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B. Maury and A. Preux

Pressureless Euler equations with maximal
density constraint : a time-splitting
scheme

Abstract: In this paper, we consider the pressureless Euler equations with a

congestion constraint. This system still raises many open questions and, aside

from its one-dimensional version, very few is known concerning its solutions.

The strategy that we propose relies on previous works on crowd motion models

with congestion in the framework of the Wasserstein space, and on a micro-

scopic granular model with nonelastic collisions. We illustrate the approach by

preliminary numerical simulations in the two-dimensional setting.

Keywords: Pressureless Euler equations, congestion, optimal transporta-

tion.

1 Introduction

We are interested in the pressureless gas dynamics system, that describes the

free motion of inertial particles. The system simply expresses mass conservation

and momentum conservation:
{

∂tρ + ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2) = 0.
(1)

Here, ρ represents the density of particles and u is the velocity field. The fact

that a single velocity can be locally defined is a strong implicit assumption here.

The real free transport equation for non-interacting particles would be of the

kinetic type (namely the Collisionless Boltzmann equation), allowing for various

velocities to coexist at the same place. In the previous system (1), even for

smooth initial data, transport characteristics are likely to cross, leading to an

incompatibility in terms of velocity. Preserving the monokinetic character of the
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representation calls for considering interactions between particles, although they

do not explicitly appear in the equation.

As described on [1] or [2], this model can create Dirac Masses even if initial

data are smooth. It is therefore necessary to define measure-valued solutions for

this system. The existence of such solutions of (1) has been proven construc-

tively in [3] and [4], by approximating the initial measure by Dirac masses

(sticky particles). The motion of the corresponding collection of particles is then

computed, following an event-driven approach to handle binary collisions, and

the corresponding sticky particle solutions are shown to converge as the num-

ber of particles tends to infinity. This approach has been introduced in [5] as

a model describing the formation of galaxies in the early stage of the universe.

This system has been studied in the framework of hyperbolic systems of con-

servation laws (see for instance [6] and [7]), although it lacks hyperbolicity. A

proof of uniqueness has been given in [8] with appropriate conditions on entropy

and energy. This system has also been formulated and analyzed as a first order

differential inclusion, see [9, 10]. Some other approaches have been proposed,

for instance, in [11] with an optimal transportation approach, with a viscosity

regularization in [12] and [13], with finite size sticky particles in [14].

We are interested here in the situation where the density is subject to remain

below a threshold value, say 1; it corresponds to the pressureless gas dynamics

with congestion constraint :


































∂tρ + ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2 + π) = 0

ρ ≤ 1

(1 − ρ)π = 0

π ≥ 0.

(2)

A first approach and numerical algorithm have been given in [15], and the exis-

tence of solutions is proved in [16]. The approach is constructive, and dedicated

to the one-dimensional setting: it is based on a generalization of the sticky par-

ticles model. Particles have been replaced by macroscopic congested blocks, but

the dynamic is similar, with a pressure π that is active in congested zone only

(a typical collision between two identical blocks is represented in Fig. 1 (top)).

In [17] a similar system is obtained and analysed as a limit of the Aw-Rascle

model.

Both systems (1) and (2) admit infinitely many solutions, some of them

being highly non-physical. Consider for example the case without congestion (1),

and ρ defined as follows: ρ is a Dirac mass at 0 during [0, 1], and splits at time

1 into two half Dirac masses, one going to the right at constant velocity u, and
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the other one at velocity −u, where u > 0 is arbitrary. This measure path,

with its obvious associated velocity, verifies the system although it does not

correspond to any physical reality. The fact that such solutions are compatible

with (1), although no interaction force explicitly appears, can be explained: a

Dirac mass can be considered as the sum of two half Dirac masses at the same

point. Splitting is achieved by exerting an impulsion of one of the halves, and the

opposite impulsion on the other. Since these impulsions sum up to zero, it can

be done without any real action on the system, and the obtained path verifies

the weak formulation of the system. The splitting time is of course arbitrary, and

each of the subparticles can be further split in lighter particles, at any time, as

soon as local conservation of mass and momentum are respected. Similar bizarre

solutions can be built for the congested case. An initially steady block can be

suddenly splits in two halves, with a pressure field that is singular in time,

but regular in space at the instant of the splitting (piecewise affine function

vanishing at the ends of the block, maximal at the center). One may hope to

recover uniqueness by demanding that the kinetic energy decreases. This is not

enough, as the following example shows: consider two Dirac masses heading to

0 with opposite velocities u and −u. They may collide at 0 into a steady Dirac

mass with weight 2, but they may also bounce against each other, and head

back to −∞ and +∞ at velocities −eu and eu, respectively. For any e ∈ [0, 1]

(restitution coefficient), the solution is energy decreasing (with conservation for

the purely elastic case e = 1).

To sum up, both systems allow for multiple solutions to exist, some of

them being non-physical (energy increasing). But still infinitely many energy-

decreasing solutions exist. A collision law is obviously lacking. Before writing the

multidimensional version of (2), let us describe now the two main ingredients

that we will use to write the model (with a collision law) and to elaborate a

time-splitting strategy.

