
Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Philology of Programming Languages

Baptiste Mélès

Université de Clermont-Ferrand, PHIER / Archives Poincaré

History and Philosophy of Computing (HaPoC),
École Normale Supérieure de Paris,

30th October 2013

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Theoretical vs. real-life programming languages
The compilation fallacy

Theoretical vs. real-life programming languages

Do “theoretical” programming languages capture all the properties
of “real-life” programming languages?

theoretical programming languages:
defined in papers;
used to prove theorems of logic or computer science;
examples: all sorts of λ-calculi, Turing machines, PCF...

real-life programming languages:
implemented on computers;
used to write real and useful programs (operating systems,
browsers, shells...);
examples: Lisp, C, Perl, C++, JavaScript...

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Theoretical vs. real-life programming languages
The compilation fallacy

Theoretical vs. real-life programming languages

Do “theoretical” programming languages capture all the properties
of “real-life” programming languages?

theoretical programming languages:
defined in papers;
used to prove theorems of logic or computer science;
examples: all sorts of λ-calculi, Turing machines, PCF...

real-life programming languages:
implemented on computers;
used to write real and useful programs (operating systems,
browsers, shells...);
examples: Lisp, C, Perl, C++, JavaScript...

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Theoretical vs. real-life programming languages
The compilation fallacy

Theoretical vs. real-life programming languages

Do “theoretical” programming languages capture all the properties
of “real-life” programming languages?

theoretical programming languages:
defined in papers;
used to prove theorems of logic or computer science;
examples: all sorts of λ-calculi, Turing machines, PCF...

real-life programming languages:
implemented on computers;
used to write real and useful programs (operating systems,
browsers, shells...);
examples: Lisp, C, Perl, C++, JavaScript...

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Theoretical vs. real-life programming languages
The compilation fallacy

The compilation fallacy

The compilation fallacy: all programming languages are
“equivalent”, since most of them are

Turing-complete
compilable into binary/assembly/your favourite language;

Felleisen 1990: “Comparing the set of computable functions
that a language can represent is useless because the languages
in question are usually universal”.
But:

no programmer writes real programs in assembly language or
Turing machines;
compilation collapses all specific properties of programming
languages, which every programmer feels in his practice.

Thus, programs must not be examined up to compilation, but
as source codes, before their compilation.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Theoretical vs. real-life programming languages
The compilation fallacy

The compilation fallacy

The compilation fallacy: all programming languages are
“equivalent”, since most of them are

Turing-complete
compilable into binary/assembly/your favourite language;

Felleisen 1990: “Comparing the set of computable functions
that a language can represent is useless because the languages
in question are usually universal”.
But:

no programmer writes real programs in assembly language or
Turing machines;
compilation collapses all specific properties of programming
languages, which every programmer feels in his practice.

Thus, programs must not be examined up to compilation, but
as source codes, before their compilation.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Theoretical vs. real-life programming languages
The compilation fallacy

The compilation fallacy

The compilation fallacy: all programming languages are
“equivalent”, since most of them are

Turing-complete
compilable into binary/assembly/your favourite language;

Felleisen 1990: “Comparing the set of computable functions
that a language can represent is useless because the languages
in question are usually universal”.
But:

no programmer writes real programs in assembly language or
Turing machines;
compilation collapses all specific properties of programming
languages, which every programmer feels in his practice.

Thus, programs must not be examined up to compilation, but
as source codes, before their compilation.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Theoretical vs. real-life programming languages
The compilation fallacy

The compilation fallacy

The compilation fallacy: all programming languages are
“equivalent”, since most of them are

Turing-complete
compilable into binary/assembly/your favourite language;

Felleisen 1990: “Comparing the set of computable functions
that a language can represent is useless because the languages
in question are usually universal”.
But:

no programmer writes real programs in assembly language or
Turing machines;
compilation collapses all specific properties of programming
languages, which every programmer feels in his practice.

Thus, programs must not be examined up to compilation, but
as source codes, before their compilation.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

No syntactic irregularity
No expletiveness
No redundancy
No historical residues
Learning by concepts

Theoretical programming languages

What common-sense properties can we (maybe naively) expect
from theoretical programming languages?

