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Abstract. Programs with floating-point computations are often derived
from mathematical models or designed with the semantics of the real
numbers in mind. However, for a given input, the computed path with
floating-point numbers may differ from the path corresponding to the
same computation with real numbers. A common practice when validat-
ing such programs consists in estimating the accuracy of floating-point
computations with respect to the same sequence of operations in an ide-
alized semantics of real numbers. However, state-of-the-art tools compute
an over-approximation of the error introduced by floating-point opera-
tions. As a consequence, totally inappropriate behaviors of a program
may be dreaded but the developer does not know whether these be-
haviors will actually occur, or not. In this paper, we introduce a new
constraint-based approach that searches for test cases in the part of the
over-approximation where errors due to floating-point arithmetic would
lead to inappropriate behaviors.

1 Introduction

In numerous applications, programs with floating-point computations are de-
rived from mathematical models over the real numbers. However, computations
on floating-point numbers are different from calculations in an idealized seman-
tics1 of real numbers [9]. For some values of the input variables, the result of
a sequence of operations over the floating-point numbers can be significantly
different from the result of the corresponding mathematical operations over the
real numbers. As a consequence, the computed path with floating-point numbers
may differ from the path corresponding to the same computation with real num-
bers. This can entail wrong and dangerous behaviors of critical systems. That’s
why identifying these values is a crucial issue for programs controlling critical
systems.

⋆ This work was partially supported by ANR VACSIM (ANR-11-INSE-0004), ANR
AEOLUS (ANR-10-SEGI-0013), and OSEO ISI PAJERO projects.

1 That’s to say, computations as close as possible to the mathematical semantics of
the real numbers; for instance, computations with arbitrary precision or computer
algebra systems.
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Fig. 1. Suspicious Intervals in Floating-Point Number Programs

Abstract interpretation based error analysis [4, 7] of finite precision imple-
mentations compute an over-approximation of the errors due to floating-point
operations2. The point is that state-of-the-art tools [4, 7, 10] compute an over-
approximation of the error introduced by floating-point operations. In [16, 17],
we have introduced a hybrid approach combining abstract interpretation and
constraint programming techniques that reduces the number of false alarms.
However, the remaining false alarms are very embarrassing: inappropriate be-
haviors of a programmay be dreaded but we can not know whether the predicted
unstable behaviors will occur with actual data. This problem is depicted in Fig. 1
where:
– [x

R
, xR] stands for the domain of variable x over R, the set of real numbers;

– [x
F
, xF] stands for the domain of variable x in the over-approximation com-

puted over F, the set of floating-point numbers.

In practice, the range of a sequence of operations over the real numbers can
be determined, whether by calculation or from physical limits. A tolerance ε
around this range is usually accepted to take into account approximation er-
rors, e.g. measurement, statistical, or even floating-point arithmetic errors. In
other words, this tolerance – specified by the user– defines an acceptable loss
of accuracy between the value computed over the floating-point numbers and
the value calculated over the real numbers. However, values outside the interval
[x

R
− ε, xR + ε] can lead a program to misbehave, e.g. take a wrong branch in

the control flow. The values of the approximation over F that intersect with the
forbidden interval are what we call a suspicious interval.

The problem we address in this paper consists in verifying whether a pro-
gram can actually produce values inside the suspicious intervals [x

F
, x

R
− ε) and

(xR + ε, xF]. To handle this problem, we introduce a new constraint-based ap-
proach that searches for test cases that hit the suspicious intervals in programs
with floating-point computations. Broadly speaking, our framework reduces this
test case generation problem to a constraint-solving problem over the floating-
point numbers where the domain of a critical decision variable has been shrunk
to a suspicious interval. If no test case can be generated, the suspicious interval
can be discarded.
A constraint solver –based on filtering techniques designed to handle constraints
over floating-point numbers– is used to search values for the input data. Pre-
liminary results of experiments on small programs with classical floating-point
errors are very encouraging.

2 Note that only very recent approaches [10] compute sound error bounds in presence
of unstable tests.



1 /∗ Pre−condition : a ≥ b and a ≥ c ∗/
2 float heron(float a, float b, float c) {

3 float s, squared_area;

4 squared_area = 0.0f;

5 if (a <= b + c) {

6 s = (a + b + c) / 2.0f;

7 squared_area = s*(s-a)*(s-b)*(s-c);

8 }

9 return sqrt(squared_area);

10 }

Fig. 2. Heron

Before going into the details, we illustrate our approach on a small example.
Assume we want to compute the area of a triangle from the lengths of its sides
a, b, and c with Heron’s formula:

√

s ∗ (s− a) ∗ (s− b) ∗ (s− c) where s = (a+
b+c)/2. The C program in Fig. 2 implements this formula, when a is the longest
side of the triangle.

