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Abstract. In this article, we present a model of heat transfer occurring through a liquid
film flowing down a vertical wall. This new model is formally derived using the method of
asymptotic expansions by introducing appropriately chosen dimensionless variables. In
our study the small parameter, known as the film parameter, is chosen as the ratio of the
flow depth to the characteristic wavelength. A new Nusselt solution should be explained,
taking into account the hydrodynamic free surface variations and the contributions of the
higher order terms coming from temperature variation effects. Comparisons are made
with numerical solutions of the full Fourier equations in a steady state frame. The flow
and heat transfer are coupled through Marangoni and temperature dependent viscosity
effects. Even if these effects have been considered separately before, here a fully coupled
model is proposed. Another novelty consists in the asymptotic approach in contrast to the
weighted residual approach which have been formerly applied to these problems.
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1. Introduction

Liquid films have many significant applications in chemical engineering because of their
reduced resistance to heat and mass transfers. This thermal resistance may be further
reduced by inducing surface deformations and wave patterns as surface instabilities may be
triggered by the dependence of surface tension to temperature (Marangoni effect [18])
or by an hydrodynamic mechanism when the fluid is set into motion either by gravity
(Kapitza instability mode [19]) or by centrifugal acceleration [24]. As an example, the
Marangoni effect may be coupled to wall topography to induce thermocapillary convection
[1] and to promote heat transfer.

In this paper, we focus on falling liquid films. These flows are generally encountered
whenever the pressure drop is critical, e.g. in absorption machines, or whenever a low
thermal driving force is required, for instance in the separation of multicomponent mixtures
that are temperature-dependent. The dynamics of such flows have attracted a considerable
interest as it presents a wavy regime organized around large-amplitude tear-drop like solitary
waves whose interactions intensify transfers. This wavy regime is triggered by a long-wave
instability mode corresponding to a zero critical wavenumber. For this reason, the waves
are long compared to the film thickness, they emerge at relatively long distances from the
liquid inlet and they are slow to interact one with another. As a result, direct numerical
simulations (DNSs) of such flows are hindered by the large domain that is necessary to
account for their natural evolution, which explains that DNSs are generally restricted to
two-dimensional, i.e. spanwise independent, situations or to the construction of periodic
waves.

Mathematical modeling offers a useful reduction of the numerical cost and a welcome
framework for the understanding of the disordered dynamics of such flows with the develop-
ment of coherent-structure theories. Indeed, the large aspect ratio of the waves enables
to introduce a small parameter ε, or film parameter, which compares the typical length of
the wave to the thickness of the film. In this framework, the streamwise (x) and spanwise
(y) coordinates as well as the time (t) are slow variables, i.e. ∂x, y, t ∝ ε , whereas the
cross-stream coordinate is a fast variable (∂ z = O(1)). It is thus possible to eliminate the
fast variable z and to obtain a reduced set of equations which describes the slow evolution
of the film in a spatial domain whose dimension is reduced from 3D to 2D or from 2D to
1D if spanwise independent solutions are looked after. Following Kapitza’s initial work
[20], an important amount of work has been produced in order to derive such reduced set
of equations or low-dimensional models (see for instance the review by [19]). Benney [4]
thus showed that a series expansion of the flow variables with respect to the film parameter
ε leads to a solution that is fully characterized by the film thickness h and its gradients,
the film dynamics being governed by a single evolution equation for h . Unfortunately,
Benney’s equation admits non-physical singularities in finite time at moderate Reynolds
number [26] as a result of a too strict slaving of the velocity field to the free surface elevation.
A cure to this shortcoming is offered within the Saint-Venant framework after averaging
the primitive equation across the film depth. This idea dates back to the original work



M. Chhay, D. Dutykh, et al. 4 / 27

of Kapitza [20] and was successfully applied by Shkadov [36] who derived a set of
two evolution equations for the local thickness h and the local flow rate q . Shkadov’s
averaging approach requires a closure hypothesis in the form of a polynomial ansatz for the
velocity distribution, which corresponds to the Nusselt parabolic profile in Shkadov’s
classical work. More sophisticated ansatz have been proposed e.g. in [5, 39]. However,
consistent averaging of the primitive equations has been introduced by Roberts [27] and
Ruyer-Quil & Manneville [30] using different approaches. Currently, one of the widely
used approaches is the Weighted Residual Method (WRM), which has been successfully
applied to derive approximate equations [19, 30]. However, the main drawback of the
WRM is that the mathematical structure of the resulting averaged equations is unclear.
Consequently, the models derived in this way may be difficult to justify mathematically.
This is the main reason why we opt for the method of asymptotic expansions in the present
study. Other references on this topic include [2, 23, 28]. Note that the approach by Luchini
and Charru [23], based on the averaging of the kinetic energy equation of the flow, leads to
a result that is identical to the WRM method at first-order of the film parameter. In essence,
the Inertial Lubrication Theory introduced by [28], is similar to the WRM method, leading
to very similar equations, coefficients being almost identical for most terms. Benilov [2]
derived depth-averaged equations using the Galerkin method, which is one particular
weighted residual method.

Benney’s original work has been extended in [17, 18] to deal with the conduction of
heat across the film and the coupling of the hydrodynamics to the transfer offered by
the dependence of surface tension on temperature (Marangoni effects). The classical
Benney expansion followed for instance by [16, 21, 22] to deal with the heat transfer across
an horizontal film is not appropriate to deal with a falling film. Indeed, this approach
requires that heat diffusion overcomes convection, and is thus limited to only small values
of the Péclet number. To overcome this limitation, Scheid et al. followed the Weighted
Residual technique initiated by Ruyer-Quil & Manneville [30] and derived several
models of various accuracy [31, 34]. Though enabling to accurately decipher the complex
interplay between the Kapitza hydrodynamic instability and the long-wave Marangoni
thermo-capillary instability [33], these models are only valid at still relatively low values of
the Péclet number. Indeed, as the Péclet number is raised, these models may predict
nonphysical values of the temperature. This behaviour is related to the onset of sharp
temperature gradients at the free surface due to flow orientation in large-amplitude solitary
waves. Though a cure to this limitation has been proposed by [38], available low-dimensional
models still fail to capture correctly the temperature distribution at large Péclet number.