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

No syntactic irregularity
No expletiveness
No redundancy
No historical residues
Learning by concepts

No syntactic irregularity

(1) The language should contain no syntactic irregularity:
every syntactic rule must be general, and followed in all cases.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

No syntactic irregularity
No expletiveness
No redundancy
No historical residues
Learning by concepts

No expletiveness

(2) The language should contain no expletiveness: every sign
of the language must have a meaning and be useful
(otherwise, there is no use declaring it).

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

No syntactic irregularity
No expletiveness
No redundancy
No historical residues
Learning by concepts

No redundancy

(3) The language should have no redundancy: there must be
only one sign for each fundamental concept.
Schönfinkel, “On the building blocks of mathematical logic”,
1924:

It is in the spirit of the axiomatic method [...] that
we not only strive to keep the axioms as few and
their content as limited as possible but also attempt
to make the number of fundamental undefined
notions as small as we can; we do this by seeking out
thoses notions from which we shall best be able to
construct all other notions of the branch of science in
question.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

No syntactic irregularity
No expletiveness
No redundancy
No historical residues
Learning by concepts

No redundancy

(3) The language should have no redundancy: there must be
only one sign for each fundamental concept.
Schönfinkel, “On the building blocks of mathematical logic”,
1924:

It is in the spirit of the axiomatic method [...] that
we not only strive to keep the axioms as few and
their content as limited as possible but also attempt
to make the number of fundamental undefined
notions as small as we can; we do this by seeking out
thoses notions from which we shall best be able to
construct all other notions of the branch of science in
question.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

No syntactic irregularity
No expletiveness
No redundancy
No historical residues
Learning by concepts

No historical residues

(4) Theoretical programming languages have no passive
historical residues. Every language can be considered as
starting from scratch.
Example:

Church uses the symbols Σ and Π for quantification;
Martin-Löf 1980 can harmessly reuse these signs with new
rules. There is no conflict, since it is a new system, declared
and understood as such.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

No syntactic irregularity
No expletiveness
No redundancy
No historical residues
Learning by concepts

No historical residues

(4) Theoretical programming languages have no passive
historical residues. Every language can be considered as
starting from scratch.
Example:

Church uses the symbols Σ and Π for quantification;
Martin-Löf 1980 can harmessly reuse these signs with new
rules. There is no conflict, since it is a new system, declared
and understood as such.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

No syntactic irregularity
No expletiveness
No redundancy
No historical residues
Learning by concepts

Learning by concepts

(5) The language is learnt through its abstract definition;
Example: Gilles Dowek and Jean-Jacques Lévy 2006 for PCF:

t = x
| fun x -> t
| t t
| n
| t + t | t - t | t * t | t / t
| ifz t then t else t
| fix x t
| let x = t in t

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

No syntactic irregularity
No expletiveness
No redundancy
No historical residues
Learning by concepts

Learning by concepts

(5) The language is learnt through its abstract definition;
Example: Gilles Dowek and Jean-Jacques Lévy 2006 for PCF:

t = x
| fun x -> t
| t t
| n
| t + t | t - t | t * t | t / t
| ifz t then t else t
| fix x t
| let x = t in t

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

No syntactic irregularity
No expletiveness
No redundancy
No historical residues
Learning by concepts

Learning by concepts

Teaching order:
1 introductory remarks;
2 BNF syntax;
3 theorems.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

No syntactic irregularity
No expletiveness
No redundancy
No historical residues
Learning by concepts

Learning by concepts

Teaching order:
1 introductory remarks;
2 BNF syntax;
3 theorems.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

No syntactic irregularity
No expletiveness
No redundancy
No historical residues
Learning by concepts

Learning by concepts

Teaching order:
1 introductory remarks;
2 BNF syntax;
3 theorems.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

No syntactic irregularity
No expletiveness
No redundancy
No historical residues
Learning by concepts

What common-sense properties can we expect from theoretical
programming languages?

No syntactic irregularity;
No expletiveness;
No redundancy;
No historical residues;
Abstract definition.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Real-life programming languages

What properties can we now observe in real-life programming
languages?