First ingredient: microscopic granular model

At the microscopic level, the motion of rigid particles can be modelled as follows.

Consider N rigid spheres in R
d, with common radius r > 0, unit mass, and

centers q1, . . . ,qN . Denote by q ∈ R
dN the vector of positions, and let Dij =

|qj − qi| − r denote the inter-grain distance. Prescribing grain rigidity amounts

to define a set of feasible configurations, that is

K̃ =
{

q = (q1, . . . , qN ) ∈ R
dN , Dij ≥ 0 ∀i 6= j

}

.
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The cone of feasible velocities (i.e. velocities that do not lead to overlapping

between grains) is defined for any q ∈ K̃ as

CK̃(q) = {v ∈ R
dN , Dij = 0 =⇒ Gij · v ≥ 0},

where Gij ∈ R
dN is the gradient of Dij. The inertial motion of this system of

grains submitted to a force field f (possibly including interactions, i.e. f may

depend on q) with nonelastic collision can be written (see e.g. [18, 19])






















































dq/dt = u

du/dt = f +
∑

i<j

πijGij

q ∈ K̃

πijDij = 0 ∀i, j

πij ≥ 0 ∀i, j

u+ = PCK̃(q)(u
−).

(3)

The πij ’s play the role of a discrete pressure, that is a Lagrange multiplier

associated to the non-overlapping constraint q ∈ K̃. Velocities u+ and u− are

pre- and post-collisional velocities (as detailed in [19], the velocity has bounded

variation, so that left and right limits are well-defined). Note that, when there

is no contact, all the distances Dij are positive, so that πij ≡ 0, CK̃(q) = R
dN ,

and we recover the usual Newton law for a N-particle system. The interaction

forces πij are actually measures in time, and they are indeed singular as soon

as a collision happens.

Existence of solutions to this system is proved in [18, 19]. Note that, al-

though the system is formally well-posed (uniqueness holds when the number of

collision is bounded), uniqueness requires analiticity of the forcing term f (see

in particular [18]).

Remark 1. Let us remark that alternative collisions laws may be accounted for

(we shall not extend this generalization to the macroscopic setting) by introduc-

ing the so called outward normal cone to K, that is

NK̃(q) = C◦
q =

{

v ∈ R
dN , v · w ≤ 0 ∀w ∈ CK̃(q)

}

=







v = −
∑

i<j

πijGij , πij ≥ 0 , Dijπij = 0







.

Given a restitution coefficient e ∈ [0, 1] (e = 0 for non elastic shocks and e = 1

for purely elastic shocks), a more general collision law is (see e.g. [18])

u+ = u− − (1 + e)PNK̃(q)(u
−). (4)
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Fig. 1. Collision of two rectangular blocks: pre-collision velocity, instantaneous pressure and
post-collision velocity (top: one-dimensional setting; bottom: two-dimensional setting)

Second ingredient: first order crowd motion model

The handling of congestion in evolution equations has been studied for the

macroscopic crowd motion introduced in [20] and [21]. The model is based on

a so-called desired velocity, that is the velocity U(x) someone at x would spon-

taneously have, if he/she were alone. We aim at accounting for a congestion

constraint ρ ≤ 1, we denote the corresponding set of densities by K. To that

purpose, we consider that the desired velocity is projected (in a L2 sense) on

the cone of feasible velocities. The latter set is defined as the set of all those ve-

locities that do not lead to a violation of the constraint. More formally (see [21]

for details), it is defined in a dual way :

CK(ρ) =

{

v ∈ L2 ,

∫

v · ∇q ≤ 0 , ∀q ∈ H1 , q ≥ 0 , q(1 − ρ) = 0

}

. (5)

The model writes
{

∂tρ + ∇ · (ρu) = 0

u = PCK (ρ)(U).
(6)

In the spirit of the Catching Up algorithm initially proposed in [22], and applied

to a microscopic crowd motion model in [23], a time-stepping algorithm has been

proposed in [20] to handle this type of evolution problem. It simply consists in

transporting the density during one time step with the desired velocity, possibly

violating the constraint, and then project in the Wasserstein sense in the set K
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of admissible densities. It reads as follows :
{

ρ̃n+1 = (Id + τU)#ρn

ρn+1 = P
W2

K (ρ̃n+1).
(7)

Now let us expand System (2) in higher space dimension, with the continuous

counterpart of a non-elastic collision law:











































∂tρ + ∇ · (ρu) = 0

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇π = 0

ρ ≤ 1

(1 − ρ)π = 0

π ≥ 0

u+ = PCK(ρ)(u
−).

(8)

In the previous system, π is a nonnegative scalar field that is the continuous

counterpart of the interaction pressures πij
′s accounting for interactions between

neighboring grains in the microscopic model. As previously said, in the one-

dimensional setting, it is natural and easy to build exact solutions to this system.

Let us stress that sticky block solutions described in [16] verify the non-elastic

collision law that we added to the system. Such a collision is represented in

Fig. 1 (top). See in particular the pressure field π (middle) that is activated at

the very instant of impact; its opposite gradient instantaneously anihilates the

pre-collisional velocity field.

