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The propagation of dislocations in random crystals is evidenced to be governed by atomic-scale
avalanches whose the extension in space and the time intermittency characterizingly diverge at the
critical threshold. Our work is the very first atomic-scale evidence that the paradigm of second
order phase transitions applies to the depinning of elastic interfaces in random media.

PACS numbers: 62.25.-g, 45.70.Ht, 61.72.Lk, 64.70.qj

INTRODUCTION

Avalanche like motion of isolated elastic interfaces in
random media is a process now clearly recognized at lab-
oratory scales, e.g. in Barkhausen effect [1], brittle frac-
ture [2] imbibition [3], etc. Mesoscale scalar field theory
[4] captures such a behavior and allows theoreticians to
define an universal critical behavior close to the depin-
ning threshold, with a divergence of mean avalanche ex-
tents and durations. Though, the field theory remains
limited to a realm by far larger than the atomic-scale.
This is due to a prerequisited coarse-graining which in-
troduces an averaging distance cutoff much larger than
the typical inter-atomic distances.

Here we show that the critical avalanching behavior
predicted throughout field theory is still a concern at
the atomic-scale, along an isolated dislocation moving
in a random crystal. Dislocations exibit morphologi-
cal scaling features. They also propagate through jerky
avalanches, the size and duration of which are power-law
distributed up to a cut-off which diverges as the critical
stress is approached. All the scaling relations expected
from the standard depinning theory are fulfilled down to
the atomic scale.

NUMERICAL METHODS

Plastic deformation of a solid solution is a prototypical
example where dislocations must pass a random distri-
bution of atomic-size obstacles to release plastic flow [5].
Despite the most recent progresses in tunneling electron
microscopy [6], it is practically unfeasible for experiments
to analyze selectively a dislocation depinning and its as-
sociated roughness, at the atomic scale. Hence numerical
simulations are resorted to, as they enable us to focus on
the dynamics of a single dislocation. Molecular dynam-
ics (MD) simulations are employed in order to integrate
the degrees of freedom of the whole crystal with atomic
size impurities. The main advantage of MD simulations
is that the dislocation is not modeled by a phenomeno-
logical elastic manifold [7–9] but more realistically as a

FIG. 1. (Color online) (a) Plane view for an edge dislocation
at two different times in Ni(Al) alloy, modeled within EAM
Ref.[10]. Only Shockley partial dislocation core atoms are
colored before (gray) and after (yellow) a sequence of two
avalanches separated by 10 ps. The rest of the crystal atoms
are not shown. (b) Main panel: Collapsed space-time height-

height correlation function ∆h/∆tβ vs. ∆x/∆tβ/ζ at various
∆t obtained at σyz = 171.2 MPa with ζ = 0.85 and β = 0.76
obtained from the fits in inset. Inset: space (circles) and time
(squares) height-height correlation function. Straight lines
are power-law fits. The vertical dashed line corresponds to
the lower time cutoff.

Burgers discontinuity in the atom arrangement. Note
also that this method ensures a proper inclusion of the
non-linearities governing the dislocation self-interactions
and a time scale with clear physical meaning.

Typical snapshots of the dislocation position at two
successive times are shown in Fig. 1 (a). A single-crystal
of binary Ni(Al) solid solutions (10 atomic percent of Al
randomly distributed in the Ni matrix) with a single [110]
edge dislocation is deformed under a constant shear stress
at 5 K. The technical details of these MD simulations can
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be found in [10] and briefly recalled hereafter.
The interactions between atoms are modeled via an

Embedded-Atom-Method interatomic potential which
has been tailored to bulk properties [10]. Periodic bound-
ary conditions are imposed in the dislocation line (X in
Fig. 1 (a)) and in the dislocation glide direction (Y in
Fig. 1 (a)). The size of the simulation box is 130×10 nm
in the X and Y directions, respectively, and the thickness
is 3.5 nm [The size has been chosen to be several times
larger than the Larkin’s length]. The upper and lower
free surfaces of the system (parallel to the slip) allow
us to impose a shear stress σyz. This translates into a
Peach-Koehler force that drags the dislocation through
the random crystal above a certain threshold studied in
details in [10–12].

The initial configuration is computed with a mere
steepest descent gradient algorithm. Due to the relatively
weak stacking fault energy of Ni, the dislocation disso-
ciates into two Shockley partial dislocations as expected
for face-centered cubic metals (see Fig. 1 (a)). Following
this initial relaxation, we apply a constant shear stress
(σyz) and temperature (5 K). The latter is maintained
via a Berendsen thermostat.