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Syntactic irregularity

(1) There are surprises, exceptions in the language.
Examples in C:

int fact (int n) { ... }
char foo (int n) { ... }
void helloworld (void) { ... }
helloworld () { ... }

Such irregularities should not happen in theoretical
programming languages, bacause they break generality.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Syntactic irregularity

(1) There are surprises, exceptions in the language.
Examples in C:

int fact (int n) { ... }
char foo (int n) { ... }
void helloworld (void) { ... }
helloworld () { ... }

Such irregularities should not happen in theoretical
programming languages, bacause they break generality.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Syntactic irregularity

(1) There are surprises, exceptions in the language.
Examples in C:

int fact (int n) { ... }
char foo (int n) { ... }
void helloworld (void) { ... }
helloworld () { ... }

Such irregularities should not happen in theoretical
programming languages, bacause they break generality.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Syntactic irregularity

(1) There are surprises, exceptions in the language.
Examples in C:

int fact (int n) { ... }
char foo (int n) { ... }
void helloworld (void) { ... }
helloworld () { ... }

Such irregularities should not happen in theoretical
programming languages, bacause they break generality.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Syntactic irregularity

(1) There are surprises, exceptions in the language.
Examples in C:

int fact (int n) { ... }
char foo (int n) { ... }
void helloworld (void) { ... }
helloworld () { ... }

Such irregularities should not happen in theoretical
programming languages, bacause they break generality.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Syntactic irregularity

(1) There are surprises, exceptions in the language.
Examples in C:

int fact (int n) { ... }
char foo (int n) { ... }
void helloworld (void) { ... }
helloworld () { ... }

Such irregularities should not happen in theoretical
programming languages, bacause they break generality.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Expletiveness

(2) Some parts of the program are useless:
comments;
empty lines and spaces;

they are ignored by the compiler;
but they are highly recommended by programmers!

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Expletiveness

(2) Some parts of the program are useless:
comments;
empty lines and spaces;

they are ignored by the compiler;
but they are highly recommended by programmers!

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Expletiveness

(2) Some parts of the program are useless:
comments;
empty lines and spaces;

they are ignored by the compiler;
but they are highly recommended by programmers!

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Expletiveness

(2) Some parts of the program are useless:
comments;
empty lines and spaces;

they are ignored by the compiler;
but they are highly recommended by programmers!

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Expletiveness

Example in UNIX v6:
0100 /* fundamental constants: cannot be changed */
0101
0102
0103 #define USIZE 16
0104 #define NULL 0
0105 #define NODEV (-1)
0106 #define ROOTINO 1
0107 #define DIRSIZ 14
0108
0109
0110 /* signals: dont change */
0111 #define NSIG 20
...

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Redundancies

(3) Real-life programming languages, such as C, have a lot of
redundancies (syntactic sugar):

i = 0; i = 0; for (i = 0; i < 10; i = i+1) {
label: while (i < 10) { commands;
if (i < 10) { commands; }

commands; i = i + 1;
i = i + 1; }
goto label:

}
C

And also the ternary operator ?:, until (in Perl) ...
In theoretical languages, this would be a loss of conceptual
purity.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Redundancies

(3) Real-life programming languages, such as C, have a lot of
redundancies (syntactic sugar):

i = 0; i = 0; for (i = 0; i < 10; i = i+1) {
label: while (i < 10) { commands;
if (i < 10) { commands; }

commands; i = i + 1;
i = i + 1; }
goto label:

}
C

And also the ternary operator ?:, until (in Perl) ...
In theoretical languages, this would be a loss of conceptual
purity.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Redundancies

(3) Real-life programming languages, such as C, have a lot of
redundancies (syntactic sugar):

i = 0; i = 0; for (i = 0; i < 10; i = i+1) {
label: while (i < 10) { commands;
if (i < 10) { commands; }

commands; i = i + 1;
i = i + 1; }
goto label:

}
C

And also the ternary operator ?:, until (in Perl) ...
In theoretical languages, this would be a loss of conceptual
purity.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Redundancies

(3) Real-life programming languages, such as C, have a lot of
redundancies (syntactic sugar):

i = 0; i = 0; for (i = 0; i < 10; i = i+1) {
label: while (i < 10) { commands;
if (i < 10) { commands; }

commands; i = i + 1;
i = i + 1; }
goto label:

}
C

And also the ternary operator ?:, until (in Perl) ...
In theoretical languages, this would be a loss of conceptual
purity.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Historical residues

(4) Historicity is present in the languages themselves.
retro-compatibility: an older program must remain compilable
in modern compilers;
some obsolete keywords are arbitrarily forbidden or ignored,
just for historical reasons: register in C.