In higher dimension, such analytical solutions are not available. Consider for

instance the two-dimensional counterpart of the 1D sticky blocks: two rectangu-

lar blocks colliding with opposite velocities. At the instant of collision, it can be

checked that the pressure field π solves a Poisson equation over the two-blocks

domain, with a right-hand-side that is the opposite of the divergence of the pre-

collisional velocity (it is a singular distribution supported by the interface), and

with homogeneous Dirichlet boundary conditions on the exterior boundary. The

corresponding pressure field and the corrected velocity are represented in Fig. 1

(bottom), on the middle and on the right, respectively.

In the one-dimensional setting, existence of solutions can be obtained in var-

ious ways, as already mentioned ([15, 16, 17]). In higher dimension, system (8)

(without the non-elastic collision law) can be obtained as a formal limit of com-

pressible Euler equations with a singular pressure term (see [24]). Note also that

solutions to a viscous version of (1) can be built (see [25, 26, 27]) as limits

of solutions to compressible Navier-Stokes equations with a stiff pressure term.
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Yet, up to our knowledge, there is no well-posedness result (in terms of existence

or uniqueness) for the congested Euler system (8), for dimensions higher than

1.

We propose here a new time-discretization scheme for (8) in the spirit of the

prediction-correction scheme used in the crowd motion case. This scheme will

allow us to build sequences of densities and velocities, that may be expected

to converge to weak solutions of our problem. Let us stress that we are not

able to establish such a convergence, but we provide partial results that assert a

certain consistency of the scheme with respect to the equations (see Section 2.2).

Beside, a numerical scheme can be built on this time-splitting strategy, and we

shall present preliminary results in Section 3.

Compared to the first order in time model, the present context of inertial

particles raises two deep additional difficulties:

1. The velocity field is no longer prescribed as in the crowd motion case, it

is attached to the mass and it is highly varying in time. In particular, it

is not possible to control its regularity in space, so that the transport step

in (7) may not be one-to-one, which means that particle trajectories cross

each other. This is likely to lead to non-physical behaviour: particles cross-

ing without seeing each other, or even artefactual energy increases during

the subsequent projection phase. This calls for an additional step in the

time-stepping procedure, by prescribing some sort of monotonicity in the

transport phase.

2. For the very same reason (the velocity field is not prescribed once and for

all), velocities have to be updated at the end of each time step. In particular,

the effect of congestion (i.e. the projection phase) changes the velocity field

and reduces energy, since we consider non-elastic collisions. This necessitates

to follow the motion in a Lagrangian way during the whole scheme, i.e. to

map the initial density to the final one respectfully of the actual motion of

particles.

2 Time-stepping scheme

We first present here the issues raised by the attempt to propose a relevant

time-stepping strategy for the congested pressureless Euler equations. We shall

in particular explain, in a one-dimensional setting, how the two constraints (par-

ticles do not cross and the density remains below 1) can be accounted for in a

mutually consistent way. We then present the time-stepping scheme in any space

dimension, and we detail some of its properties.
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2.1 Time discretization strategy

We first consider the microscopic model (3) in one dimension (aligned grains),

assuming that the grain diameter is zero (which makes clear sense in the one-

dimensional setting), and that no force is exerted. We assume that, at initial

time, the ordering is consistent with the indexing:

qi(0) ≤ qj(0) for 0 ≤ i ≤ j ≤ N.

Since they do not leap over each other, the set of admissible configurations

expresses that the order is preserved:

K̃ = {q ∈ R
N , qi ≤ qj ∀i ≤ j},

and the set of feasible velocities follows

Cq = {v ∈ R
N , vi ≤ vj whenever qi = qj}.

The model of 1d granular flow with inelastic collisions may be phrased formally

dq

dt
= u , u+ = PCq

(u−).

For this model, a numerical scheme and convergence results have been obtained

in [28] and [19]. Let τ > 0 be the time step and consider qn, vn ∈ R
n the

position and velocity vectors at time nτ . We ensure that the updated position

vector qn+1 = qn + τun is admissible by prescribing

∀i ≤ j, qn
i + τun

i ≤ qn
j + τun

j

and we call Cτ
qn the corresponding set of velocities. The approximated solutions

are built using the following scheme :

{

un+1 = PCτ
qn

(un);

qn+1 = qn + τun+1.
(9)

Note that the conditions defining Cτ
qn can be rewritten

(

un
i − un

j

)

·
(

qn
i − qn

j

)

≥ −1

τ

∣

∣qn
i − qn

j

∣

∣

2
. (10)

There is an obvious link between this microscopic setting and the macroscopic

system (1). Indeed, to any solution (q(t), u(t)) of the previous model, one can

associate a solution to the macroscopic equation (1) considering the density

ρt =
∑n

i=1 δqi(t) and ρtut =
∑n

i=1 ui(t)δqi(t). It suggests a time-stepping scheme
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to tackle the unconstrained macroscopic problem in one dimension, by simply

requiring that trajectories do not cross during a time step τ , in the spirit of

the strategy that is proposed in [11]. This scheme reads as follows: consider

the density-velocity couple (ρn, un) at time step n, define the velocity ũn as

the projection of un on the cone of feasible velocities (macroscopic counterpart

of (10))

Cτ
ρn =

{

v ∈ L2
ρn , (x − y)(v(x) − v(y)) ≥ −1

τ
|x − y|2 for ρn ⊗ ρn − a.e.(x, y)

}

,

and move ρn by Id + τ ũn to obtain ρn+1. The new velocity un+1 that is defined

on the support of ρn+1 is finally obtained by conservation of momentum between

any y in the support of ρn+1 and the set of its preimages x ∈ (Id + τ ũn)−1.