The test of line 5 ensures that the given lengths form a valid triangle.
Now, suppose that the input domains are a ∈ [5, 10] and b, c ∈ [0, 5]. Over the

real numbers, s is greater than any of the sides of the triangle and squared_area

cannot be negative. Moreover, squared_area cannot be greater than 156.25 over
the real numbers since the triangle area is maximized for a right triangle with
b = c = 5 and a = 5

√
2. However, these properties may not hold over the floating-

point numbers because absorption and cancellation phenomena can occur3.
Tools performing value analysis over the floating-point numbers [7, 16] ap-

proximate the domain of squared_area to the interval [−1262.21, 979.01]. Since
this domain is an over-approximation, we do not know whether input values
leading to squared_area < 0 or squared_area > 156.25 actually exist. Note that
input domains –here a ∈ [5,10] and b, c ∈ [0,5]– are usually provided by the user.

Assume the value of the tolerance4 ε is 10−5, the suspicious intervals for
squared_area are [−1262.21,−10−5) and (156.25001, 979.01]. CPBPV FP, the
system we developed, generated test cases for both intervals:
– a = 5.517474, b = 4.7105823, c = 0.8068917, and squared_area equals

−1.0000001 · 10−5;
– a = 7.072597, b = c = 5, and squared_area equals 156.25003.

CPBPV FP could also prove the absence of test cases for a tolerance ε =
10−3 with squared_area > 156.25 + ε.

In order to limit the loss of accuracy due to cancellation [9], ligne 7 of Heron’s
program can be rewritten as folows:
3 Let’s remind that absorption in an addition occurs when adding two numbers of very
different orders of magnitude, and the result is the value of the biggest number, i.e.,
when x+ y with y 6= 0 yields x. Cancellation occurs in s− a when s is so close to a

that the subtraction cancels most of the significant digits of the result.
4 Note that even this small tolerance may lead to an exception in statement 9.



squared_area = ((a+(b+c))*(c-(a-b))*(c+(a-b))*(a+(b-c)))/16.0f;

However, there are still some problems with this optimized program. Indeed,
CPBPV FP found the test case a = 7.0755463, b = 4.350216, c = 2.72533, and
squared_area equals −1.0000001·10−5 for interval [−1262.21,−10−5) of squared_
area. There are no more problems in the interval (156.25001, 979.01] as it was
proven by CPBPV FP.

2 Framework for generating test cases

This section details the framework we designed to generate test cases reaching
suspicious intervals for a variable x in a program P with floating-point compu-
tations.

The kernel of our framework is FPCS [15, 14, 2, 13], a constraint solver over
floating-point constraints; that’s to say a symbolic execution approach for floating-
point problems which combines interval propagation with explicit search for sat-
isfiable floating-point assignments. FPCS is used inside the CPBPV bounded
model checking framework [6]. We call CPBPV FP the adaptation of CPBPV

for generating test cases that hit the suspicious intervals in programs with
floating-point computations.

The inputs of CPBPV FP are: P , an annotated program; a critical test ct
for variable x; [x

F
, x

R
−ε) or (xR+ε, xF], a suspicious interval for x. Annotations of

P specify the range of the input variables of P as well as the suspicious interval
for x. The latter assertion is just posted before the critical test ct.

To compute the suspicious interval for x, we approximate the domain of
x over the real numbers by [x

R
, xR], and over the floating-point numbers by

[x
F
, xF]. These approximations are computed with rAiCp [16], a hybrid system

that combines abstract interpretation and constraint programming techniques
in a single static and automatic analysis. The current implementation of rAiCp

is based upon Fluctuat [7], RealPaver [11] and FPCS. So, the suspicious
intervals for x are [x

F
, x

R
− ε) and (xR + ε, xF], where ε is a tolerance specified by

the user.
CPBPV FP performs first some pre-processing: P is transformed into DSA-

like form5. If the program contains loops, CPBPV FP unfolds loops k times
where k is a user specified constant. Loops are handled in CPBPV and rAiCp

with standard unfolding and abstraction techniques. So, there are no more loops
in the program when we start the constraint generation process. Standard slicing
operations are also performed to reduce the size of the control flow graph.

In a second step, CPBPV FP searches for executable paths reaching ct. For
each of these paths, the collected constraints are sent to FPCS, which solves
the corresponding constraint systems over the floating point numbers. FPCS

returns either a satisfiable instantiation of the input variables of P or ∅.
5 DSA stands for Dynamic Single Assignment. In DSA-like form, all variables are
assigned exactly once in each execution path. In bounded model checking k is usually
incremented until a counterexample is found or until the number of time units is
large enough for the application.



As said before, FPCS [15, 14, 2, 13] is a constraint solver designed to solve a
set of constraints over floating-point numbers without losing any solution. It
uses 2B-consistency along with projection functions adapted to floating-point
arithmetic [14, 2] to filter constraints over the floating-point numbers. FPCS

provides also stronger consistencies like kB-consistencies, which allow better
filtering results. FPCS allows one to reason correctly over the floating-point
numbers with respect to the floating-point arithmetic.

