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Abstract

In this article we focus on parametrization of black box models from repeated
measurements among several individuals (population parametrization). We
introduce a variant of the SAEM algorithm, called KSAEM algorithm, which
couples the standard SAEM algorithm with the dynamic construction of an
approximate meta model. The costly evaluation of the genuine black box is
replaced by a kriging step, using a basis of precomputed values, basis which
is enlarged during SAEM algorithm to improve the accuracy of the meta
model in regions of interest.
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1 Introduction

In this article, we are concerned with the parametrization of models of the
form

y = f(t, Z) + ε

where y is the observable, t is the time of observation, Z the individual
parameters and ε is a measurement error term. The model f is referred to as
a ”black box” model. It may be a system of ordinary differential equations, of
partial differential equations, or a multi agents system, or any combination
of these model types. We will assume that it is costly, namely that its
evaluation is very long. For instance one single evaluation of a reaction-
diffusion equation in a complex geometry may last a few minutes or even a
few hours if the coefficients are large or small, leading to a stiff behavior.

In this paper we focus on population parametrization from observations
of f along time among N individuals. From these repeated longitudinal data,
we search the distribution of the parameters Z in that given population of
individuals. To take into account the various sources of variabilities (inter-
individual and intra-individual variabilities), we use a non-linear mixed effect
model.

The non-linear mixed effect model links the j-th measure, j = 1, . . . , Ni,
yij at times tij for individual i = 1, . . . , N with the black box model:

yij = f(tij, Zi) + εij, (1)

where Zi are p-vectors of the random individual parameters, εij are random
measurement errors, independent of the individual parameters Zi. The errors
εij are assumed to be Gaussian

εij ∼iid N (0, σ2
ε). (2)

The main difficulty is to identify the individual parameters Zi, which are
unknown and should be inferred from the observations. Identifying (or es-
timating) directly the Zi from the data (yij) might be difficult when Ni is
small, typically smaller or of the same order than p, the length of Zi. To
avoid this problem of dimension, we assume that the parameters Zi are ran-
dom and follow a given probability law determined by what we call later
on population parameters. These population parameters are unknown and

2



the objective is to identify them rather than all the Zi. In the following we
assume that the parameters follow a Gaussian distribution

Zi ∼iid N (µ,Ω), (3)

where µ is a p-vector of expectation and Ω is a p × p matrix of covariance.
The population parameters are (µ,Ω, σ2

ε).
We then look for parameter mean µ and variances Ω, σ2

ε which maximize
the likelihood of the observations (yij). Once we have an estimation of µ and
Ω from the observations (yij), we may want to estimate or approximate the
individual variables Zi which are the more likely given the observations for
individual i and the distribution of individual parameters in the population
N (µ,Ω).

SAEM algorithm is a classical approach to evaluate and estimate numer-
ically the population parameters µ,Ω and σ2

ε from a non-linear mixed effect
model (Kuhn and Lavielle, 2005). This algorithm requires a large number of
evaluations of the model f , typically a few hundreds of thousands, or a few
millions. If the model is costly, the total time of SAEM algorithm may be
very huge, of a few days or even months.

A natural way to make SAEM doable with costly f is to replace it by an
”approximate” model which in turn is much faster to compute. Such approx-
imation is called meta model in the following, and we assume that under an
appropriate asymptotic procedure it converges to the original model f . To
build such a meta model, there exist numerous methods: discretizing the pa-
rameters space and using classical interpolation, reduced basis methods, etc.
Schilders et al. (2008); Haasdonk and Lohmann (2011); Patera and Rozza
(2006)
For instance, the first attempt of using such meta model with SAEM to
decrease its computation time was presented in Grenier et al. (2014): pa-
rameter space (Z) is discretized with an inhomogeneous grid adapted to the
variations of f and the meta model is given by a linear interpolation made on
this fixed grid. This general method was illustrated on a reaction-diffusion
partial differential equation showing that the SAEM computation time can
be lowered from 23 days to 25 minutes. However this method is still subject
to the classical ”curse of dimensionality”: one can reasonably only operate
with a maximum of 5 or 6 parameters for the black box model.

One way to improve this problem is to use a more parsimonious interpo-
lation such as kriging. Indeed, the kriging approach (where f is thought as
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the realization of a Gaussian process (Sacks et al., 1989; Santner et al., 2003;
Fang et al., 2005)) is less sensitive to dimension. Interestingly, kriging to
build a fixed grid used by SAEM was later studied in Barbillon et al. (2015).
They proved the convergence of the SAEM algorithm to the maximum like-
lihood of an approximate non-linear mixed effect model. It is also shown
theoretically that the error produced by the kriging approximation can be
controlled depending on the quality of the kriging grid. Therefore in practice,
for a costly black box model f , we have to choose a kriging approximation
with sufficient accuracy (depending on the available computational power).
However it is more delicate to refine the mesh where the model really changes
since it is not possible to rapidly identify where f has sharp transitions.