Now consider the problem with congestion, i.e. the density is subject to re-

main below 1, it is natural to treat it in the spirit of Algorithm (7), that was

dedicated to the first order in time model (crowd motion), by considering that

the previous velocity un plays the role of the desired velocity. It consists in

projecting the predicted measure (obtained according to the previous consider-

ations) on the set of feasible densities (second step of (7)).

The drawback of this scheme is that the intermediate density obtained after

handling the non-crossing of trajectories may contain a singular part, typically

at points y that can be written x+τ ũn(x) for x running over a set with non zero

ρn-measure. This feature would not be a problem if the pre-collisional velocities

were prescribed, like in the crowd motion problem. But in the case of pressureless

equation, it is necessary to build the new velocity field over the support of the

new density. It requires to follow the motion of individual particles before and

after the two sub-steps of the procedure. This is prevented by the presence of

Dirac masses in the intermediate measure: they make it impossible to properly

define a map between the previous density field and the next one, in a way that

would respect the Lagrangian motion of particles.

For this reason, we propose to reinforce the non-crossing constraint by pre-

scribing that trajectories do not cross in a strict sense, i.e. particles remain,

during the whole time step, at a distance that is bounded from below. More

precisely, consider two particles initially at x and y, with velocities vx and vy,

respectively. We require that the moving particles remain at a distance that is

larger than c times their initial distance, where c ∈ (0, 1) is a small parameter:

〈x − y, (x + τvx) − (y + τvy)〉 ≥ c |x − y|2

⇐⇒ 〈x − y, vx − vy〉 ≥
(

c − 1

τ

)

|x − y|2.
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This constraint will be integrated in the process through the definition of the set

of feasible velocities introduced in the next section (Eq. (12)). The positivity of

c forces the intermediate density ρ̃n+1 to remain bounded (see Lemma 2.2) and

the transport Id+τ ṽn to be invertible. Thus, one can reconstruct the trajectory

of particles from the density ρn+1 to ρn with the composition of two Lagrangian

transports.

The next section will detail the time-stepping scheme issued from the previ-

ous one-dimensional consideration. The approach we propose is far from being

covered by a full convergence analysis. Yet, beyond the fact that very few meth-

ods exist to build solutions for the congested pressureless Euler equation in

dimension d ≥ 2, the approach is supported by the following properties, that

are detailed in the next section:

1. The scheme is well-defined, in the sense that each time step defines in a

unique way a new density, that verifies the congestion constraint, and an

associated velocity field;

2. In a one-dimensional setting, in the case of an initial density that is a collec-

tion of saturated clusters (sum of characteristic functions of intervals), our

scheme essentially behaves like the so-called sticky block approach, meaning

that numerical solutions actually converge, in this setting, to solutions of

the continuous problem (as proved in [16]);

3. In any dimension, the scheme conserves the momentum of material systems

during collision. More precisely, for each material subsystem involved in a

numerical collision, the momentum is conserved;

4. Since the approach is not based on a relaxation of the congestion constraint,

it natively handles empty zones without difficulty, as confirmed by the nu-

merical illustrations that are presented.

2.2 The scheme

Let Ω ⊂ R
d be a bounded domain, we denote by P(Ω̄) the space of probability

measures on Ω̄. We shall assume in what follows that the domain is chosen

sufficiently large, so that all considered densities are supported in it.

Let τ > 0 be a time step, ρn ∈ P(Ω̄) and un ∈ L2
ρn(Ω̄) represent the

density and velocity at time nτ . The first step consists in projecting the current

velocity field on the set of Mc
ρn , to prevent particles from crossing. The density

is then moved according to this projected velocity field, during τ . The obtained

intermediate density is likely to violate the constraint. The third step consists in
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projecting it (in the Wasserstein sense), on the feasible set K, to account for the

saturation constraint. The final step consists in defining the new (post-collision)

velocity, using the Lagrange map between the previous density and the new one.

For (ρn, un) given, the scheme reads:

ρn

ρ̃n+1

ρn+1

sn+1 rn+1

(sn+1)−1 ◦ rn+1
K































ũn = PMc
ρn

(un)

ρ̃n+1 = (Id + τ ũn)# ρn

ρn+1 = P
W2

K (ρ̃n+1)

un+1 =
Id − (sn+1)−1 ◦ rn+1

τ

(11)

with

M
c
ρn = {v ∈ L2

ρn(Ω̄) , 〈v(x) − v(y), x − y〉 ≥ c − 1

τ
|x−y|2 ρn ⊗ρn −a.e.}, (12)

and c ∈ (0, 1) a small parameter. K is the space of all those probability measures

supported in Ω̄ that admit a density less than 1. The mappings involved in the

last step (reconstruction of the velocity) are

sn+1 = Id + τ ũn,

and rn+1, that is the optimal transportation map between ρn+1 and ρ̃n+1.