The search of solutions in constraint systems over floating numbers is more
tricky than the standard bisection-based search in constraint systems over in-
tervals of real numbers. Thus, we have also implemented different strategies
combining selection of specific points and pruning. Details on theses strategies
are given in the experiments section.

CPBPV FP ends up with one of the following results:

– a test case proving that P can produce a suspicious value for x;

– a proof that no test case reaching the suspicious interval can be generated:
this is the case if the loops in P cannot be unfolded beyond the bound k
(See [6] for details on bounded unfoldings) ;

– an inconclusive answer: no test case could be generated but the loops in
P could be unfolded beyond the bound k. In other words, the process is
incomplete and we cannot conclude whether P may produce a suspicious
value.

3 Preliminary experiments

We experimented with CPBPV FP on six small programs with cancellation and
absorption phenomena, two very common pitfalls of floating-point arithmetic.
The benchmarks are listed in the two first columns of table 1.

The first two benchmarks concern the heron program and the optimized

heron program with the suspicious intervals described in the section 1.

Program slope (see Fig. 3) approximates the derivative of the square function
f(x) = x2 at a given point x0. More precisely, it computes the slope of a nearby

secant line with a finite difference quotient: f ′(x0) ≈ f(x0+h)−f(x0−h)
2h . Over the

real numbers, the smaller h is, the more accurate the formula is. For this function,
the derivative is given by f ′(x) = 2x which yields exactly 26 for x = 13. Over
the floats, Fluctuat [7] approximates the return value of the slope program to
the interval [0, 25943] when h ∈ [10−6, 10−3] and x0 = 13.

Program polynomial in Fig. 4 illustrates an absorption phenomeno. It com-
putes the polynomial (a2+b+10−5)∗c. For input domains a ∈ [103, 104], b ∈ [0, 1]
and c ∈ [103, 104], the minimum value of the polynomial over the real numbers
is equal to 1000000000.01.

simple interpolator and simple square are two benchmarks extracted
from [10]. The first benchmark computes an interpolator, affine by sub-intervals
while the second is a rewrite of a square root function used in an industrial
context.



float slope(float x0, float h) {

float x1 = x0 + h; float x2 = x0 - h;

float fx1 = x1*x1; float fx2 = x2*x2;

float res = (fx1 - fx2) / (2.0*h);

return res;

}

Fig. 3. Approximation of the derivative of x2 by a slope

float polynomial(float a, float b, float c) {

float poly = (a*a + b + 1e-5f) * c;

return poly;

}

Fig. 4. Computation of polynomial (a2 + b+ 10−5) ∗ c

All experiments were done on an Intel Core 2 Duo at 2.8 GHz with 4 GB
of memory running 64-bit Linux. We assume C programs handling IEEE 754
compliant floating-point arithmetic, intended to be compiled with GCC without
any optimization option and run on an x86 64 architecture managed by a 64-
bit Linux operating system. Rounding mode was to the nearest, i.e., where ties
round to the nearest even digit in the required position.

3.1 Strategies and solvers

We run CPBPV FP with the following search strategies for the FPCS solver:

– std: standard prune & bisection-based search used in constraint-systems
over intervals : we split the domain of the selected variable in two domains
of equal size;

– fpc: we split the domain of the selected variable in five intervals:

• 3 degenerated intervals containing only a single floating point number:
the smallest float l, the largest float r, and the mid-point m;

• open interval (l,m);
• open interval (m, r);

– fp3s: we select 3 degenerated intervals containing only a single floating point
number: the smallest float l, the largest float r, and the mid-point m.

For all these strategies, we select first the variables with the largest domain
and we perform after a 3B−consistency filtering step before starting the splitting
process.

We compared CPBPV FP with CBMC [5] and CDFL [8], two state-of-the-
art software bounded model checkers based on SAT solvers that are able to deal
with floating-point computations. We also run a simple generate & test strategy:
the program is run with randomly generated input values and we test whether
the result is inside the suspicious interval. The process is stopped as soon as a
test case hitting the suspicious interval is found.