You cannot learn a programming language without by the way
learning elements of their history.
By contrast, theoretical languages should not be weighed down
by historical contingences.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Historical residues

(4) Historicity is present in the languages themselves.
retro-compatibility: an older program must remain compilable
in modern compilers;
some obsolete keywords are arbitrarily forbidden or ignored,
just for historical reasons: register in C.

You cannot learn a programming language without by the way
learning elements of their history.
By contrast, theoretical languages should not be weighed down
by historical contingences.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Historical residues

(4) Historicity is present in the languages themselves.
retro-compatibility: an older program must remain compilable
in modern compilers;
some obsolete keywords are arbitrarily forbidden or ignored,
just for historical reasons: register in C.

You cannot learn a programming language without by the way
learning elements of their history.
By contrast, theoretical languages should not be weighed down
by historical contingences.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Historical residues

(4) Historicity is present in the languages themselves.
retro-compatibility: an older program must remain compilable
in modern compilers;
some obsolete keywords are arbitrarily forbidden or ignored,
just for historical reasons: register in C.

You cannot learn a programming language without by the way
learning elements of their history.
By contrast, theoretical languages should not be weighed down
by historical contingences.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Historical residues

(4) Historicity is present in the languages themselves.
retro-compatibility: an older program must remain compilable
in modern compilers;
some obsolete keywords are arbitrarily forbidden or ignored,
just for historical reasons: register in C.

You cannot learn a programming language without by the way
learning elements of their history.
By contrast, theoretical languages should not be weighed down
by historical contingences.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Learning by practice

(5) Languages are not taught with their BNF syntax, but with
hello worlds.
Example in Kernighan and Ritchie 1978:
#include <stdio.h>
main()
{

printf("Hello world!\n");
}

Example in L. Wall 1991:
$phrase = "Howdy, world!\n"; # Set a variable
print $phrase; # Print the variable

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Learning by practice

(5) Languages are not taught with their BNF syntax, but with
hello worlds.
Example in Kernighan and Ritchie 1978:
#include <stdio.h>
main()
{

printf("Hello world!\n");
}

Example in L. Wall 1991:
$phrase = "Howdy, world!\n"; # Set a variable
print $phrase; # Print the variable

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Learning by practice

(5) Languages are not taught with their BNF syntax, but with
hello worlds.
Example in Kernighan and Ritchie 1978:
#include <stdio.h>
main()
{

printf("Hello world!\n");
}

Example in L. Wall 1991:
$phrase = "Howdy, world!\n"; # Set a variable
print $phrase; # Print the variable

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Learning by practice

Teaching order:
1 Hello world code;
2 compilation and observation;
3 explanation of the terms (include, main(), printf...).
4 The (facultative) BNF syntax is given long after the first

definition of the language — only in appendix, — and only for
compiler programmers (nobody reads it).

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Learning by practice

Teaching order:
1 Hello world code;
2 compilation and observation;
3 explanation of the terms (include, main(), printf...).
4 The (facultative) BNF syntax is given long after the first

definition of the language — only in appendix, — and only for
compiler programmers (nobody reads it).

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Learning by practice

Teaching order:
1 Hello world code;
2 compilation and observation;
3 explanation of the terms (include, main(), printf...).
4 The (facultative) BNF syntax is given long after the first

definition of the language — only in appendix, — and only for
compiler programmers (nobody reads it).

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Learning by practice

Teaching order:
1 Hello world code;
2 compilation and observation;
3 explanation of the terms (include, main(), printf...).
4 The (facultative) BNF syntax is given long after the first

definition of the language — only in appendix, — and only for
compiler programmers (nobody reads it).

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Real-life programming languages and natural languages

Real-life programming languages possess many properties
which would not be expected in a theoretical programming
language:

1 syntactic irregularity;
2 expletiveness;
3 redundancies;
4 historical residues (Ancient Chinese in modern Chinese, Latin

in Italian and French);
5 learning by practice.

They share all these properties with natural languages. And in
natural languages, these are even positive properties: they give
birth to style.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Syntactic irregularity
Expletiveness
Redundancies
Historical residues
Learning by practice

Real-life programming languages and natural languages

Real-life programming languages possess many properties
which would not be expected in a theoretical programming
language:

1 syntactic irregularity;
2 expletiveness;
3 redundancies;
4 historical residues (Ancient Chinese in modern Chinese, Latin

in Italian and French);
5 learning by practice.