Figure 2 illustrates how the time-stepping scheme treats a one-dimensionnal

collision between two blocks. The figure reads from bottom to top. The first

part of the scheme moves densities with the current velocity, while avoiding

contact of pathlines (the velocity is projected on M
c
ρn). This intermediate density

violates the congestion constraint, and the second step is meant to enforce it,

by projection of the density on K. The 3 circles on the figure correspond to

successive positions of a physical particle during the scheme: initially at x, it is

moved to y, and then to z by projection. For this very particle, the reconstruction

of the after-collision velocity (at the new position z) gives (z−x)/τ . As explained

in the proof of Proposition 3, it may happen that a gap remains between the

two blocks after this first partial treatment, in that case it may need two more

time steps to fully handle the collision.

Let us start by establishing some basic properties pertaining to the proposed

scheme. The first lemma asserts that the first step (projection on M
c
ρn) is well-

defined, and preserves the total momentum. In a second lemma, we show that

the intermediate density ρ̃n+1 is bounded. In the third one, we recall a known

result concerning the projection on K.
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x

y

z

projection on K

transport by

ũn = PMc
n

(un)

Fig. 2. Time stepping scheme for a 1d collision

Lemma 2.1. Let ρ ∈ P(Ω̄) and u ∈ L2
ρ(Ω̄), then there exists a unique ũ ∈ M

c
ρ

such that :

‖u − v‖L2
ρ(Ω̄) ≥ ‖u − ũ‖L2

ρ(Ω̄) , ∀v ∈ L2
ρ(Ω̄).

Moreover, we have the following properties :

(i) ‖ũ‖L2
ρ(Ω̄) ≤ ‖u‖L2

ρ(Ω̄);

(ii)

∫

Ω̄

ũ(x)dρ(x) =

∫

Ω̄

u(x)dρ(x).

Proof. Since M
c
ρ is a closed and convex set, the projection ũ := PMc

ρ
(u) is

well-defined. Inequality (i) comes from the fact M
c
ρ is also a cone pointed at 0.

Let us prove now that the first step of the scheme does not change momen-

tum (identity (ii)). If u ∈ M
c
ρ, then u + k is also in M

c
ρ for any k in R

d. If ũ is
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the projection of u on Mc
ρ, we have :

‖u − ũ‖2
L2

ρ(Ω̄) ≤ ‖u − ũ − k‖2
L2

ρ(Ω̄)

and thus :
〈

u − ũ,
k

|k|

〉

L2
ρ(Ω̄)

≤ |k|
2

.

Letting |k| tend to 0 yields
〈

u − ũ, k
|k|

〉

L2
ρ(Ω̄)

≤ 0, for all k ∈ R
d and conse-

quently
〈

u − ũ,
k

|k|

〉

L2
ρ(Ω̄)

= 0.

Consider the total momenta before and after the projection of velocities:

Etot =

∫

Ω̄

u(x)dρ(x) and Ẽtot =

∫

Ω̄

ũ(x)dρ(x).

We have 〈Etot, k〉=
〈

Ẽtot, k
〉

for all k ∈ R
d and finally Ẽtot = Etot.

Lemma 2.2. Let ρ̃ := s#ρ = (Id + τ ũ)#ρ, with ρ ∈ L∞(Ω̄), and ũ ∈ Mc
ρ, we

have :

‖ρ̃‖L∞(Ω̄) ≤ 1

cd
‖ρ‖L∞(Ω̄) .

Proof. We consider here that ũ is regular, and we refer to [29], Section 5.5, for

the general case. Since ũ is in M
c
ρ, the eigenvalues of ∇s are larger than c and

then det ∇s is larger than cd. Finally, since ρ̃ =
ρ

| det ∇s| ◦ s−1 we have

‖ρ̃‖L∞(Ω̄) =

∥

∥

∥

∥

ρ

| det ∇s| ◦ s−1

∥

∥

∥

∥

L∞(Ω̄)

≤ 1

cd

∥

∥ρ ◦ s−1
∥

∥

L∞(Ω̄)
≤ 1

cd
‖ρ‖L∞(Ω̄) ,

which ends the proof.

The following lemma concerns the projection on K. It is proven in [21].

Lemma 2.3. Let ρ ∈ P(Ω̄). There exists a unique ρK ∈ K such that

W2(ρ, µ) ≥ W2(ρ, ρK), ∀µ ∈ K,

and there exists π ∈ {p ∈ H1| p ≥ 0, (1 − ρ)p = 0} such that

ρ = (Id + ∇π)#ρK .

We may know prove that the scheme defines a unique density-velocity couple.
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Proposition 1. Let (ρn, un) ∈ K × L2
ρn(Ω̄). The scheme (11) defines a unique

(ρn+1, un+1) ∈ K × L2
ρn+1(Ω̄).

Proof. We can check that sn+1 is strictly monotone and consequently injective.