This article aims at deriving a new conservative formulation for heated falling film wich
retains consistency with the classical long-wave expansion. This new formulation can be
seen as a low-dimensional modelling of heated falling film flows following a derivation
procedure that has been proposed by Vila and coworkers [6–8, 15]. This procedure, which
will be referred to hereinafter as the Saint-Venant consistent approach, is based on the
classical Saint-Venant equations that are obtained by in-depth averaging of the primitive
equations with a uniform weight. However, contrary to the Kapitza–Shkadov approach
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Figure 1. Sketch of the physical fluid domain.

which assumes the velocity field to be strictly parabolic [36], Vila proposes a closure that
is compatible with Benney’s long-wave asymptotics and enables to accurately recover the
threshold of the Kapitza instability. Our derivation takes into account the thermocapillary
effect and the dependence of viscosity with respect to temperature. These are the principal
coupling mechanisms between the hydrodynamics of the film and the heat transfer induced
by the dependence of the thermophysical properties of the fluid with temperature [1, 12, 16].

The structure of the paper is as follows. In the next Section, governing equations are
recalled. Then some physical behaviour of the heated falling film are highlighted, using a
basic modeling in order to introduce the dynamic of the system. In Section 3 the asymptotic
model is derived. In Section 4, some numerical experiments illustrate in one hand the
realistic behaviour of the model and, on the other hand, a comparison with an existing
model in the literature is performed. Some discussions about the formal derivation conclude
this work in Section 5.

2. Problem formulation

2.1. Governing equations

We consider an anisotherm liquid film flowing down a heated vertical plate. The flow
is supposed to be two-dimensional in space, the x−axis corresponding to the streamwise
direction and the z−axis to the cross-stream direction. The liquid domain is delimited by a
vertical wall at z = 0 and the free surface boundary located at the height z = h(x, t) .
The sketch of the fluid domain is depicted in Figure 1.
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The motion of the liquid is governed by the incompressible Navier–Stokes equations

ρ ∂tu + ρ (u · ∇)u + ∇p − ρg = ∇ · (µ∇u) ,

∇ · u = 0 ,

where u = (u, w) , p and g represent the velocity and pressure fields and the gravity
acceleration vector. The physical parameters ρ , ν , µ correspond to the density, the
kinematic viscosity and the dynamic viscosity. The heat transfer and the hydrodynamics
of the film are coupled by the dependence of the physical properties with respect to the
temperature. In this paper we focus on the principal sources of coupling and assume that
only the surface tension σ and the dynamic viscosity of the liquid µ = ρν depend on the
temperature T . As a further simplification, we assume linear laws,

µ = µ(T ) = µ0 − µ1 (T − T0)

and
σ = σ(T ) = σ0 − m (T − T0)

where µ1
def
:= −dµ

dT
and m def

:= −dσ

dT
are positive constants as surface tension and viscosity

generally decrease with the temperature.
The heat transfer occurring through the liquid domain is modelled by the advection-

diffusion Fourier equation

∂tT + u · ∇T = α∇2T

where T corresponds to the temperature field and α is the thermal diffusion coefficient,
which is assumed to remain constant.

At the wall, a no-slip condition
u |z=0 = 0 (2.1)

and a constant wall temperature T |z=0 = Twall are imposed while at the free surface, the
kinematic condition governing the evolution of the fluid elevation reads

∂t h + u |z=h · ∂xh = w |z=h . (2.2)

The continuity of the fluid stresses at the free surface gives

p |z=h + σ
∂2xx h

[1 + (∂xh)2] 3/2
= −2µ

1 + (∂xh)2

1 − (∂xh)2
∂xu |z=h ,

µ

n

[
2 ∂xh (∂zw − ∂xu) + (1− (∂xh)2)(∂zu+ ∂xw)

]
+ m (∂xT + ∂xh ∂zT ) = 0 ,

where n def
:=

√
1 + (∂xh)2 .

Heat transfer at the free surface is modelled by a thermal exchange coefficient h that is
assumed to remain constant so that temperature field verifies the Newton’s law of cooling
at the free surface

−λ (∇T · n) |z=h = h
[
T |z=h − Tair

]
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where λ and n denote the thermal conductivity and the unit exterior normal

n =
1√

1 + (∂xh)2

(
−∂x h

1

)
.

2.2. Scaled equations

The specific geometry of the falling film is characterized by the typical length scales
in both the streamwise direction and the cross-stream direction. The evolution of the
hydrodynamic instabilities and the thermal diffusion process can also be described through
these typical lengths. Introducing the dimensional quantities

• L : streamwise typical length scale,
• H : cross-stream typical length scale,

• U0
def
:=

ρ g H2

2µ0

: typical average velocity corresponding to hydrodynamic Nusselt

solution
and the following change of variables [8]:

t = t̄
L

U0

, x = x̄ L, z = z̄ H, h = h̄ H, u = ū U0,

w = w̄ U0
H

L
, p = p̄ ρ g H, T = T̄ (Twall − Tair) + Tair ,

six dimensionless numbers characterize the problem at hand:

• the Reynolds number Re
def
:=

ρU0H

µ0

,

• the Péclet number Pe
def
:=

U0H

α
,

• the Biot number Bi
def
:=

hH

λ
,

• the Weber number We
def
:=

σ0
ρ g H2

,

• the Marangoni number Ma
def
:=

2m (Twall − Tair)

ρ g H2
=

m (Twall − Tair)

µ0 U0

,

• the dimensionless rate of change of the dynamic viscosity

Πµ
def
:=

µ1

µ0

(Twall − Tair) ,

besides the film parameter ε def
:=

H

L
. In what follows, the reference temperature is further

chosen to correspond to the temperature of the air, i.e. T0 = Tair . For most liquids, surface
tension is high and the Weber number is typically large. We thus introduce We

def
:=

κ

ε2
with κ = O(1) . This classical assumption (see [19]) enables to include surface tension
effects at an early stage of the asymptotic long-wave assumption, as surface tension is the
sole physical effect which prevent the breaking of the waves. The coupling of the flow
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dynamics with respect to the heat transfer is accounted for by the Marangoni number Ma
and the dimensionless rate of change of the viscosity Πµ that are assumed to be order one
quantities. Note that the positivity of viscosity and surface tension demands that Πµ < 1
and Ma < 2We.