They share all these properties with natural languages. And in
natural languages, these are even positive properties: they give
birth to style.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Consequences

Consequences:
One could try to transpose to the study of programming
languages some methods initially devoted to natural
languages, providing a “philology” of programming languages;
this leads us to reverse Chomsky’s thesis about formal and
natural languages.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Consequences

Consequences:
One could try to transpose to the study of programming
languages some methods initially devoted to natural
languages, providing a “philology” of programming languages;
this leads us to reverse Chomsky’s thesis about formal and
natural languages.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Chomsky: English as a formal language

Chomsky, Syntactic Structures (1957):
Σ : # Sentence #
F: Sentence → NP + VP

VP → Verb + NP

NP →
{

NPsing
NPpl

}
NPsing → T + N + ∅
NBpl → T + N + S
T → the
N → man, ball , etc .
Verb → Aux + V
V → hit, take,walk , read , etc .
Aux → C (M)(have + en)(be + ing)
M → will , can,may , shall ,must

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

A naturalization of formal languages

Chomsky suggests a formalization of natural languages.
Instead, we are suggesting a naturalization of at least some
formal languages.
But this attempt must be distinguished from other works
about:

expressiveness (Felleisen 1990, Mitchell 1991);
levels of abstraction.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

A naturalization of formal languages

Chomsky suggests a formalization of natural languages.
Instead, we are suggesting a naturalization of at least some
formal languages.
But this attempt must be distinguished from other works
about:

expressiveness (Felleisen 1990, Mitchell 1991);
levels of abstraction.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

A naturalization of formal languages

Chomsky suggests a formalization of natural languages.
Instead, we are suggesting a naturalization of at least some
formal languages.
But this attempt must be distinguished from other works
about:

expressiveness (Felleisen 1990, Mitchell 1991);
levels of abstraction.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Formal theories of expressiveness

Felleisen 1990, Mitchell 1991: formal criteria to define and
compare the expressiveness of programming languages.
Basically, they define expressiveness using morphisms between
languages (language translation):

Given two universal programming languages that
only differ by a set of programming constructs,
{c1, ..., cn}, the relation holds if the additional
constructs make the larger language more expressive
than the smaller one. Here “more expressive” means
that the translation of a program with occurrences of
one of the constructs ci to the smaller language
requires a global reorganization of the entire
program. (Felleisen)

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Formal theories of expressiveness

Felleisen 1990, Mitchell 1991: formal criteria to define and
compare the expressiveness of programming languages.
Basically, they define expressiveness using morphisms between
languages (language translation):

Given two universal programming languages that
only differ by a set of programming constructs,
{c1, ..., cn}, the relation holds if the additional
constructs make the larger language more expressive
than the smaller one. Here “more expressive” means
that the translation of a program with occurrences of
one of the constructs ci to the smaller language
requires a global reorganization of the entire
program. (Felleisen)

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Formal theories of expressiveness

But a part of the expressiveness (e.g. expletiveness) can not
be described with formal tools such as morphisms between
languages.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Levels of abstraction

Levels of abstraction: classification of programming languages
based on their abstraction.

C++
C

assembly, binary
But there are other criteria.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Levels of abstraction

Levels of abstraction: classification of programming languages
based on their abstraction.

C++
C

assembly, binary
But there are other criteria.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

How does a programmer choose the language for a given task?

1 type of programming language: logic programming, query
language, web programming...

2 vertical criteria (abstraction):
1 economy: proximity with the machine (for example, assembly

for some parts of operating systems, such as drivers);
2 expressiveness: proximity with human representations;

3 but there are also quite shameful horizontal criteria:
1 disciplinary traditions: FORTRAN in physics;
2 matters of taste: some people prefer indentation, others prefer

brackets (Perl/Python).
def fact(x):

if x < 2:
return 1

else:
return x * fact(x-1)

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

How does a programmer choose the language for a given task?

1 type of programming language: logic programming, query
language, web programming...

2 vertical criteria (abstraction):
1 economy: proximity with the machine (for example, assembly

for some parts of operating systems, such as drivers);
2 expressiveness: proximity with human representations;

3 but there are also quite shameful horizontal criteria:
1 disciplinary traditions: FORTRAN in physics;
2 matters of taste: some people prefer indentation, others prefer

brackets (Perl/Python).
def fact(x):

if x < 2:
return 1

else:
return x * fact(x-1)

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

How does a programmer choose the language for a given task?