We can define an inverse on sn+1(spt(ρn)) = spt(ρ̃n+1). Thanks to Lemma 2.3,

we have existence and uniqueness of rn+1 : spt(ρn+1) → spt(ρ̃n+1) and conse-

quently the uniqueness of un+1 and ρn+1. Moreover, we have

∫

Ω̄

(un+1(x))2ρn+1(x)dx

=

∫

Ω̄

(

x − (sn+1)−1 ◦ rn+1(x)

τ

)2

ρn+1(x)dx

=

∫

Ω̄

(

(rn+1)−1(x) − (sn+1)−1(x)

τ

)2

ρ̃n+1(x)dx

≤ 2

∫

Ω̄

[

(

(rn+1)−1(x) − x

τ

)2

+

(

x − (sn+1)−1(x)

τ

)2
]

ρ̃n+1(x)dx

≤ 2

∫

Ω̄

(

x − rn+1(x)

τ

)2

ρn+1(x)dx + 2

∫

Ω̄

(

sn+1(x) − x

τ

)2

ρn(x)dx

≤ 2

∫

Ω̄

(∇πn+1(x))2ρn+1(x)dx + 2

∫

Ω̄

ũn(x)2ρn(x)dx

≤ 4

∫

Ω̄

un(x)2ρn(x)dx

since
∫

Ω̄

(

∇πn+1(x)
)2

ρn+1(x)dx = W2(ρn+1, ρ̃n+1) ≤ W2(ρn, ρ̃n+1)

and

W2(ρn, ρ̃n+1) ≤
∫

Ω̄

un(x)2ρn(x)dx,

which ends the proof.

Proposition 2. Total mass and momentum are conserved by the scheme (11).
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Proof. Conservation of mass is inherent to the approach, which is a succession

of transports and projections in the Wasserstein sense. As for the momentum,

we have already seen that
∫

Ω̄
En(x)dx =

∫

Ω̄
Ẽn(x)dx, where Ẽn = ρnṽn.

∫

Ω̄

Ẽn(x)φ(x)dx

=

∫

Ω̄

ρn(x)ũn(x)φ(x)dx

=

∫

Ω̄

((sn+1)−1 ◦ rn+1)#ρn+1(x)ũn(x)φ(x)dx

=

∫

Ω̄

((sn+1)−1 ◦ rn+1)#ρn+1(x)(
sn+1(x) − x

τ
)φ(x)dx

=

∫

Ω̄

ρn+1(x)(
rn+1 − (sn+1)−1 ◦ rn+1

τ
)φ((sn+1)−1 ◦ rn+1(x))dx

=

∫

Ω̄

ρn+1(x)(∇πn+1 + un+1)φ((sn+1)−1 ◦ rn+1(x))dx

So Ẽn
τ = (sn+1)−1 ◦ rn+1)#(ρn+1∇πn+1 + En+1) and consequently :

∫

Ω̄

Ẽn(x)dx =

∫

Ω̄

ρn+1(x)(∇πn+1(x) + un+1(x))dx

=

∫

Ω̄

ρn+1(x)∇πn+1(x) +

∫

Ω̄

ρn+1(x)un+1(x)dx

=

∫

Ω̄

En+1(x)dx.

Remark 2. A direct consequence of the previous proposition is that the center

of mass moves at a constant velocity

U =

∫

Ω̄
un(x)ρn(x)dx
∫

Ω̄
ρn(x)dx

.

The next proposition pertains to the one-dimensional setting. We consider the

exact solution that corresponds to the collision of two saturated blocks. We

establish that, except for the few times steps (no more than 3) that are needed
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to handle the collision at the discrete level, the discretization scheme recovers

the exact solution.

Proposition 3. Let ρt be the density representing two blocks colliding at time

t0 and η > 0. If c ≤
√

2 − 1 then there exists τo > 0 such that for all time step

τ ≤ τo the solution given by the scheme is exact, for all step n ∈ {n ∈ N, nτ /∈
[t0 − η, t0 + η]}.

Proof. Let us start by two basic remarks. Firstly, from remark 2, the scheme

computes in an exact way the motion of the mass center. Secondly, an isolated

block moving at uniform velocity is preserved by the scheme (blocks stay blocks).

As a consequence, we just have to check that the scheme makes the blocks stick

together in a finite number of steps (no more than 3, as we shall see).

Let ∆Un ≥ 0 be the velocity difference between the two blocks at time

nτ and en their distance. One can check that the updated velocity difference

∆Un+1 is equal to en−en+1

τ
. The velocity field un remains in M

c
ρn if and only if

the constraint is verified in the ends of blocks, so that

∆Un(−en) ≥ c−1
τ

(en)2

⇔ τ∆Un ≤ (1 − c)en

Now, if τ∆Un > (1 − c)en and if the length of the smaller block L is

sufficiently large (take τ such that L ≥ 2τ ||v||∞) the density ρ̃n+1 exceeds the

congestion constraint (see Figure 2) over two blocks of total size cτ∆Un

1−c
− cen.

In this case, the mass M projected in the gap between the two blocks is larger

than the half of over-congested mass,

M ≥ 1

2

(

1

c
− 1

) (

cτ∆Un

1 − c
− cen

)

≥ 1

2
(τ∆Un + (c − 1)en).

