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Searching critical values for floating-point programs ⋆

Programs with floating-point computations are often derived from mathematical models or designed with the semantics of the real numbers in mind. However, for a given input, the computed path with floating-point numbers may significantly differ from the path corresponding to the same computation with real numbers. As a consequence, developers do not know whether the program can actually produce very unexpected outputs. We introduce here a new constraint-based approach that searches for test cases in the part of the over-approximation where errors due to floating-point arithmetic could lead to unexpected decisions.

Introduction

In numerous applications, programs with floating-point computations are derived from mathematical models over the real numbers. However, computations on floating-point numbers are different from calculations in an idealised semantics1 of real numbers [START_REF] Goldberg | What every computer scientist should know about floating point arithmetic[END_REF]. For some values of the input variables, the result of a sequence of operations over the floating-point numbers can be significantly different from the result of the corresponding mathematical operations over the real numbers. As a consequence, the computed path with floating-point numbers may differ from the path corresponding to the same computation with real numbers. This can entail wrong outputs and dangerous decisions of critical systems. That's why identifying these values is a crucial issue for programs controlling critical systems.

Abstract interpretation based error analysis [START_REF] Chen | A sound floating-point polyhedra abstract domain[END_REF] of finite precision implementations computes an over-approximation of the errors due to floating-point operations. The point is that state-of-the-art tools [START_REF] Delmas | Towards an industrial use of FLUCTUAT on safety-critical avionics software[END_REF] may generate numerous false alarms. In [START_REF] Ponsini | Verifying floating-point programs with constraint programming and abstract interpretation techniques[END_REF], we introduced a hybrid approach combining abstract interpretation and constraint programming techniques that reduces the number of false alarms. However, the remaining false alarms are very embarrassing since we cannot know whether the predicted unstable behaviors will occur with actual data.

More formally, consider a program P , a set of intervals I defining the expected input values of P , and an output variable x of P on which depend critical decisions, e.g., activating an anti-lock braking system. Let [x R , x R ] be a sharp approximation over the set of real numbers R of the domain of variable x for any input of P . [x F , x F ] stands for the domain of variable x in the over-approximation computed over the set of floating-point F for input values of I. The range [x R , x R ] can be determined by calculation or from physical limits. It includes a small tolerance to take into account approximation errors, e.g. measurement, statistical, or even floating-point arithmetic errors. This tolerance -specified by the userdefines an acceptable loss of accuracy between the value computed over the floating-point numbers and the value calculated over the real numbers. Values outside the interval [x R , x R ] can lead a program to misbehave, e.g. take a wrong branch in the control flow.

The problem we address in this paper consists of verifying whether there exist critical values in I for which the program can actually produce a result value of x inside the suspicious intervals [x F , x R ) and (x R , x F ]. To handle this problem, we introduce a new constraint-based approach that searches for test cases that hit the suspicious intervals in programs with floating-point computations. In other words, our framework reduces this test case generation problem to a constraint-solving problem over the floating-point numbers where the domain of a critical decision variable has been shrunk to a suspicious interval. A constraint solver -based on filtering techniques designed to handle constraints over floating-point numbers-is used to search values for the input data. Preliminary results of experiments on small programs with classical floating-point errors are encouraging.

The CPBPV FP, the system we developed, outperforms generate and test methods for programs with more than one input variable. Moreover, these search strategies can prove in many cases that no critical value exists.

Motivating example

Before going into the details, we illustrate our approach on a small example. Assume we want to compute the area of a triangle from the lengths of its sides a, b, and c with Heron's formula:

s * (s -a) * (s -b) * (s -c)
where s = (a + b + c)/2. The C program in Fig. 1 implements this formula, when a is the longest side of the triangle.

The test of line 5 ensures that the given lengths form a valid triangle. Now, suppose that the input domains are a ∈ [5, 10] and b, c ∈ [0, 5]. Over the real numbers, s is greater than any of the sides of the triangle and squared_area cannot be negative. Moreover, squared_area cannot be greater than 156.25 over the real numbers since the triangle area is maximized for a right triangle with Tools performing value analysis over the floating-point numbers [START_REF] Delmas | Towards an industrial use of FLUCTUAT on safety-critical avionics software[END_REF][START_REF] Ponsini | Refining abstract interpretation based value analysis with constraint programming techniques[END_REF] approximate the domain of squared_area to the interval [-1262.21, 979.01]. Since this domain is an over-approximation, we do not know whether input values leading to squared_area < 0 or squared_area > 156.25 actually exist. Note that input domains -here a ∈ [5,10] and b, c ∈ [0,5]-are usually provided by the user.