1 type of programming language: logic programming, query
language, web programming...

2 vertical criteria (abstraction):
1 economy: proximity with the machine (for example, assembly

for some parts of operating systems, such as drivers);
2 expressiveness: proximity with human representations;

3 but there are also quite shameful horizontal criteria:
1 disciplinary traditions: FORTRAN in physics;
2 matters of taste: some people prefer indentation, others prefer

brackets (Perl/Python).
def fact(x):

if x < 2:
return 1

else:
return x * fact(x-1)

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

How does a programmer choose the language for a given task?

1 type of programming language: logic programming, query
language, web programming...

2 vertical criteria (abstraction):
1 economy: proximity with the machine (for example, assembly

for some parts of operating systems, such as drivers);
2 expressiveness: proximity with human representations;

3 but there are also quite shameful horizontal criteria:
1 disciplinary traditions: FORTRAN in physics;
2 matters of taste: some people prefer indentation, others prefer

brackets (Perl/Python).
def fact(x):

if x < 2:
return 1

else:
return x * fact(x-1)

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

How does a programmer choose the language for a given task?

1 type of programming language: logic programming, query
language, web programming...

2 vertical criteria (abstraction):
1 economy: proximity with the machine (for example, assembly

for some parts of operating systems, such as drivers);
2 expressiveness: proximity with human representations;

3 but there are also quite shameful horizontal criteria:
1 disciplinary traditions: FORTRAN in physics;
2 matters of taste: some people prefer indentation, others prefer

brackets (Perl/Python).
def fact(x):

if x < 2:
return 1

else:
return x * fact(x-1)

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

How does a programmer choose the language for a given task?

1 type of programming language: logic programming, query
language, web programming...

2 vertical criteria (abstraction):
1 economy: proximity with the machine (for example, assembly

for some parts of operating systems, such as drivers);
2 expressiveness: proximity with human representations;

3 but there are also quite shameful horizontal criteria:
1 disciplinary traditions: FORTRAN in physics;
2 matters of taste: some people prefer indentation, others prefer

brackets (Perl/Python).
def fact(x):

if x < 2:
return 1

else:
return x * fact(x-1)

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

How does a programmer choose the language for a given task?

1 type of programming language: logic programming, query
language, web programming...

2 vertical criteria (abstraction):
1 economy: proximity with the machine (for example, assembly

for some parts of operating systems, such as drivers);
2 expressiveness: proximity with human representations;

3 but there are also quite shameful horizontal criteria:
1 disciplinary traditions: FORTRAN in physics;
2 matters of taste: some people prefer indentation, others prefer

brackets (Perl/Python).
def fact(x):

if x < 2:
return 1

else:
return x * fact(x-1)

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

How does a programmer choose the language for a given task?

1 type of programming language: logic programming, query
language, web programming...

2 vertical criteria (abstraction):
1 economy: proximity with the machine (for example, assembly

for some parts of operating systems, such as drivers);
2 expressiveness: proximity with human representations;

3 but there are also quite shameful horizontal criteria:
1 disciplinary traditions: FORTRAN in physics;
2 matters of taste: some people prefer indentation, others prefer

brackets (Perl/Python).
def fact(x):

if x < 2:
return 1

else:
return x * fact(x-1)

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Neither expressiveness not levels of abstraction explain the
whole variety of programming languages. Many of their
aspects escape technical criteria, and involve more general
linguistics.
Two main aspects will be described:

1 historical aspects;
2 stylistic aspects.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Historical aspects

Historical aspects:
etymology:

terms used in programming language do not always have a
meaning in themselves, but can allude to former languages:

the C-like syntax of C++, Java...
even the lambda word for anonymous functions in Lisp and
Python!

importation phenomena:
τὸ in Latin (Spinoza: “τὸ ens”), “par excellence” in English;
object-oriented programming in Common Lisp and PHP, C++
as a C with classes...

living languages: Perl 1.0 (1987), Perl 2.0 (1988), Perl 3
(1989), Perl 5 (1994), Perl 6 (since 2000)...
dead or zombie languages (when they have no speaker
anymore, and stopped their evolution): B, Smalltalk...

