classifica-
tion using local images features. It has been shown that a self organizing map
could learn a small visual dictionnary subsequently used to represent the image
content by a distribution over the prototypes. Moreover, a classification step
based on a multilayer perceptron has shown to be efficient. The approach ex-
hibits high classification rates and small computing times. Its implementation
in a professional application is thus possible. The perspectives are to use the
Growing Hierarchical Self Organizing Map to generate the codebook [17] and to



represent the image as a ”bags of graphs” generated by grouping interest points
which could be learned thanks to a SOM for structured datas [18].

References

1. Duda R.O, Hart P.E., Stork D.G.: Pattern Classification. 2nd edition edn. John
Wiley & Sons (2001)

2. Schmid C., Mohr R.: Local grayvalue invariants for image retrieval. IEEE Trans-
action on Pattern Analysis and Machine Intelligence 19(5) (1997) 530–535

3. Csurka G., Bray C., Dance C., Fan L.: Visual categorization with bags of keypoints.
In: The 8th European Conference on Computer Vision, Prague, Czech Republic
(2004) 327–334

4. Jurie F., Triggs B.: Creating efficient codebooks for visual recognition. In: Inter-
national Conference on Computer Vision, Beijing, China (2005) 604–610

5. Weber M., Welling M., Perona P.: Unsupervised learning of models for recognition.
In: The 6th European Conference on Computer Vision, London, UK, Springer-
Verlag (2000) 18–32

6. Fei-Fei L., Perona P.: A hierarchical bayesian model for learning natural scene cate-
gories. In: International Conference on Computer Vision and Pattern Recognition.
Volume 2., San Diego, CA, USA (2005) 524–531

7. Marée R., Geurts P., Piater J., Wehenkel L.: Random subwindows for robust
image classification. In: International Conference on Computer Vision and Pattern
Recognition. Volume 1. (2005) 34–40

8. Agarwal S., Awan A., Roth D.: Learning to detect objects in images via a sparse,
part-based representation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 26(11) (2004) 1475–1490

9. Kohonen T.: Self-Organizing Maps. Springer-Verlag, Berlin, Heidelberg, New York
(2001)

10. Laurent C., Laurent N., Maurizot M., Dorval T.: In depth analysis and evalua-
tion of saliency-based color image indexing methods using wavelet salient features.
Multimedia Tools and Application (2004)

11. Bres S., Jolion J.M.: Detection of interest points for image indexation. In: 3rd Inter-
national Conference on Visual Information Systems, Amsterdam, The Netherlands
(1999) 427–434

12. Harris C., Stephens M.: A combined corner and edge detector. In: 4th Alvey Vision
Conference. (1988) 147–151

13. K. Mikolajczyk, Schmid C.: Scale and affine invariant interest point detectors.
International Journal of Computer Vision 60(1) (2004) 63–86

14. Loupias E., Sebe N., Bres S., Jolion J.M.: Wavelet-based salient points for image
retrieval. In: IEEE International Conference on Image Processing, Vancouver,
Canada (2000) 518–521

15. Mallat S.: Foveal Approximations for Singularities. Applied and Computational
Harmonic Analysis 14(2) (2003) 133–180

16. Lowe D.G.: Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision 60(2) (2004) 91–110

17. Rauber A., Merkl D., Dittenbach M.: The growing hierarchical self-organizing
maps: Exploratory analysis of high-dimensional data. IEEE Transactions on Neural
Networks 13(6) (2002) 1331–1341

18. Hagenbuchner M., Sperduti A.: A self-organizing map for adaptive processing of
structured data. IEEE Transactions on Neural Networks 14(3) (2003) 491–505