But we need to keep in mind that we deal here with a coupling between
SAEM and the meta model, i.e. that actually, this meta model only needs to
be precise in the regions of the parameters space which will be explored by the
SAEM iterations. Based on this, Grenier et al. (2014) already proposed the
methodology of a meta model which is refined during the SAEM algorithm
itself, meaning that more points are added in the ”grid” (or basis) of the
meta model dynamically.
The aim of the present paper is thus to describe precisely and implement this
idea of interactive coupling between the SAEM and the meta model building
based on the kriging approach. The expected gain of this new algorithm,
called KSAEM for ”Kriging SAEM”, is the following:

• since the meta model is dynamic, the off line step (i.e. building the
meta model before SAEM) does not need to be very precise: as a
consequence the initial meta model is obtained with only a few calls to
the resolution of f ;

• then during the SAEM (on line step), the meta model will be refined,
only if one detects that the precision is not sufficient (in a sense defined
later): as a consequence few other costly resolutions of f will be done,
but most of the time only fast interpolations on the existing basis will
be used;

• overall, the total number, say nc, of costly evaluations of f for this
SAEM run is lower than a precise off line building of a meta model.

A remark must be given here: comparison of the global computation cost with
a fixed grid approach like in Grenier et al. (2014); Barbillon et al. (2015), can
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not be done directly on nc since a fixed grid is done once for all SAEM runs,
whereas a dynamic meta model is built at each use of a SAEM algorithm.
For instance, if a meta model is used many times on various data sets, it
could be better to use a fixed grid approach than a dynamic grid approach.

The paper is presented as follows. In Section 2, we recall the problem
of maximizing the likelihood of a non-linear mixed model and the classical
SAEM algorithm. In Section 3, we present our algorithm. We start by
quickly describing the kriging and then introduce the new algorithm called
KSAEM. The two last sections are devoted to two examples: theophylline
degradation, and KPP model.

2 Maximization of the likelihood and exact

SAEM algorithm

This section is devoted to a brief presentation of the likelihood in the case
of non-linear mixed effects models and the standard SAEM algorithm that
allows to compute the maximum of the likelihood, providing an evaluation
of the population parameters.

2.1 Non linear mixed effects model

Let us start with the ideal case when enough data are available for the ith

individual. Then the individual parameters Zi can be estimated maximizing
the Gaussian density of the observations (yij)j given the (hidden) individual
parameter Zi (Gaussian error (2)):

p
(

(yij)j|Zi;σ2
ε

)
=

1

σNiε
√

2π
Ni

exp
(
− 1

2σ2
ε

Ni∑
j=1

(yij − f(tij, Zi))
2
)
.

This is equivalent to the classical least squares minimization procedure (non-
linear regression)

Ẑi = argmin

Ni∑
j=1

(yij − f(tij, Zi))
2.

However in many interesting cases, only few data are collected per individual,
and the nonlinear regression procedure is useless. An alternative is to pool all
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the data together, and to calibrate and estimate the distribution of individual
parameters in the whole population, assuming they have a Gaussian distri-
bution through the non-linear mixed effect model. Individual parameters are
recovered in a second part.

Let us denote θ = (µ,Ω, σ2
ε) the population parameters. The density of

the individual parameters Zi is simply

p
(
Zi; θ

)
=

1√
(2π)p det(Ω)

exp
(
−1

2
(Zi − µ)tΩ−1(Zi − µ)

)
Hence for individual i, the joint density of observations (yij)j and individual
parameters Zi is

p
(

(yij)j, Zi; θ
)

=
1√

(2π)p det(Ω)
e−

1
2

(Zi−µ)tΩ−1(Zi−µ) 1

σNiε
√

2π
Ni
e
− 1

2σ2ε

∑Ni
j=1(yij−f(tij ,Zi))

2

Assuming the N individuals to be independent, the density of the complete
population variables (yij, Zi)ij is

p
(

(yij)ij, (Zi)i; θ
)

= ΠN
i=1p

(
(yij)j, Zi; θ

)
As (Zi)i are hidden variables, the density of the observations (yij)ij given the

parameters θ is the integral of p
(

(yij)ij, (Zi)i; θ
)

with respect to Zi:

g
(

(yij)ij; θ
)

=

∫
p
(

(yij)ij, (Zi)i; θ
)
dZ1...dZN . (4)

With this expression we can define the log likelihood of θ to be

l(θ) = log g
(

(yij)ij; θ
)
.