Assume the value of the tolerance3 ε is 10 -5 , the suspicious intervals for squared_area are [-1262.21, -10 -5 ) and (156.25001, 979.01]. CPBPV FP, the system we developed, generated test cases for both intervals: CPBPV FP could also prove the absence of test cases for a tolerance ε = 10 -3 with squared_area > 156.25 + ε.

In order to limit the loss of accuracy due to cancellation [START_REF] Goldberg | What every computer scientist should know about floating point arithmetic[END_REF], line 7 of Heron's program can be rewritten as follows:

squared_area = ((a+(b+c))*(c-(a-b))*(c+(a-b))*(a+(b-c)))/16.0f;
However, there are still some problems with this optimized program. Indeed, CPBPV FP found the test case a = 7.0755463, b = 4.350216, c = 2.72533, and squared_area equals -1.0000001•10 -5 for interval [-1262.21, -10 -5 ) of squared_area. There are no more problems in the interval (156.25001, 979.01] and CPBPV FP did prove it. This section details the framework we designed to generate test cases reaching suspicious intervals for a variable x in a program P with floating-point computations.

The kernel of our framework is FPCS [14, 13, 1, 12], a solver for constraints over the floating-point numbers; that's to say a symbolic execution approach for floating-point problems which combines interval propagation with explicit search for satisfiable floating-point assignments. FPCS is used inside the CPBPV bounded model checking framework [START_REF] Collavizza | A constraintprogramming framework for bounded program verification[END_REF]. CPBPV FP is the adaptation of CPBPV for generating test cases that hit the suspicious intervals in programs floating-point computations.

The inputs of CPBPV FP are: P , an annotated program; a critical test ct for variable x; [x F , x R ) or (x R , x F ], a suspicious interval for x. Annotations of P specify the range of the input variables of P as well as the suspicious interval for x. The latter assertion is just posted before the critical test ct.

To compute the suspicious interval for x, we approximate the domain of x over the real numbers by [x R , x R ], and over the floating-point numbers by [x F , x F ]. These approximations are computed with rAiCp [16], a hybrid system that combines abstract interpretation and constraint programming techniques in a single static and automatic analysis. The current implementation of rAiCp is based upon the abstract interpreter Fluctuat [START_REF] Delmas | Towards an industrial use of FLUCTUAT on safety-critical avionics software[END_REF], the constraint solver over the reals RealPaver [START_REF] Granvilliers | Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques[END_REF] and FPCS. The suspicious intervals for variable

x are denoted [x F , x R ) and (x R , x F ].
CPBPV FP performs first some pre-processing: P is transformed into DSAlike form 4 . If the program contains loops, CPBPV FP unfolds loops k times where k is a user specified constant. Loops are handled in CPBPV and rAiCp with standard unfolding and abstraction techniques 5 . So, there are no more loops in the program when we start the constraint generation process. Standard slicing operations are also performed to reduce the size of the control flow graph.

In a second step, CPBPV FP searches for executable paths reaching ct. For each of these paths, the collected constraints are sent to FPCS, which solves the corresponding constraint systems over the floating point numbers. FPCS returns either a satisfiable instantiation of the input variables of P , or ∅. As said before, FPCS [14, 13, 1, 12] is a constraint solver designed to solve a set of constraints over floating-point numbers without losing any solution. It uses 2Bconsistency along with projection functions adapted to floating-point arithmetic [START_REF] Michel | Exact projection functions for floating-point number constraints[END_REF][START_REF] Botella | Symbolic execution of floating-point computations[END_REF] to filter constraints over the floating-point numbers. FPCS also provides stronger consistencies like kB-consistencies, which allow better filtering results.

The search of solutions in constraint systems over floating numbers is trickier than the standard bisection-based search in constraint systems over intervals of CPBPV FP ends up with one of the following results:

a test case proving that P can produce a suspicious value for x; -a proof that no test case reaching the suspicious interval can be generated: this is the case if the loops in P cannot be unfolded beyond the bound k (See [START_REF] Collavizza | A constraintprogramming framework for bounded program verification[END_REF] for details on bounded unfolding) ; -an inconclusive answer: no test case could be generated but the loops in P could be unfolded beyond the bound k. In other words, the process is incomplete and we cannot conclude whether P may produce a suspicious value.