This set of parameters is usefully completed with the Kapitza number Ka
def
:= (lc / lν)

2 =

We (H / lν)
2 and B̃i = h lν / λ = Bi lν /H , where lc =

√
κ/ρ g is the capillary length,

and lν = (ν2/g)1/3 is a viscous-gravity length [19]. The dimensionless groups Ka and B̃i
are independent of the film thickness H and depend only on the fluid properties. The thin
liquid depth is characterized by the ratio H � L i.e. ε� 1 .

The dimensionless incompressible Fourier–Navier–Stokes equations read

εRe

(
∂tu + u ∂xu + w ∂zu +

2

Re
∂xp

)
=

2 + (1 − Πµ T ) (ε2∂2xxu + ∂2zzu) − Πµ (ε2∂xT ∂xu + ∂zu ∂zT ) , (2.3a)

εRe

(
∂tw + u ∂xw + w ∂zw +

2

ε2Re
∂zp

)
=

(1 − ΠµT ) (ε2∂2xxw + ∂2zzw) − Πµ(ε2∂xT∂xu + ∂zu ∂zT ) (2.3b)

∂xu + ∂zw = 0 , (2.3c)

∂tT + u ∂xT + w ∂zT =
1

εPe

(
ε2 ∂2xxT + ∂2zzT

)
. (2.3d)

For convenience, the over bar notation for the dimensionless quantities have been dropped
in the above equations. The no-slip boundary condition at the wall (2.1) and the kinematic
condition at the free surface (2.2) remain formally unmodified. The continuity conditions
of the fluid stress across the free surface become

p|h + ε2
(

We − 1

2
Ma T |z=h

)
∂2xxh

[ 1 + ε2 (∂xh)2 ] 3/2
=

− ε
(
1 − Πµ T |z=h

) 1 + ε2 (∂xh)2

1 − ε2 (∂xh)2
∂xu |h (2.3e)

and

(1 − Πµ T |z=h)
√

1 + ε2(∂xh)2
[ (

1 − ε2(∂xh)2
)
·
(
∂zu |h + ε2 ∂xw |h

)
+ 4 ε2 ∂xh ∂zw |h

]
+ εMa

√
1 + ε2(∂xh)2

dT (h)

dx
= 0 (2.3f)

where the total derivative
dT (h)

dx
is given by

dT (h)

dx

def
:=

[
∂xT + ∂xh · ∂zT

] ∣∣
h
.
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The dimensionless heat transfer between the heated liquid and the ambient air becomes

∂zT |h = −
√

1 + (ε∂xh)2 Bi T |h + ε2 ∂xh ∂xT |h , (2.3g)

whereas the Dirichlet-type boundary condition at the wall is

T |z=0 = 1 . (2.3h)

2.3. Fourier full 2D model

In order to illustrate numerically the heat transfer behaviour depending on relevant
physical parameters, we present below some numerical simulations of the Fourier equation,
the solution to the Navier–Stokes equation being approximated by the low-dimensional
model that is presented below.

The numerical solution is looked after in a stationary rectangular domain thanks to the
change of variables

ψ : (x, z, t) 7→
(
x, y =

z

h(x, t)
, t

)
∈ [0, L]× [0, 1]×R+ .

The transformed heat field θ = T ◦ ψ−1 becomes a solution of

εPe (Dt, h θ + ũ · ∇θ) = ∆2
hθ , (2.4)

where the differential operators are given by

Dt,h θ = ∂tθ −
y

h
∂th ∂yθ,

∇hθ =

∂xθ −
y

h
∂xh ∂yθ

1

h(x)
∂yθ

 ,

∆2
hθ = ε2

[
∂2xxθ − 2

y

h
∂xh ∂

2
xyθ +

y

h

(
2

h
(∂xh)2 − ∂2xxh

)
∂y θ

]
+
[
ε2
(y
h

)2
(∂xh)2 +

1

h2

]
∂2yy θ

and ũ = (u − c, w) corresponds to the velocity vector field shifted by the wave celerity c .
The boundary condition at the wall remains

θ |y=0 = 1 ,

and the Robin-type condition at the free surface becomes(
1 + (ε ∂xh)2

)
∂yθ |y=1 − ε2 h ∂xh ∂xθ |y=1 = −h

√
1 + (ε ∂xh)2 Bi θ |y=1 .

The velocity field is computed using the parabolic approximation for the downstream

component u(x, z) = 3
(
z − 1

2
z2
)
q h−1 − c with q =

1

3
+ c (h − 1) and c = 2.96 .

The cross-stream velocity component w(x, z) is computed such that the incompressibility is
verified.
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The numerical results for the steady temperature profile are obtained using an implicit
second order scheme. The isothermal lines plotted in Figure 2 have been computed from
equation (2.4) for an analogous configuration as is [38]. The solitary wave profile and the
velocity field under the wave were obtained from Vila’s model [7]. The Reynolds number
is fixed at Re = 7.5 , Ka = 3000 for various fluid properties (Pr and Bi = (2Re)1/3 B̃i).