The dislocation dynamics are analyzed along the tra-
jectories for which the glide distance is at least 150
nm. With the present configuration, the closest stress
from the critical depinning transition point is obtained
at σyz = 171.2 MPa. This order of magnitude is similar
to that measured in experiments [13, 14]. The disloca-
tion core is localized by identifying the atoms whose first
neighbor cell differs from the perfect crystal. This yields
a limit `x = 0.40 nm (resp. `y = 0.58 nm) in resolution
along X (resp. Y). The two partial dislocations move in
a coherent manner (see Fig. 1 (a)) due to their strong
elastic coupling[12]. As results, we define the effective
dislocation position by averaging the two partials. All
the analysis thereafter are restricted to the steady state
regime, after the dislocation has glided over a distance of
20 nm. Let us finally add that the high-frequency oscil-
lations were removed from the dislocation dynamics and
we only considered the forward motions in the statistical
analysis presented hereafter.

RESULTS

Morphological scaling features of the time evolving
fronts are first characterized. In this context, the height-
height correlation functions are computed in both space
and time:

∆h(∆x) = 〈(h(x+ ∆x, t)− h(x, t))2〉1/2,
∆h(∆t) = 〈(h(x, t+ ∆t)− h(x, t))2〉1/2 (1)

Both are found to exhibit power-law shapes, with expo-
nents ζ = 0.85 ± 0.05 and β = 0.76 ± 0.02, respectively

(Fig. 1 (b): Inset). These scalings are signatures of self-
affinity. No lower cutoff is evidenced in space, while the
lower cutoff in time appears to be of the order of the in-
verse of the Debye frequency (7.8 THz in pure Ni). In
both cases, the upper cutoffs decay as applied shear σyz
(and hence mean dislocation velocity) increases.

Full spatio-temporal morphological scaling features
can be characterized through the computation of the
space-time structure function defined as:

∆h(∆x,∆t) = 〈(h(x+ ∆x, t+ ∆t)− h(x, t))2〉1/2 (2)

As shown in the main panel of Fig. 1 (b), this function
is found to obey the Family-Viseck scaling [15]:

∆h ∝ ∆tβf( ∆x
∆tβ/ζ

), f(u) ∼
{

1 if u� 1
uζ if u� 1

}
, (3)

Such a scaling is expected close to the depinning transi-
tion of an elastic manifold. Hence, the exponents ζ, β and
z = ζ/β = 1.12 ± 0.1 are identified with the roughness,
growth and dynamic exponents, respectively, commonly
defined in interface growth problems.
Spatio-temporal intermittent dynamics of the propa-

gating dislocations are now analyzed via a procedure ini-
tially proposed in [2] and extensively applied to crack
propagation [16, 17] and imbibition [3] problems, among
others. It consists: (i) in computing the so-called activ-
ity map w, i.e. the time w(x, y) spent by the dislocation
within a small 2.16× 2.16 Å2 region at each point (x, y)
of the glide plane (Fig. 2 (a)); and (ii) in subsequently
defining avalanches as clusters of connected points with
velocity v = 1/w above vc = C〈v〉 where 〈〉 denotes av-
eraging over both time and space, and C stands for clip
level. The statistics of avalanche area, A, and duration,
D, (time elapsed between dislocation arrival and depar-
ture in/from the cluster) allow us to characterize quan-
titatively the intermittent dynamics.

Dislocation propagation just above the depinning
threshold (σyz = 171.2 MPa) is first considered. Dis-
tributions of area A and duration D are presented in
Fig.2 (b)-(c). They exhibit power law tails P (A) ∝ A−τ

and P (D) ∝ D−α, as expected in a system near critical-
ity. The two exponents are found to be τ = 1.71 ± 0.03
and α = 2.28 ± 0.1. Figure 2 (c) reveals also a power-
law scaling between area and duration: D ∝ Aγ with
γ = 0.55 ± 0.03. Note that τ , α and γ are related:
Since D scales as Aγ , the fact that P (A) ∝ D−τ yields
P (D) ∝ A−(1+(τ−1)/γ) and therefore: α = 1 + (τ − 1)/γ.
The fulfillment of this relation indicates the high qual-
ity of our sampling. Finally, avalanches are shown to
exhibit morphological scaling features since their width,
Ly, scales as a power-law of their length, Lx (Fig. 2
(e)), with an exponent H = 0.83 ± 0.03. All the scaling
exponents described above are found to be robust and
independent of clip level.
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FIG. 2. (Color online) (a) Gray-scale map of velocity ma-
trix obtained in our simulation at σyz = 171.2 MPa. (b)
Area distribution of avalanches P (A) as defined in the text
for different clip levels (see legend). (c) Duration distribu-
tion of avalanches P (D) with same clip levels. Error bars
are computed as in [18]. (d-e) The scaling of D vs. A and
that of avalanche width Ly vs. avalanche length Lx, respec-
tively. In both plots, errorbars indicate the standard devia-
tion. Full lines correspond to power-law fits: P (A) ∝ A−τ ,
P (D) ∝ A−α, D ∝ Aγ and Ly ∝ LHx with τ = 1.71 ± 0.03,
α = 2.28± 0.1, γ = 0.55± 0.03 and H = 0.83± 0.04, respec-
tively. The ± range is defined for a 95% confident interval.
The vertical dashed lines correspond to the resolution limits
in space and time.