Preliminary experiments

We experimented with CPBPV FP on six small programs with cancellation and absorption phenomena, two very common pitfalls of floating-point arithmetic.

The benchmarks are listed in the first two columns of table 1. First two benchmarks concern the heron program and the optimized heron program with the suspicious intervals described in the section 1.

Program slope (see Fig. 2) approximates the derivative of the square function f (x) = x 2 at a given point x 0 . More precisely, it computes the slope of a nearby secant line with a finite difference quotient:

f ′ (x 0 ) ≈ f (x0+h)-f (x0-h) 2h
. Over the real numbers, the smaller h is, the more accurate the formula is. For this function, the derivative is given by f ′ (x) = 2x which yields exactly 26 for x = 13. Over the floats, Fluctuat [START_REF] Delmas | Towards an industrial use of FLUCTUAT on safety-critical avionics software[END_REF] approximates the return value of the slope program to the interval [0, 25943] when h ∈ [10 -6 , 10 -3 ] and x 0 = 13.

Program polynomial in Fig. 3 illustrates an absorption phenomenon. It computes the polynomial (a 2 +b+10 -5 ) * c. For input domains a ∈ [10 3 , 10 4 ], b ∈ [0, 1] and c ∈ [10 3 , 10 4 ], the minimum value of the polynomial over the real numbers is equal to 1000000000.01.

simple interpolator and simple square are two benches extracted from [START_REF] Goubault | Robustness analysis of finite precision implementations[END_REF]. The first bench computes an interpolator, affine by sub-intervals while the second is a rewrite of a square root function used in an industrial context.

All experiments were done on an Intel Core 2 Duo at 2.8 GHz with 4 GB of memory running 64-bit Linux. We assume C programs handling IEEE 754 compliant floating-point arithmetic, intended to be compiled with GCC without any optimization option and run on a x86 64 architecture managed by a 64bit Linux operating system. Rounding mode was to the nearest, i.e., where ties round to the nearest even digit in the required position.

Strategies and solvers

We run CPBPV FP with the following search strategies for the FPCS solver:

std: standard prune & bisection-based search used in constraint-systems over intervals : splits the selected variable domain in two domains of equal size; fpc: splits the domain of the selected variable in five intervals:

• Three degenerated intervals containing only a single floating point number: the smallest float l, the largest float r, and the mid-point m; • Two open intervals (l, m) and (m, r); -fp3s: selects 3 degenerated intervals containing only a single floating point number: the smallest float l, the largest float r, and the mid-point m. Hence, fp3s is an incomplete method that might miss some solutions.

For all these strategies, we select first the variables with the largest domain and we perform a 3B-consistency filtering step before starting the splitting process.

We compared CPBPV FP with CBMC [START_REF] Clarke | A tool for checking ANSI-C programs[END_REF] and CDFL [START_REF] Vijay | Numeric bounds analysis with conflict-driven learning[END_REF], two state-of-theart software bounded model checkers based on SAT solvers that are able to deal with floating-point computations. We also run a simple generate & test strategy: the program is run with randomly generated input values and we test whether the result is inside the suspicious interval. The process is stopped as soon as a test case hitting the suspicious interval is found.

Results

Table 1 reports the results for the other strategies and solvers. Since strategy fpc3s is incomplete, we indicate whether a test case was found or not. Column s? specifies whether a test case actually exists. Note that the computation times of CBMC and CDFL include the pre-processing time for generating the constraint systems; the pre-processing time required by CPBPV is around 0.6s but CPBPV is a non-optimised system written in java. Strategy fpc is definitely the most efficient and most robust one on all these benchmarks. Note that CBMC and CDFL could neither handle the initial, nor the optimized version of program heron in a timeout of 20 minutes whereas FPCS found solutions in a reasonable time.

Name

These preliminary results are very encouraging: they show that CPBPV FP is effective for generating test cases for suspicious values outside the range of acceptable values on small programs with classical floating-point errors. More importantly, a strong point of CPBPV FP is definitely its refutation capabilities.