When no heat transfer is allowed between the liquid film and the surrounding air, the
falling film reaches the uniform temperature given by the heated wall (Bi → 0). When
heat exchange between the two fluids phases is maximal (Bi → ∞), the liquid film behaves
as a conductive medium between the heated wall and the colder air.

The temperature follows a linear distribution across a flat film (Nusselt solution).
However, as soon as hydrodynamic instabilities occur, a recirculation zone within large-
amplitude waves may appear when the fields are described from the wave moving frame.
The heat transfer through the liquid film is locally far from being linear. This corresponds
to the physical mechanism of heat enhancement, as used in engineering process. In case of
vertical falling film, Benjamin [3] has shown the appearance of such inertial hydrodynamic
instabilities. Therefore, when considering the vertical configuration of anisotherm falling
film, the intensification of heat transfer by the hydrodynamic instabilities must be taken
into account. The hypothesis of flat falling film does not stand anymore.

3. Asymptotic model

In what follows, we present the derivation of a system of averaged equations for the
mass, momentum and heat balances (2.3a) – (2.3d) following the classical Saint-Venant
approach. We consider a formal expansion for the velocity, the pressure and the temperature
field with respect to the order parameter ε :

u(x, z, t) = u(0)(x, z, t) + ε u(1)(x, z, t) + O(ε) ,

w(x, z, t) = w(0)(x, z, t) + O(ε) ,

p(x, z, t) = p(0)(x, z, t) + O(ε) ,

T (x, z, t) = T (0)(x, z, t) + ε T (1)(x, z, t) + O(ε2) . (3.1)

Consistency with the long-wave asymptotic expansion of the flow variables with respect to
the parameter ε is guaranteed by computing the higher order corrections to the thermal
Nusselt solution, corresponding to the leading order term of the asymptotic development
for the temperature field.

3.1. Thermal Nusselt solution

The substitution of the formal development (3.1) into the dimensionless Fourier equation
(2.3d) yields

∂2zz T
(0) = 0



New asymptotic heat transfer model 11 / 27

(a) B̃i = 0.1, Pr = 7 (b) Pr = 1, B̃i = 0.01

(c) B̃i = 1, Pr = 7 (d) Pr = 7, B̃i = 0.01

(e) B̃i = 10, Pr = 7 (f) Pr = 30, B̃i = 0.01

Figure 2. On the left column: Isotherms in the inertial frame for different B̃i
numbers and Pr = 7. As expected, the temperature field is more uniform when no
heat transfer is allowed with the free surface. On the right column: Isotherms in
the inertial frame for different Pr number. The recirculation zone occurs as the
advective part becomes dominant against the diffusive process. Heat flux becomes
locally strongly non linear. B̃i = 0.01 .
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by taking the limit ε→ 0 . In the following, we set

B
def
:=

√
1 + (ε∂xh)2 Bi = O(Bi) . (3.2)

Taking into account the associated boundary conditions

T (0)
∣∣
z=0

= 1 , ∂zT
(0)
∣∣
z=h

= −B T (0)
∣∣
z=h

,

the resolution of the second order differential equation gives the expected expression for
the main order temperature profile called the thermal Nusselt solution [9]:

T (0)(x, z, t) = 1 − A(x, t) z (3.3)

with
A(x, t) =

B

1 + h(x, t)B
. (3.4)

We can remark that the Nusselt thermal gradient A is function of h and its first derivative
with respect to x .

Although its computation is straightforward, the expression of the thermal Nusselt
solution differs from the linear temperature profile found in the literature [11, 32]. The
thermal gradient A involves the liquid film height h depending on the x . The proposed
thermal Nusselt solution gives with more accuracy the influence of the hydrodynamic
instabilities than as if its linear factor would just have been constant along the downward
direction. It is worth to point out that, even when ε → 0 , travelling waves may appear as
solutions of the Shallow Water model. Thus, even in this limit case (ε = 0), the falling film
profile may vary along the downward direction and it is expected for the thermal Nusselt
solution to describe this behaviour as well.

Remark that the average Nusselt solution T
(0)

=
1

h

ˆ h

0

T (0) dz is consistent with

the limit cases of heat transfer. Indeed out of the instability neighborhood, the uniform
temperature profile is reached (adiabatic case: Bi → 0 , T (0) → 1) and whereas no
resistance to the transfer at the free surface happens, Bi → ∞ , the linear heat profile is

realized yielding T (0) → 1

2
.

3.2. Formal derivation of the velocity

We consider the flat-film velocity distribution, i.e. ε = 0 . Integration of (2.3a) using
the boundary conditions (2.1), (2.2) and (2.3f) gives

u(0) =
2

ΠµA

(
h +

1 − Πµ

ΠµA

)(
ln |1− Πµ + ΠµAz| − ln |1− Πµ|

)
− 2

ΠµA
z

if Πµ 6= 0

u(0) = 2h z − z2 ,
(
if Πµ = 0

)
u(0) = 2h z − z2 +

(
2h z − z2 − hA z2 +

2

3
Az3

)
Πµ + O(Π2

µ) if Πµ � 1 .
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(a) (b)

Figure 3. Comparison of velocity profiles with Πµ 6= 0 . Physical parameters
h = 1 , A = 0.1 , Πµ = 0.25 . On the right panel (b) the parameter Πµ changes
uniformly from 0.01 to 0.25 .

The graphical comparison of different profiles is shown in Figure 3 for an already large
value of the rate of change of viscosity Πµ = 0.25 and a thermal gradient A = 0.1 . The
velocity of the flow increases with Πµ as expected from the lowering of the viscosity and
the subsequent reduction of the viscous stresses. A significant departure of the velocity
profile from the Nusselt parabolic distribution (Πµ = 0) can be observed. However,
the polynomial velocity distribution obtained from a Taylor expansion is still very close
to the exact distribution which involves a logarithmic correction. This suggests that the
assumption Πµ � 1 holds up to already large values of Πµ . Since the logarithmic
correction to the velocity profile will significantly complicate the algebra and the resulting
models, we will hereinafter assume only small values of the rate of change of viscosity
Πµ � 1 in our derivation process with the expectation that the resulting simplified
equations will remain valid up to order one values of Πµ.