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Historical aspects

Historical aspects:
etymology:

terms used in programming language do not always have a
meaning in themselves, but can allude to former languages:

the C-like syntax of C++, Java...
even the lambda word for anonymous functions in Lisp and
Python!

importation phenomena:
τὸ in Latin (Spinoza: “τὸ ens”), “par excellence” in English;
object-oriented programming in Common Lisp and PHP, C++
as a C with classes...

living languages: Perl 1.0 (1987), Perl 2.0 (1988), Perl 3
(1989), Perl 5 (1994), Perl 6 (since 2000)...
dead or zombie languages (when they have no speaker
anymore, and stopped their evolution): B, Smalltalk...

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Historical aspects

Historical aspects:
etymology:

terms used in programming language do not always have a
meaning in themselves, but can allude to former languages:

the C-like syntax of C++, Java...
even the lambda word for anonymous functions in Lisp and
Python!

importation phenomena:
τὸ in Latin (Spinoza: “τὸ ens”), “par excellence” in English;
object-oriented programming in Common Lisp and PHP, C++
as a C with classes...

living languages: Perl 1.0 (1987), Perl 2.0 (1988), Perl 3
(1989), Perl 5 (1994), Perl 6 (since 2000)...
dead or zombie languages (when they have no speaker
anymore, and stopped their evolution): B, Smalltalk...

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Historical aspects

Historical aspects:
etymology:

terms used in programming language do not always have a
meaning in themselves, but can allude to former languages:

the C-like syntax of C++, Java...
even the lambda word for anonymous functions in Lisp and
Python!

importation phenomena:
τὸ in Latin (Spinoza: “τὸ ens”), “par excellence” in English;
object-oriented programming in Common Lisp and PHP, C++
as a C with classes...

living languages: Perl 1.0 (1987), Perl 2.0 (1988), Perl 3
(1989), Perl 5 (1994), Perl 6 (since 2000)...
dead or zombie languages (when they have no speaker
anymore, and stopped their evolution): B, Smalltalk...

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Historical aspects

Historical aspects:
etymology:

terms used in programming language do not always have a
meaning in themselves, but can allude to former languages:

the C-like syntax of C++, Java...
even the lambda word for anonymous functions in Lisp and
Python!

importation phenomena:
τὸ in Latin (Spinoza: “τὸ ens”), “par excellence” in English;
object-oriented programming in Common Lisp and PHP, C++
as a C with classes...

living languages: Perl 1.0 (1987), Perl 2.0 (1988), Perl 3
(1989), Perl 5 (1994), Perl 6 (since 2000)...
dead or zombie languages (when they have no speaker
anymore, and stopped their evolution): B, Smalltalk...

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Stylistics aspects

Stylistics aspects:

normative grammar:
avoid GOTOs and spaghetti code;
use comments, empty lines and spaces;
compiler Warnings (gcc -Wall -pedantic)
elegance of algorithms (whatever be their complexity);
books of recommendations: Beautiful Code (A. Oram and G.
Wilson), Programming Pearls (J. L. Bentley)...

the natural ontologies of programming languages:
ontology of pure transformations in functional programming;
animism of object-oriented programming;
...

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Stylistics aspects

Stylistics aspects:

normative grammar:
avoid GOTOs and spaghetti code;
use comments, empty lines and spaces;
compiler Warnings (gcc -Wall -pedantic)
elegance of algorithms (whatever be their complexity);
books of recommendations: Beautiful Code (A. Oram and G.
Wilson), Programming Pearls (J. L. Bentley)...

the natural ontologies of programming languages:
ontology of pure transformations in functional programming;
animism of object-oriented programming;
...

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Stylistics aspects

Stylistics aspects:

normative grammar:
avoid GOTOs and spaghetti code;
use comments, empty lines and spaces;
compiler Warnings (gcc -Wall -pedantic)
elegance of algorithms (whatever be their complexity);
books of recommendations: Beautiful Code (A. Oram and G.
Wilson), Programming Pearls (J. L. Bentley)...

the natural ontologies of programming languages:
ontology of pure transformations in functional programming;
animism of object-oriented programming;
...

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Stylistic aspects

... and even literature!
L. Spitzer 1948:

Now, since the best document of the soul of a nation
is its literature, and since the latter is nothing but its
language as this is written down by elect speakers,
can we perhaps not hope to grasp the spirit of a
nation in the language of its outstanding works of
literature?

What would be epic poetry for programming languages?
Operating systems! Big source codes which define all the
ontology of the machine with which the user will interact:
notions of process, file, kernel...