Let us now move to the analysis of the role played
by the applied stress σyz on the dislocation dynamics.
The insets in Figs. 3 (a) and (b) show the effect of
applied stress on the area and duration distributions,
respectively. In both cases, an upper cutoff decreas-
ing with σyz is observed. Once again, such behaviors
are characteristic of a system near criticality. In this
context, the distributions are expected to take the form
P (A) = A−τf(A/A0) and P (D) = D−αg(D/D0) where
f and g are universal fast decreasing functions, and A0

and D0 are the area and duration cutoffs that diverge
algebraically as σxy reaches the critical value. Then, the
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FIG. 3. (Color online) (a) Main panel: Collapsed area distri-
bution obtained from Eq. 4 with τ = 1.71 fitted from data
in Fig. 2 (b). Symbols correpond to different clip levels,
C = 2 (black), C = 3 (blue), C = 5 (green) and C = 10
(red) and various σyz, 171.2 (circle), 174.1 (asterisk), 178.5
(point), 180 (cross), 181.5 (square), 185.9 (diamond), 194, 8
(up triangle), 206, 6 (down triangle) and 236, 1 MPa (plus)
according to the right-handed legend. Inset: Avalanche size
distribution at C = 3 for the different σyz used in main panel
(same symbols). (b) Main panel: Collapsed duration distri-
bution obtained using Eq. 5 with α = 2.28 fitted from Fig. 2
(c). Inset: Avalanche duration distribution for fixed clip level
C = 3 and various σyz (same values as in (a)).

mean value 〈A〉 =
∫∞

0
A × P (A)dA goes as A2−τ

0 , and
the area distribution can be recast:

P (A) = A−τf(A/〈A〉1/(2−τ)). (4)

As shown in the main panel in Fig. 3 (a), this scaling
is fully verified, and the function f is found to be inde-
pendent of both σyz and C over the whole range tested.
Note that this analysis must be adapted for durations
since 〈D〉 =

∫∞
0
D × P (D)dD is not defined when α is

larger than two. Instead, the mean value 〈D2〉 is chosen.
Since 〈D2〉 goes as D3−α

0 , one hence expects:

P (D) = D−αg(D/〈D2〉1/(3−α)). (5)

This second scaling is fairly well fulfilled, as demonstrates
Fig. 3 (b).

To complete the statistical analysis of dislocation dy-
namics, we plot in Figs. 4 (a) the variation of 〈A〉 as a
function of σyz. Once again, the increase of 〈A〉 as σyz
decreases toward the depinning threshold is reminiscent
of a critical behaviour. It is well described by an alge-
braic divergence of the form 〈A〉 ∝ (σyz − σc)−νA with
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FIG. 4. (Color online) (a) Main panel: Variation of the mean
avalanche area 〈A〉 with applied stress σyz. Full line is an
algebraic divergence 〈A〉 ∝ (σyz − σc)−νA with fitted param-
eters σc = 159.7 ± 3 MPa and νA = 1.29 ± 0.05. Vertical
dashed line shows the position of σc. Inset: Log-log plot of
〈A〉 vs σyz − σc. The straight line corresponds to the fit. (b)
Log-log plot of the mean value of square duration 〈D2〉 vs.
σxy−σc. The straight dashed line is obtained with νD = 1.75
from scaling arguments (not fitted). (c) Same as (b) for mean
velocity with exponent θ = 0.65 (not fitted).

νA = 1.29± 0.05. This divergence in terms of avalanche
area translates into a divergence in term of avalanche du-

ration: Since 〈D2〉 ∝ D
(3−α)
0 and D ∝ Aγ , one expects

〈D2〉 ∝ A
γ(3−α)
0 ∝ 〈A〉γ(3−α)/(2−τ) and hence, 〈D2〉 ∝

(σyz−σc)−νD with νD = νAγ(3−α)/(2−τ) = 1.75±0.34.
As seen in Fig. 4 (b), this scaling is compatible with di-
rect simulations.