We thus assume Πµ = O(ε) and introduce a constant $ = O(1) such that

u0(x, z, t) = 2h(x, t) z − z2 + O(ε) . (3.5a)

Using the free divergence condition and the no slip condition w(x, 0) = 0 , the transverse
component velocity w is determined as

w(x, z, t) = −
ˆ z

0

∂xu (x, y, t) dy

= −z2 ∂xh(x, t) + O(ε)

= w(0)(x, z, t) + O(ε) . (3.5b)
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3.3. Formal derivation of the pressure

Truncated at O(ε), integration of the cross-tream momentum balance (2.3b) yields

2 p|h − 2 p(z) = ε ∂zw|h − ε ∂zw(z) + O(ε2) .

The boundary condition (2.3e) gives

p |h = − ε2
(

We − Ma

2
T |h

)
∂2xxh− ε ∂xu |h + O(ε2) .

Where the dependence of the pressure with respect to the surface tension has been made
explicit even though it formally appears as a O(ε2) correction. As underlined above,
inclusion of surface tension effects is required to capture the onset of capillary waves at the
front of the solitary waves and to prevent wave breaking, which justifies the assumption of
large Weber numbers We =

κ

ε2
. As a consequence, the pressure distribution at leading

order reduces to the sole contribution of surface tension

p(z) = −κ ∂2xx h + O(ε) . (3.6)

3.4. Consistent averaged momentum equation

In this Section, we present the derivation of a consistent averaged momentum equation
following [6]. The proposed momentum balance includes the coupling with heat trans-
fer resulting from the dependence of surface tension and viscosity with respect to the
temperature.

We first integrate the stream-wise momemtum balance (2.3a) using the boundary condi-
tions (2.1) and (2.2), to obtain an averaged momentum balance

Re ∂t

(ˆ h

0

u dz

)
+ Re ∂x

(ˆ h

0

u2 dz

)
=

2h

ε
− 2 ∂x

(ˆ h

0

p dz

)
2 p |h ∂xh +

1 − ε$ T

ε
∂zu |h −

1 − ε$ T

ε
∂zu |0 + O(ε) . (3.7)

We know that u = u0 + εu1 + O(ε2) with u0(x, z, t) = 2h(x, t) z − z2 and

u1 = −Ma
dT 0(h)

dx
z + $

[
2 z h − z2 (1 + A)h +

2

3
z3A

]
+

z h

6
Re
[

8h3 − 4 z2 h + z3
]
∂xh

where
dT 0(h)

dx
= −(h ∂hA + A) ∂xh .

We introduce the depth-averaged velocity

v(x, t) =
1

h

ˆ h

0

u(x, z, t) dz =
2

3
h2(x, t) + O(ε) (3.8)
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so that ˆ h

0

u2 dz =
8

15
h5 + O(ε) = v2 h +

4

45
h5 + O(ε) . (3.9)

Equation (2.2) gives

∂th = −∂x (hv) = −2h2∂xh+ O(ε) . (3.10)

The boundary condition (2.3f) gives

1− ε$ T

ε
∂zu |z=h = −Ma

dT 0(h)

dx
+ O(ε) (3.11)

whereas the wall shear stress is evaluated from the asymptotic expansion which leads to

1− ε$ T

ε
∂zu |z=0 =

3

ε

[
1 − ε$

3 + T 0(h)

4

]
v

h

− 4

15
Re h4 ∂xh +

1

2

dT 0(h)

dx
− 2κh ∂3xxx h + O(ε) . (3.12)

The chosen expressions (3.9) and (3.12) of the momentum flux and of the wall shear stress
are not unique as one can play with the asymptotic expression of the averaged speed (3.8).
Equation (3.9) introduces the classical momentum flux v2 h of the shallow-water equations
corrected with a term 4h5 / 45 that is function only of the film thickness. Following [6],
where the analogy of the shallow-water equations with the compressible Euler equations
is underlined, the film thickness h being the analogue of the density, the correction 4h5 / 45
is a barotropic contribution to the pressure. The wall shear stress expression (3.12) is
chosen so that the dependency of the viscosity with respect to the temperature appears as
a correction to 3 v / h which corresponds to the classical Nusselt parabolic profile.

The asymptotic expression of the pressure distribution (3.6) gives

− 2 ∂x

(ˆ h

0

p dz

)
+ 2 p |h ∂xh = 2κh ∂3xxx h + O(ε) . (3.13)

From (3.9), (3.11), (3.12) and (3.13), the averaged momentum balance (3.7) reads

Re

(
∂t(h v) + ∂x

(
h v2 +

8

225
h5
))

=

1

ε

{
2h − 3

[
1 − ε$

3 + T 0(h)

4

]
v

h

}
− 3

2
Ma

dT 0(h)

dx
+ 2κh ∂3xxx h + O(ε) (3.14)

The asymptotic momentum balance (3.14) extends the result obtained by [6] by including
the principal coupling terms with the heat transfer, i.e. a reduced wall friction and a driving
stress proportional to the gradient of free surface temperature, which accounts for the
Marangoni effect.
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3.5. Asymptotic heat transfer model

Before turning to the averaging of the heat equation (2.3d), we first compute the second-
order correction T (1) to the linear distribution T (0) given by (3.3). The substitution of
T = T (0) + ε T (1) , u = u(0) + O(ε) and w = w(0) + O(ε) gives

∂zzT
(1) = Pe

(
∂tT

(0) + u(0)∂xT
(0) + w(0)∂zT

(0)
)
,

which can be easily integrated with the help of the boundary conditions

∂zT
(1)
∣∣
h

= −B T (1)
∣∣
h

T (1)
∣∣
0

= 0 ,

and the expressions (3.5) of u(0) and w(0) . We thus obtain

T (1)(x, z, t) =
PeB z∂xh

60(1 + hB)3
{
z3[5− zB] + h

[
z3B(20− 3zB)

+h
(
5z2B

(
−4 + 3zB) + 2h(−10(1 + z2B2)

+hB(5 + 4hB)))]}

3.6. The conservative formulation of the model

In this section, we derive formally an evolution equation for the free-surface temperature
temperature following the consistent Saint-Venant approach.