Name Condition CDFL CBMC std fpc fpc3s s?

heron area < 10−5 3.874s 0.280s > 180 0.705 0.022 (n) y
area > 156.25 + 10−5 > 180s 34.512s 22.323 7.804 0.083 (n) y

optimized heron area < 10−5 7.618s 0.932s > 180 0.148 0.022 (n) y
area > 156.25 + 10−5 > 180s > 180s 8.988 30.477 0.101 (n) n

slope with dh < 26.0 − 1.0 2.014s 1.548s 0.021 0.012 0.012 (y) y
h ∈ [10−6, 10−3] dh > 26.0 + 1.0 1.599s 0.653s 0.055 0.011 0.011 (y) y

dh < 26.0 − 10.0 0.715s 1.108s 0.006 0.006 0.007 (n) n
dh > 26.0 + 10.0 1.025s 1.080s 0.006 0.006 0.006 (n) n

slope with dh < 26.0 − 1.0 0.299s 0.241s 0.013 0.007 0.007 (y) y
h ∈ [10−9, 10−6] dh > 26.0 + 1.0 0.333s 0.246s 0.015 0.007 0.007 (y) y

dh < 26.0 − 10.0 0.291s 0.224s 0.013 0.007 0.007 (y) y
dh > 26.0 + 10.0 0.342s 0.436s 0.016 0.007 0.007 (y) y

polynomial r < 109+ 0.170s 0.295s 0.022 0.006 0.006 (y) y
0.0099999904 − 10−3

simple res < −10−5 0.296s 0.264s 0.018 0.012 0.012 (y) y
interpolator

simple square S > 1.453125 −− 1.079s 0.012 0.012 0.012 (n) n

Table 1. Time required by the different solvers and strategies to handle the different
benchmarks

3.2 Results

Table 1 reports the results for the other strategies and solvers. Since strategy
fpc3s is incomplete we indicate whether a test case was found. Column s?

specifies whether a test case actually exists. Note that the computation times
of CBMC and CDFL include the pre-processing time for generating the con-
straint systems; the pre-processing time required by CPBPV are around 0.6s
but CPBPV is a non-optimised system written in java.

4 Discussion

The generate & test strategy behaves quite well on programs with only one input
variable when a test case exists but it is unable to find any test case for programs
with more than one input variable. More precisely, it found a test case in less
than 0.008s for the 6 suspicious intervals of program slope where a test case
exists as well as for program simple interpolator.

Strategy fpc is definitely the most efficient and most robust on all these
benchmarks. Note that CBMC and CDFL could handle neither the initial nor
the optimized version of program heron in a timeout of 20 minutes whereas
FPCS found solutions in reasonable time.

These preliminary results are very encouraging: they show that our approach
is effective for generating test cases for suspicious values outside the range of
acceptable values on small programs with classical floating-point errors. More
importantly, a strong point of CP is definitely its refutation capabilities.



Of course, experiments on more significant benchmarks and on real applica-
tions are still necessary to evaluate the full capabilities and limits of CPBPV FP.

4.1 Related work

The goals of software bounded model checkers based on SAT solvers are close
to our approach. The point is that SAT solvers tend to be inefficient on these
problems due to the size of the domains of floating-point variables and the cost of
bit-vector operations [8]. CDFL [8] tries to address this issue by embedding an
abstract domain in the conflict driven clause learning algorithm of a SAT solver.
Note that the constraint programming techniques used in our approach are bet-
ter suited to generate several test cases than these SAT-based approaches. The
advantage of CP is that it provides a uniform framework for representing and
handling integers, real numbers and floats. SAT solvers often use bitwise repre-
sentations of numerical operations, which may be very expensive (e.g., thousands
of variables for one equation in CDFL).

4.2 Further work

We have recently designed a new constraint solver FPLP [1] which relies on
relaxations over the real numbers of a problem over the floating-point numbers.
Safe bounds of the domains are computed with a mixed integer linear program-
ming solver (MILP) on safe linearizations of these relaxations. FPLP has a more
global view of the problem than FPCS, and thus, should be able to provide bet-
ter bounds. So, both solvers could be combined to improve the filtering process
and get tighter domains for the variables of the problem.

A new abstract-interpretation based robustness analysis of finite precision
implementations has recently been proposed [10] for sound rounding error prop-
agation in a given path in presence of unstable tests.

Brain and al [12, 3] have recently introduced a bit-precise decision proce-
dure for the theory of floating-point arithmetic. The core of their approach is
a generalisation of the conflict-driven clause-learning algorithm used in modern
SAT solvers. Their technique is significantly faster than a bit-vector encoding
approach.

A close connection between our floating-point solvers and the two above
mentioned approaches is certainly worth exploring.
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4. Liqian Chen, Antoine Miné, and Patrick Cousot. A sound floating-point polyhe-
dra abstract domain. In Proceedings of the 6th Asian Symposium on Program-
ming Languages and Systems, APLAS ’08, pages 3–18, Berlin, Heidelberg, 2008.
Springer-Verlag.

5. Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C
programs. In TACAS, volume 2988 of LNCS, pages 168–176, 2004.

6. Hélène Collavizza, Michel Rueher, and Pascal Van Hentenryck. A constraint-
programming framework for bounded program verification. Constraints Journal,
15(2):238–264, 2010.

7. David Delmas, Eric Goubault, Sylvie Putot, Jean Souyris, Karim Tekkal, and
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