Two cases have to be considered. If τ∆Un ≥ (1+c)en, the mass M is larger than

the mass necessary to refill the gap, this implies en+1 = 0 and τ∆Un+1 = en.

The following step allows blocks to have the same velocity, en+2 = 0 and

∆Un+2 = 0. So, the scheme handles the collision with 2 steps.

Now if τ∆Un ∈ ((1 − c)en, (1 + c)en), the projection on the set of feasible ve-

locities imposes that ẽn+1 = cen (the distance between the ends of blocks is

exactly c times the previous one), then en+1 ≤ cen and consequently

τ∆Un+1 = en − en+1 ≥ (1 − c)en.

Thus,

(1 + c)en+1 ≤ (1 + c)cen ≤ (1 − c)en ≤ τ∆Un+1



Pressureless Euler equations with congestion and Optimal Tranportation 17

since c ≤
√

2 − 1, conditions of the first case are obtained, the scheme handles

the collision with 3 steps.

Finally, taking τo = min{ L
2‖v‖

∞

, 2η
5 } allows us to prove the property.

3 Numerical illustrations

We briefly describe here a space discretization strategy that can be carried out

to perfom actual simulations, and we present some numerical tests to illustrate

the behavior of the numerical scheme in various situations.

3.1 Space discretization scheme

We take Ω̄ = [0, 1]2 and we discretize the domain in a collection of cells (Ci)i∈I

with a uniform size h × h and the center located at xi. The quantities used

previously are approximated by constant functions in each cell :

f ≈
∑

i∈I

f(xi)1Ci
:=

∑

i∈I

fi1Ci
,

and we denote by Xα
h the corresponding space (α = 1 for a scalar field, α = 2 for

a vector field). From now on, we will assimilate f to the vector (fi) ∈ (Rd)I .We

denote by Iρ the set of indices corresponding to non-zero values of the ρi’s:

Iρ = {i ∈ I | ρi > 0}. We may now describe the 4 steps of the numerical scheme.

Suppose that we have (ρn, vn) ∈ X1
h × X2

h.

Step 1 : We replace Mc
n by the space of functions v in X2

h such that

∀i, j ∈ Iρn , 〈vi − vj , xi − xj〉 ≥
(

c − 1

τ

)

|xi − xj |2.

The projection can be formulated in a saddle-point form: Consider the function

Fij := v → 〈vi − vj , xi − xj〉 −
(

c−1
τ

)

|xi − xj |2, the projection onto this space

is defined as

ṽn = argmin
ṽ∈RI







sup
λij∈R

I2

+



‖ṽ − vn‖ℓ2

ρn
−

∑

i,j∈(Iρn )2

λijFij(vn)











.
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Step 2 : We approximate the transport step by a projected Lagrangian scheme

(see Remark 3):

ρ̃n+1 := (Id + τ ṽn)#ρn ≈
∑

i∈I





∫

Ci

(Id + τ ṽn)#ρn(x)dx



1Ci
,

Ẽn+1 := (Id + τ ṽn)#En ≈
∑

i∈I





∫

Ci

(Id + τ ṽn)#En(x)dx



1Ci
.

Step 3 : In order to project on K, we define the discrete transport plan as the

minimizer of a discrete counterpart of the transport cost, among all those plans

ζ = (ζij)i,j∈I with ρ̃n+1 as first marginal, and second marginal in K. The cost

is defined as

C(ζ) =
∑

i∈Iρ̃n+1

∑

j∈I

βij,

where the cell-to-cell costs βij are defined (see Remark 4) by

βij =











ζ2
ij

ρ̃n+1
i

|xi − xj |2 if Ci is a neighbor of Cj

+ ∞ otherwise

(13)

where cells are considered neighbors if they share an edge or a vertex. The

infinite cost for non-neighboring cells prevents the transport from leaping over

adjacent cells. This choice is consistent with the fact that very small time steps

are used in the presented illustrations.

Step 4 : We reconstruct the velocity by

En+1
j =

∑

i∈I
ρ̃n+1

ζij

(

Ẽn+1
i

ρ̃n+1
i

+
(xj − xi

τ

)

)

, un+1
j = En+1

j /ρn+1
j .

Remark 3. Note that the space Xh is not stable by the transportation step. If

ρ ∈ X1
h, then (Id+τv)#ρ is a piecewise constant function that is not, in general,

in X1
h. A function in X1

h is obtained by ℓ2 projection.

Remark 4. The step 3 is undoubtedly the most problematic one. A natural

counterpart of the continuous projection problem would consist in minimizing

∑

i,j

ζij |xi − xj |2
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over all those discrete transport plans (ζij) with ρ̃n+1 as first marginal, and

such that the second marginal belongs to K. Yet, this straight discretization of

the transport cost does not lead to a satisfying approximation of the projection.

This feature is related to the numerical diffusion that is inherent to the space

discretization of the Finite Volume type that we chose. This delicate issue will be

addressed in a forthcoming paper. Let us simply say here that, if one considers the

JKO scheme applied to the gradient flow that corresponds to transport at constant

velocity, such a discretization leads to an untenable behaviour. For small time

steps, the discretized JKO scheme is static, i.e. the density is not transported.