We introduce the free surface temperature

θ
def
:= = T (z = h) (3.15)

so that the temperature field may be written

T = 1− (1− θ) z
h

+ εT̃ (1) = T̃ (0) + εT̃ (1) ,

where the O(ε) correction T̃ (1) verifies T̃ (1)(z = h) = 0 as required by the definition (3.15)
so that T̃ (1) = T (1) − T (1)(z = h) + O(ε2) .

Integration of the the heat equation (2.3d) across the film height yields

∂t

ˆ h

0

T dz + ∂x

ˆ h

0

uT dz = − 1

εPe
(B T |z=h + ∂zT |z=0) + O(ε) , (3.16)

which involves the average temperature h−1
´ h
0
T dz and the mixing temperature q−1

´ h
0
uT dz.

The average temperature h−1
´ h
0
T dz can be easily derived from the free-surface tempera-

ture θ through the linear temperature distribution (3.3) by h−1
´ h
0
T dz = (1 + θ)/2 + O(ε).

An expression of the mixing temperature q−1
´ h
0
uT dz in terms of the variables h, q and θ

requires a closure which can be provided again from the Nusselt solution q−1
´ h
0
uT dz =

q−1
´ h
0
u(0) T̃ (0) dz + O(ε) = 1

8
(3 + 5θ) + O(ε). Yet, this closure is not unique as one can
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play with the asymptotic expressions of the free-surface temperature and flow rate

q = q(0) + O(ε) =
2

3
h3 + O(ε) , (3.17a)

θ = θ(0) + εθ(1) + O(ε2)

=
1

1 + hB
+ ε

PeBh4∂xh(−15 + 7hB)

60(1 + hB)3
+ O(ε2) . (3.17b)

The point of view that is adopted below is to express the convective terms at the l.h.s. of
(3.16) as a function of h (∂tθ + v∂xθ) = ∂t(hθ) + ∂x(qθ) . This choice stems from i) the
classical form of the shallow water equation and the choice of h , q = hv anf θ as the
variables of the model, ii) the fact that the hyperbolic structure of the obtained evolution
equations is then guaranteed as will be underlined in Section 4. The r.h.s. of (3.16) is
written as a function of θ using

B T |z=h + ∂zT |z=0 = B T̃ (0)
∣∣∣
z=h

+ ∂zT̃
(0)
∣∣∣
z=0

+ O(ε)

=
1 + hB

h

(
θ − θ(0)

)
+ O(ε)

We thus write the following balance

1 + hB

h

(
θ − θ(0)

)
= −

(
3

16
− 7

80
hB

)
εPe {∂t(hθ) + ∂x(qθ)} (3.18)

where the coefficients a = 3/16 and b = −7/80 are adjusted to verify consistency at
O(ε) after substitution of the expansions (3.17). An alternative to (3.17) is offered by
θ = θ(0) + O(ε) as 3

16
− 7

80
hB = 11

40
− 7

80
/θ(0) so that

1 + hB

h

(
θ − θ(0)

)
= −εPe {∂t[h g(θ)] + ∂x[q g(θ)]} (3.19)

with

g(θ) =
11

40
θ − 7

80
ln(θ) (3.20)

is also consistent at O(ε) .
Before turning to the complete formulation of our coupled set of transport equations

for the variables h , q = hv and θ , let us comment the results (3.18) and (3.19). First
the convection terms at the r.h.s. of (3.18) cancel out at a specific value of the film height
hc

def
:= 15/(7B) . Similarly, the r.h.s. of (3.19) vanish at a given value of the free-surface

temperature θc
def
:= 7/22 . It is easy to show that these two critical values are related

by θc = θ(0)(hc) . Worse, for h above hc or θ below θc, the relaxation term at the l.h.s.
of (3.18) and (3.19) becomes an amplification one. Obviously, these critical values are
nonphysical and thus present clear limitations to the applicability of the averaged heat
equations (3.18) and (3.19) to only relatively low values of B .
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A solution to this problem may be found by playing with the equivalence θ = θ(0) + O(ε) .
We may rewrite the function g appearing in (3.20) as

g̃(θ, h) =
11

20

[
θ − 2 ln(θ)− 1

2
θ(0) +

81

44
ln(θ(0))

]
= = g(θ) + O(ε) (3.21)

This particular choice of g̃ stems from the requirements that (i) g̃ remains differentiable for
all acceptable values of the variables h and θ , annd that (ii) θ remains in the unit interval
[ 0, 1 ] .