Of course, experiments on more significant benchmarks and on real applications are still necessary to evaluate the full capabilities and limits of CPBPV FP.

Related and further work

The goals of software bounded model checkers based on SAT solvers are close to our approach. The point is that SAT solvers tend to be inefficient on these problems due to the size of the domains of floating-point variables and the cost of bit-vector operations [START_REF] Vijay | Numeric bounds analysis with conflict-driven learning[END_REF]. CDFL [START_REF] Vijay | Numeric bounds analysis with conflict-driven learning[END_REF] tries to address this issue by embedding an abstract domain in the conflict driven clause learning algorithm of a SAT solver. SAT solvers often use bitwise representations of numerical operations, which may be very expensive (e.g., thousands of variables for one equation in CDFL). Brain and al [START_REF] Haller | Deciding floating-point logic with systematic abstraction[END_REF][START_REF] Brain | Interpolation-based verification of floating-point programs with abstract cdcl[END_REF] have recently introduced a bit-precise decision procedure for the theory of floating-point arithmetic. The core of their approach is a generalization of the conflict-driven clause-learning algorithm used in modern SAT solvers. Their technique is significantly faster than a bit-vector encoding approach. Note that the constraint programming techniques used in our approach are better suited to generate several test cases than these SAT-based approaches. The advantage of CP is that it provides a uniform framework for representing and handling integers, real numbers and floats. A new abstract-interpretation based robustness analysis of finite precision implementations has recently been proposed [START_REF] Goubault | Robustness analysis of finite precision implementations[END_REF] for sound rounding error propagation in a given path in presence of unstable tests.

A close connection between our floating-point solvers and the two abovementioned approaches is certainly worth exploring.

A second direction for further work concerns the integration of our constraintbased approach with new abstract-interpretation based robustness analysis of finite precision implementations for sound rounding error propagation in a given path in presence of unstable tests.
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 1 Results of the different solvers and strategies on the benchmarksThe generate & test strategy behaves quite well on programs with only one input variable when a test case exists but it is unable to find any test case for programs with more than one input variable. More precisely, it found a test case in less than 0.008s for the 6 suspicious intervals of program slope and for program simple_interpolator. The generate & test strategy failed to find a test within 180s in all other cases.Of course, this strategy cannot show that there is no test case reaching the suspicious interval; so, it is of little interest here.

			Condition	CDFL CBMC	std	fpc	fpc3s s?
	heron		area < 10 -5	3.874s 0.280s > 180 0.705 0.022 (n) y
			area > 156.25 + 10 -5 > 180s 34.512s 22.323 7.804 0.083 (n) y
	optimized_heron	area < 10 -5	7.618s 0.932s > 180 0.148 0.022 (n) y
			area > 156.25 + 10 -5 > 180s > 180s 8.988 30.477 0.101 (n) n
	slope with	dh < 26.0 -1.0	2.014s 1.548s 0.021 0.012 0.012 (y) y
	h ∈ [10 -6 , 10 -3 ]	dh > 26.0 + 1.0	1.599s 0.653s 0.055 0.011 0.011 (y) y
			dh < 26.0 -10.0	0.715s 1.108s 0.006 0.006 0.007 (n) n
			dh > 26.0 + 10.0	1.025s 1.080s 0.006 0.006 0.006 (n) n
	polynomial	r < 10 9 +	0.170s 0.295s 0.022 0.006 0.006 (y) y
			0.0099999904 -10 -3		
	simple_interpolator res < -10 -5	0.296s 0.264s 0.018 0.012 0.012 (y) y
	simple_square	S > 1.453125	--1.079s 0.012 0.012 0.012 (n) n
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That's to say, computations as close as possible to the mathematical semantics of the real numbers; for instance, computations with arbitrary precision or computer algebra systems.

Let's remind that absorption in an addition occurs when adding two numbers of very different order of magnitude, and the result is the value of the biggest number, i.e., when x + y with y = 0 yields x. Cancellation occurs in sa when s is so close to a that the subtraction cancels most of the significant digits of s and a.

Note that even this small tolerance may lead to an exception in statement 9.

DSA stands for Dynamic Single Assignment. In DSA-like form, all variables are assigned exactly once in each execution path

In bounded model checking, k is usually increased until a counter-example is found or until the number of time units is large enough for the application.
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