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Stylistic aspects

... and even literature!
L. Spitzer 1948:

Now, since the best document of the soul of a nation
is its literature, and since the latter is nothing but its
language as this is written down by elect speakers,
can we perhaps not hope to grasp the spirit of a
nation in the language of its outstanding works of
literature?

What would be epic poetry for programming languages?
Operating systems! Big source codes which define all the
ontology of the machine with which the user will interact:
notions of process, file, kernel...

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Stylistic aspects

... and even literature!
L. Spitzer 1948:

Now, since the best document of the soul of a nation
is its literature, and since the latter is nothing but its
language as this is written down by elect speakers,
can we perhaps not hope to grasp the spirit of a
nation in the language of its outstanding works of
literature?

What would be epic poetry for programming languages?
Operating systems! Big source codes which define all the
ontology of the machine with which the user will interact:
notions of process, file, kernel...

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Philosophers of mathematics are not afraid of reading
mathematical texts.
Philosophers of computer science should not be afraid of
reading source codes.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Chomsky’s formalization of natural languages
Expressiveness
Levels of abstraction
Philological aspects

Philosophers of mathematics are not afraid of reading
mathematical texts.
Philosophers of computer science should not be afraid of
reading source codes.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Conclusion

Are real-life programming languages failed theoretical
languages? = Are horses failed unicorns?
Theoretical programming languages deliberately miss some
features of real-life programming languages.
Even formal tools such as expressiveness do not capture all of
them.
By contrast, some linguistic concepts (etymology, normative
grammar, importation, literature...) can help describing them.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Conclusion

Are real-life programming languages failed theoretical
languages? = Are horses failed unicorns?
Theoretical programming languages deliberately miss some
features of real-life programming languages.
Even formal tools such as expressiveness do not capture all of
them.
By contrast, some linguistic concepts (etymology, normative
grammar, importation, literature...) can help describing them.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Conclusion

Are real-life programming languages failed theoretical
languages? = Are horses failed unicorns?
Theoretical programming languages deliberately miss some
features of real-life programming languages.
Even formal tools such as expressiveness do not capture all of
them.
By contrast, some linguistic concepts (etymology, normative
grammar, importation, literature...) can help describing them.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Conclusion

Are real-life programming languages failed theoretical
languages? = Are horses failed unicorns?
Theoretical programming languages deliberately miss some
features of real-life programming languages.
Even formal tools such as expressiveness do not capture all of
them.
By contrast, some linguistic concepts (etymology, normative
grammar, importation, literature...) can help describing them.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Conclusion

Just like recent philosophy of mathematics, the philosophy of
programming languages can describe the gap which sometimes
appears between foundations and practices.
This can even retrospectively show us some hidden properties
of theoretical programming languages, for there is a practice of
foundations.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Conclusion

Just like recent philosophy of mathematics, the philosophy of
programming languages can describe the gap which sometimes
appears between foundations and practices.
This can even retrospectively show us some hidden properties
of theoretical programming languages, for there is a practice of
foundations.

Baptiste Mélès Philology of Programming Languages



Introduction
Theoretical programming languages

Real-life programming languages
Philology of programming languages

Conclusion

Bibliography

N. Chomsky 1957, Syntactic Structures.
G. Dowek and J.-J. Lévy 2006, Introduction à la théorie des
langages de programmation.
M. Felleisen 1990, “On the Expressive Power of PLs”.
Kernighan & Ritchie 1978, The C Programming Language.
J. Mitchell 1991, “On Abstraction and the Expressive Power of
PLs”.
P. Rechenberg 1990, “PLs as Thought Models”.
L. Spitzer 1948, “Linguistics and Literary History”.
B. Stroustrup 2000, The C++ Programming Language.
L. Wall et al. 1991, Programming Perl.
G. White 2008, “The Philosophy of Computer Languages”.

Baptiste Mélès Philology of Programming Languages


	Introduction
	Theoretical vs. real-life programming languages
	The compilation fallacy

	Theoretical programming languages
	No syntactic irregularity
	No expletiveness
	No redundancy
	No historical residues
	Learning by concepts

	Real-life programming languages
	Syntactic irregularity
	Expletiveness
	Redundancies
	Historical residues
	Learning by practice

	Philology of programming languages
	Chomsky's formalization of natural languages
	Expressiveness
	Levels of abstraction
	Philological aspects

	Conclusion