CONCLUDING DISCUSSION

Our analysis of atomic-scale dislocation dynamics in
random crystals has revealed many signatures of critical-
ity. To the very best of our knowledge, this work is the
first to show that the theoretical framework of second or-
der phase transitions can be applied down to the atomic
scales. In this respect, it is of some interest to check
the theoretical mapping between the avalanche dynam-
ics extracted from the activity map on one hand, and
the revealed morphological scaling features on the other

hand [4]: Avalanches of extent Lx are indeed expected
to result from front pieces of extent Lx that depins over

a propagating length Lζx and a time L
1/z
x . Avalanche ex-

ponents H and γ are hence expected to be related to ζ
and z through H = ζ and γ = z/(1 + ζ) – Both relations
are fulfilled in the present atomic scale system.

In the paradigm of critical transitions, the divergence
of 〈A〉 and 〈D2〉 as σyz−σc vanishes are due to the diver-
gence of a correlation length ξ: ξ ∝ (σyz−σc)−ν . Assim-
ilating ξ to the maximum extent of an avalanche yields

ξ ≈ A
1/(1+ζ)
0 ∝ 〈A〉1/(1+ζ)(2−τ) and hence ν = νA/(1 +

ζ)(2− τ) = 2.44± 0.29. Scaling of the mean dislocation
velocity 〈v〉 can then be deduced: close to σc, the propa-
gation is made of avalanches of extent ξ, which moves the
dislocation forward by ξζ over a time period ξz. Thus,
the velocity behaves as 〈v〉 ≈ ξζ/ξz ∝ (σxy − σc)θ with
θ = ν(z − ζ). This latter relation yields θ = 0.65 ± 0.3,
which is perfectly compatible with the direct measure-
ments (Fig. 4 (c)).

Our system exhibits all signatures expected from the
field theory in the vicinity of a critical depinning tran-
sition at zero temperature. We can reasonably expect
that the predictions of such a theory also apply at finite
temperature. In particular, the slow thermally-activated
motion of dislocation at low shear stress (below critical
threshold) is expected to be given by the creep formula
< v >∝ exp(−U0(σc/σxy)µ/kT ) where U0 is a charac-
teristic energy scale and µ a universal exponent [19, 20].
Real deformation experiments actually result from a col-
lective behavior of dislocation involving diverse mecha-
nisms as the interactions with grain boundaries, surfaces,
forest dislocations and atomic scale impurities. It seems
therefore challenging to demonstrate this in real experi-
ment and atomistic simulation could be a solution.

The present study convincingly shows that the con-
cepts of critical depinning transition apply down to
atomic scale. It is worth to mention that the critical ex-
ponents measured here do not belong to the standard uni-
versality classes associated with the well-established field
theories of depinning transition, namely the Edward-
Wilkinson (EW)[21], the Kardar-Parisi-Zhang (KPZ)[22]
and the Long Range (LR)[23] elastic string models (see
Table II). This can be understood since these continuous
string models are constructed from symmetries principles
by calling upon a thermodynamic limit argument (i.e. by
making t → ∞ and x → ∞ to eliminate the high order
derivates in the equation of string motion), which stops
to be relevant at small scales. To understand what de-
termines the universality class at such atomic scales rep-
resents a significant challenge for future investigations.
Since the field theory of elastic manifold predicts criti-
cal behavior in variety of different systems of solid state
physics like e.g. domain wall motion in ferromagnets,
crack problems, vortex motion in superconductors and
charge density wave, etc, it may be of interest to see
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whether or not similar extension of criticality down to
atomic scale can be evidenced in these systems.
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TABLE I. Depinning exponents obtained directly from simulations and from scaling relations (marked with ∗)
ζ = 0.85± 0.05 β = 0.76± 0.02 z = 1.12± 0.1 θ∗ = 0.65± 0.3
ν∗ = 2.44± 0.29 τ = 1.71± 0.03 α = 2.28± 0.1 H = 0.83± 0.04
γ = 0.55± 0.03 νA = 1.29± 0.05 νD∗ = 1.75± 0.34

TABLE II. Comparison of the exponents measured in the atomic scale MD simulations reported here with those observed in
some well-established scalar field models of elastic line depinning.

Present study ζ = 0.85± 0.05 β = 0.76± 0.02 z = 1.12± 0.1 ν = 2.44± 0.29 θ = 0.65± 0.3

EW [24] ζ ' 1.26 β ' 0.84 z ' 1.5 ν ' 1.29 θ ' 0.33

KPZ [25] ζ ' 0.633 β ' 0.633 z ' 1 ν ' 1.733 θ ' 0.636

LR [26] ζ ' 0.385 β ' 0.5 z ' 0.77 ν ' 1.625 θ ' 0.625