Indeed, let us consider a solitary wave of infinite extension relaxing at both ends to the
flat film solution h = 1 . An example of such waves has been shown in Figure 2. In the
moving frame of coordinate ξ = x − c t , c referring to the phase speed of the wave,
integration of the mass balance gives q = c h + q0 , where q0 =

´ h
0
u dz is the constant

flow rate under the wave. Equation (3.19) with (3.21) then simplifies into

q0
d

dξ
g̃ = O(1/Pe) (3.22)

So that g̃ is nearly constant along the wave. As the wave departs from and returns to
the Nusselt flat film solution h = 1 , one expects g̃ ≈ g̃(θ(0)(h = 1), 1) . A necessary
condition to insure 0 < θ < 1 consists in verifying that, the solutions to

g̃(θ, h) = g̃(θ(0)(h = 1), 1) (3.23)

lay within this interval for all admissble values of h and B. An expansion of (3.23) for
B � 1 gives θ = 1 − 59

44
B
(
h − 15

59

)
+ O(B) . Therefore, in this limit, the solution to

(3.23) remains in the unit interval provided that h > 15/59 ≈ 0.25 , a condition that is
satisfied for all considered solitary waves. Conversely, in the limit B � 1 , θ ≈

(
θ(0)
)81/88

so that the solution θ to (3.23) lays in the unit interval [ 0, 1 ] .

3.7. Vectorial form of the model

The system of equations (3.10), (3.14), (3.19) with (3.21) can be written in vectorial form

∂tU + ∂x F =
1

ε
N + S + O(ε) (3.24)

with

U =


h

h v

hφ

 , F =


h v

h v2 +
8

225
h5 − 3 Ma

Re
θ

h vφ


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where φ = θ − 2 ln(θ) − 1
2

1
1+Bh

+ 81
44

ln
(

1
1+Bh

)
and

N =



0

1

Re

{
2h − 3

[
1− ε$

(
1 − θ

2

)]
v

h

}
1

Pe

20

11h

(
1− (1 + hB) θ

)


, S =


0

2κ

Re
h ∂3xxxh

0

 .

The obtained system of equations must be contrasted with the non-conservative system
corresponding to the averaged energy balance derived in [38] following the weighted residual
approach introduced by [31]:

∂tθ +
27

20
v ∂xθ −

7

40

1 − θ

h
∂x (vh) =

1

εPe

3

h2
[
1 −

(
1 + Bh

)
θ
]

(3.25)

This equation can be recasted in the vectorial form of (3.24) with the following third
components of vectors S and N given by

N3 =
1

Pe

3

h

(
1− (1 + hB) θ

)
and S3 =

7

40
(1 − θ) ∂x (hv) − 7

20
h v ∂x θ .

The two descriptions of the energy balance are consistent at O(ε) and therefore shall yield
the similar results as long as the long-wave expansion strictly holds, i.e. for εPe � 1 .
However, at Pe = O(1), discrepencies shall be observed owing to the different mathematical
structures of the two balances. Indeed, equation (3.25) has the disadvantage not to admit
a conservative form.

4. Numerical illustrations

In this Section, we study first the time-space behaviour of the asymptotic model for the
average temperature field T . A hyperbolic scheme is implemented in order to take the
full advantage of the conservative formulation of model (3.24). A second numerical test
is performed, illustrating the global behaviour of the model in function of the physical
parameters Re, Bi, Pe . The solutions representation corresponds to the dynamical system
point of view, and is realized thanks to the AUTO07p software [13]. Notice that for the sake
of simplicity in all computations below we adopt the assumption (3.2).



M. Chhay, D. Dutykh, et al. 20 / 27

4.1. Unsteady simulations

The hyperbolicity of system (3.24) can be easily checked by computing the eigenvalues
of the advective flux F(U) Jacobian matrix:

A =
∂F

∂U

=


0 1 0

−v2 +
8

45
h4 +

3 Ma

Reh(1− 2/θ)

(
φ− Bh(59 + 81Bh)

(1 + Bh)2

)
2 v − 3

h(1− 2/θ)

Ma

Re

−φ v φ v

 .

The eigenvalues of the matrix A can be computed. We obtain three distinct eigenvalues:

v, v ± 2
√

10

15
h2 + O(Ma/Re)

Thus, system (3.24) has a very interesting property: it is always hyperbolic. The eigen-
structure of the advective flux F(U) will be used below to solve numerically the system
(3.24) of balance laws with the widely-known Rusanov scheme. In order to solve numerical
the conservative part of thermal Saint-Venant equations we employ the standard finite
volume discretization [14] along with the Rusanov scheme [29]. The dispersive (i.e. the
capillary force) and other non-conservative terms were discretized using the central finite
differences. Good numerical properties of this combination were demonstrated in [25].
For the time discretization we use the variable order Adams–Bashforth–Moulton
predictor-corrector solver, which is implemented in Matlab in ode113 routine [35]. The
absolute and relative tolerances were both set to 10−6 in simulations shown below.

We consider the case of decoupled hydrodynamics and heat transfer (Ma = 0 , Πµ = 0 ).
The parameters are B = 1 , Re = 1 , Pe = 10 and the results of the simulation are
depicted in Figure 4. Starting with an arbitrary reasonable initial condition

h0(x) = 1 +
1

2
sin2

(25π xL

10000

)
,

and θ(0)0 =
(

1 + h0B̃i
)−1

and using periodic boundary conditions, the solution reaches
its hydrodynamic steady-state at around t = 10 , whereas the steady state thermal regime
takes place a little bit after at around t = 12 , as a result of a weaker thermal diffusivity in
comparison to the kinematic viscosity (Pr = 10). The mean temperature T closely follows
the free surface evolution with a minimal value reached at the crests of the waves.

4.2. Dynamical system representation

Travelling-wave solutions to (3.24) have been looked after using the AUTO07p software
[13]. The system of partial differential equations (3.24) simplifies into ordinary differential
equations in the moving frame of reference, ξ = x − c t , where c refers to the phase speed of
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Figure 4. Time evolution of hydrodynamic free surface and first-order surface
temperature. Dimensionless parameters are: Re = 1 , Pe = 10 , Bi = 1 ,
Ma = 0 , Πµ = 0 .
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the waves. The averaged velocity v = c + q0 / h is computed after integration of the mass

balance, where q0 =

ˆ h

0

(u − c) dz is the conserved flow rate in the moving frame. After

elimination of v , one is led to a single ODE which is next recast as an autonomous dynamical
system in a four-dimensional phase space spanned by U =

(
h, dh/dξ, d2h/dξ2, θ

)
.