It comes from the fact that, because of numerical diffusion, the expression above

highly overestimates the cost of the displacement from a cell to its neighbor, so

that immobility is cheaper than cell-to-cell motion. This locking phenomenon

can be avoided by changing the cost for short displacements. More precisely, it

can be checked in the transport case that changing the cost into

ζ2
ij

ρ̃n+1
i

|xi − xj |2

makes it possible to recover the classical upwind scheme in the one-dimensional

case. This explains the choice of the cost of transport between neighboring cells

that appears in (13).

3.2 Numerical tests

In this part, we illustrate our comments by comparing numerical solutions com-

puted by the SCoPI software for the granular model (see [30, 31, 32] for details

on the algorithm) with the solutions computed by our algorithm for the scheme

described above. This comparison is not intended to rigorously validate the ap-

proach in any way, since the two models are different (see next section), but it

asserts a satisfactory behaviour of the macroscopic model to mimic the motion

of many-body suspensions. In the microscopic examples we take the number of

particles (with a radius of r given below) that corresponds to the density of the

macroscopic model.

First numerical example :

In this case, a small cloud of particles (on the left) is set at uniform (rightward)

velocity toward another cloud of particles initially at rest.

Macroscopic model :

• Ω̄ = [−40, 40]2, h = 0.3, τ = 0.0150;

• ρ0 = 0.21x2+y2<252 + 0.21(x+31)2+y2<52 ;
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• E0 = 21(x+31)2+y2<52 .

Microscopic model :

• Ω̄ = [−40, 40]2, τ = 0.03, r = 0.1;

• 500 particules in {(x+31)2+y2 < 52} at velocity (10, 0) and 12500 particules

in {x2 + y2 < 252} at velocity (0, 0).

Second numerical example :

In this second situations, two square clouds of particles are thrown against each

other.

Macroscopic model :

• Ω̄ = [−40, 40]2, h = 0.3, τ = 0.0075;

• ρ0 = 0.51[0.5,20.5]×[−10,10] + 0.51[−20.5,−0.5]×[−10,10];

• E0 = −51[0.5,20.5]×[−10,10] + 51[−20.5,−0.5]×[−10,10].

Microscopic model :

• Ω̄ = [−40, 40]2, τ = 0.003, r = 0.1;

• 5220 particles in [0.5, 20.5]× [−10, 10] at velocities (-10,0) and 5220 particles

in [−20.5, −0.5] × [−10, 10] at velocities (10,0).

Figures 3 and 4 present the evolution of the macroscopic density (left), and

the suspension of rigid grains (right), for the first test case. Figures 5 and 6

correspond to the second test case. In both examples, the shapes of the saturated

zone that is induced by the collision of clouds present similar patterns. Note that

symmetry-breaking seems to occur in the microscopic case. It is due to the fact

that the grains are randomly distributed on the support of each cloud, so that

the initial condition itself is not symmetric.

4 Conclusive remarks

Let us first stress that the macroscopic model that we propose cannot be ob-

tained as a limit, even formally, of the hard sphere microscopic model. We refer

to [20] for a detailed discussion on these delicate micro-macro issues. The micro-

scopic granular arrangements of rigid spheres (or discs, for the two-dimensionnal

setting) induce non local effects that cannot be captured by the crude macro-

scopic description that we proposed. Even the very notion of maximal density
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does not have a clear meaning in the microscopic setting, especially in two di-

mensions: it depends on the local structure of grains.

Let us also mention that the macroscopic model can be extended, at least

formally, to more general collision laws (see Remark 1 for the microscopic set-

ting), i.e. with a restitution coefficient e ∈ (0, 1]. It is a straight translation of

the microscopic collision (4). Indeed, the dual cone of CK(ρ) (defined by (5)) is

the outward normal cone

NK(ρ) =
{

∇q , q ∈ H1 , q ≥ 0 , q(1 − ρ) = 0
}

which leads to the following macroscopic collision law

u+ = u− − (1 + e)PNK(ρ)u
−.

The projection on NK(ρ) is obviously well-defined, since it is a closed convex

cone. Yet, although the model seems to make clear sense, and at least formally

determines the evolution of the system, very deep stability issues can be ex-

pected, even in the one-dimensional setting. Let us consider the case of two

identical blocks colliding with opposite velocities, in 1d (see Fig. 1, top). With

e = 1 (pure elastic collision), the expected solution can be recovered: the after-

collisional velocities are simply the opposite velocities (pure bouncing between

blocks). Now consider that the right hand side block, considered as 1(0,1) is re-

placed by the sum of 1(0,a) and 1(a+ε,1+ε), for a fixed a ∈ (0, 1). The behavior

can be computed explicitely, and it is highly different from the previous situation

(the sub-block at the right hand side will be pushed away at a higher velocity),

for arbitrary small values of ε, which leaves little hope that the evolution may

depend smoothly on initial conditions.
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Fig. 3. First example at times 0, 1, 2 and 5.
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Fig. 4. First example at times 10 and 12.

Fig. 5. Second example at times 0 and 1.
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Fig. 6. Second example at times 1.5 and 2.
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