Travelling waves correspond to limit cycles in the phase space which arise from Hopf
bifurcations of the Nusselt solution U =

(
1, 0, 0, B / [2 (1 + B)]

)
. Solitary waves are

next found through homoclinic bifurcations by increasing the period of the limit cycles.
The procedure is detailed in [19].

We first consider the homoclinic orbits solutions to (3.24) for the set of parameters
investigated by [38], i.e. Pr = 7 , B̃i = 0.1 and Ka = 30000 (see Figure 11 in that
reference). These values correspond well to the typical situation of a water film. Figure 5(b)
compares the minimum of the temperature at the free surface T |z=h obtained from (3.24)
(dashed lines) with the solution to the Fourier equation (solid lines) and to the averaged
energy balance (3.25) (dotted lines). The curves present a change of behaviour around
Re = 6 which signals the onset of capillary roll-waves in the drag-inertia regime identified
by Ooshida [37] where inertia effects become dominant (see [10]). Below this value of
the Reynolds number, the curves are very close as a result of the consistency with the
long-wave expansion up to first order. Discrepancies are observable whenever inertia effects
are significant. They are emphasized when the Prandtl number is raised to Pe = 30
(compare Figures 5(b) and 5(d)). Note that all values of the free surface temperature
corresponding to (3.24) fall into the admissible range [0, 1] , whereas solutions (3.25) do
not exhibit non-physical negative values of T |z=h for Biot numbers larger than 0.1. The
proposed conservative formulation therefore corrects the main drawback observed with the
weighted residual method yielding (3.25).

Figure 6 compares the solutions to the model and to the Fourier equation in the
absence of a coupling between the hydrodynamics and the heat transfer (Ma = 0 and
Πµ = 0). For both computations, the hydrodynamics is modelled by (3.14) assuming a
parabolic velocity distribution. The parameter values correspond to the most demanding
case tested, i.e. Pr = 30 , Re = 30 and B̃i = 0.1 . The wave profile, displayed in
Figure 6(a), presents an evident asymmetry with a significant accumulation of capillary
waves at its front. At a first glance, the distributions of temperature at the free surface
seems similar for the Fourier equation and for the model (see Figure 6(b)). The model
predicts correctly the amplitude of variation of the free-surface temperature but significantly
overestimates the fluctuations of θ at the capillary region of the wave. Panels (c) and (d)
display the evolutions of θ as a function of the free-surface elevation h. This representation
reveals important differences between the two solutions. The solution to the Fourier
equation presents a sharp variation of θ at h ≈ 2.6 , which corresponds to the location of
a stagnation point at the front of the wave in its moving frame (u (y = h) ≈ 3v/2 = c).
This stagnation point marks the limit of extension of the recirculation region under the wave.
At this point, cold liquid is dragged from the top of the waves, whereas hot liquid is pulled
from the first trough region, which results into the formation of a thermal boundary layer
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Figure 5. Free surface temperature as function of the Reynolds number for
solitary-wave solutions to the Fourier equation (solid lines), to system (3.24)
(dashed line) and to the averaged energy balance (3.25) (dotted line).

and a sharp variation of θ [38]. The model does not reproduce this feature, the free-surface
temperature θ following closely the evolution of the surface elevation h as θ ≈ θ(0)(h)
(compare thin-dotted and dashed lines in panel d).

The failure of the model to predict the onset of a thermal boundary layer at large values
of Pe stems from the representation choice of the convection process in (3.19) and from the
expression of g̃, which artifially constrain θ to converge to θ(0)(h) in the limit of large Péclet
numbers. We note that changing the convective terms in (3.19) to h∂t g + (3q/2) ∂xg
as suggested by the above discussion does not cure this limitation as our tests show that
θ remains close to θ(0)(h) in that case. We propose to follow this line of thought in a
fortcoming publication.
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Figure 6. Comparisons of the solutions to the Fourier equation and to the
model for a large solitary wave. The solid (dashed) line refers to the Fourier
(model) solution. θ(0)(h) = 1/(1 + Bh) is compared to θ in panel (d) (thin
dotted line).

5. Conclusions & Perspectives

In this article, a new model for heated falling films is proposed: whereas the hydrodynamic
part has already been known (see, for example, [8]), the asymptotic model associated to
the heat field is derived to preserve the conservative form of the averaged equations, which
enables to make use of efficient numerical methods. The result corresponds to an explicit
conservative model consistent up to the order O(ε) with the Fourier–Navier–Stokes
equations. The numerical experiments and comparisons with previous works (e.g. [38])
and with 2D heat equation direct simulations validate the proposed model. The proposed
model accounts for the coupling between hydrodynamics and heat transfer by two physical
mechanisms:
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• Marangoni effect: the surface tension coefficient is supposed to be linearly depen-
dent on the fluid temperature T
• Viscosity effect: the dynamic viscosity µ is also supposed to be linearly dependent
on the fluid temperature T .

To our knowledge these two effects have been considered separately, but their coupling
seems to have been investigated only in [12]. An important achievement of the proposed
model is the absence of the non-physical negative values of the temperature that have been
observed previously with the models proposed by [31, 34, 38] using the weighted-residual
method. Owing to an appropriate writing of the convective terms in the heat balance,
the free-surface temperature θ remains in the physically admissible range of values in
all considered cases. However, the price to be paid for this achievement is to artificially
constrain the temperature field to follow the kinematics of the film in the high Péclet
limit (θ ≈ θ(0)). To our opinion, it is unlikely that a modelling of the heat transfer with a
unique averaged heat balance which relaxes the limitations stated above is achievable. This
suggests to add more variables to represent the temperature field in order to account for
the departures of the temperature distribution from the linear assumption (3.3). We intend
to follow this line of thought in a separate study.
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