The main problem is now to maximize this likelihood and to compute

θ? = argmaxθ l(θ). (5)

This problem is very delicate since the evaluation of a single value of l re-
quires the evaluation of a multidimensional integral, which in turn requires
numerous evaluations of our costly black box model. As stated, this is out
of reach even for simple models. Several methods and algorithms have been
proposed to solve this optimization problem. We focus in this paper on a
stochastic version of the well-known EM algorithm (Dempster et al., 1977),
namely the SAEM algorithm (Kuhn and Lavielle, 2005).
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2.2 SAEM algorithm

The EM algorithm relies on a series of acute ideas and on two main iterative
steps: the expectation step which computes a conditional expectation and
the maximization step which maximizes the conditional expectation with
respect to the parameters.

At iteration k of the EM algorithm, given the current value of the pa-
rameter θk, we proceed in two steps:

1. an expectation step computes, by ”doubling” the parameter θ, the
quantity

Q(θ|θk) =

∫
log p

(
(yij)ij, (Zi)i; θ

)
p
(

(Zi)i|(yij)j; θk
)
dZ1...dZN

= E
(

log p
(

(yij)ij, (Zi)i; θ
)
|(yij)ij; θk

)
, (6)

where p
(

(Zi)i|(yij)ij; θk
)

is the conditional density of the hidden vari-

ables Zi given the observations (yij)ij;

p
(

(Zi)i|(yij)ij; θk
)

=
p
(

(yij)ij, Zi; θk

)
g((yij)ij; θk)

(7)

and g is the renormalization factor (the likelihood) defined by (4).

2. a maximization step updates the current value of the parameter

θk+1 = argmaxθ Q(θ|θk). (8)

It turns out that this maximization problem is much easier to compute since
the integral in (6) is taken with respect to a fixed density (dependent of
θk) which can be approximated through Monte Carlo procedure. Moreover,
thanks to the log in the integrand, there is no exponential in function Q,
which is simply bilinear in θ. The maximization procedure is therefore com-
pletely explicit provided we know how to compute the integral with respect
to dZ1...dZN .

To approximate this integral the EM algorithm is coupled to a Monte
Carlo Markov Chain method (Kuhn and Lavielle, 2005). A Metropolis-
Hastings algorithm provides a sequence of Markov chains (Zkl

i )l with sta-
tionary distribution p((Zi)i|(yij)ij; θk). This is easily done using (7). Then
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Q(θ|θk) could be approximated by a Monte Carlo empirical mean using a
large sample ((Zkrl

i )i)r=1,...,Rl for L independent chains l = 1, . . . L. This
leads to the Monte Carlo EM (Wei and Tanner, 1990).

Q̃(θ|θk) =
1

L

∑
l

1

Rl

∑
r

log p
(

(yij)ij, (Z
krl
i )i; θ

)
= −N

2
log((2π)p det(Ω))

−1

2

N∑
i=1

Ni log(2πσε)−
1

L

∑
l

1

Rl

∑
i

1

2
(Zkl

i − µ)tΩ−1(Zkrl
i − µ)

− 1

L

∑
l

1

Rl

∑
i

∑
j

(yij − f(tij, Z
krl
i ))2

2σ2
ε

.

Note that, as stated previously, the maximization step (8) is completely
explicit.

Note that the Monte Carlo approximation Q̃(θ|θk) is somehow not ade-
quate since we need to simulate a large number of Zkl

i to get an accurate
evaluation of Q̃. However as the EM algorithm goes on, θk converges, hence
Q̃(θ|θk) will be close to Q̃(θ|θk−1). To take advantage of this convergence,
the idea of SAEM (Delyon et al., 1999) is to introduce Qk defined iteratively,
using only one realization Zkl

i per chain by

Qk = (1− γk)Qk−1 +
1

L

∑
l

γk log p
(

(yij)ij, (Z
kl
i )i; θ

)
where γk goes slowly to 0, and where Zkl

i is one realization of Zi under the
conditional distribution p((Zi)i|(yij)ij; θk) for chain l = 1, . . . , L. Condition
on γk are the following:

∑
k γ

2
k <∞ and

∑
k γk =∞. A usual choice is thus

γk = 1
kc

with c ∈]1/2, 1[.
Delyon et al. (1999) and Kuhn and Lavielle (2005) prove the convergence

of the sequence θk towards the maximum of the likelihood g, under smooth-
ness assumptions on the likelihood function.

3 Coupling kriging and the SAEM algorithm

As presented before, in the SAEM algorithm, we need to evaluate f only in
the Metropolis procedure to find out new sampling points Zkl

i . The same
evaluations of the model are then used in the computation of Qk. This is a
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costly step since it can not be parallelized for a given individual Zi (though
all individuals are independent and can be treated in parallel).

A natural idea is thus to replace f by a meta model fapp, that is by
an approximation of f which is easy and fast to compute. One of the most
popular meta model is Kriging (Sacks et al. (1989) and Santner et al. (2003)).
It is largely used because of its flexibility and because at each point of the
domain, it gives a variance of prediction that depends on the distance between
the point and the observations. This approach is detailed in Section 3.1.
Then we explain how we couple kriging with the SAEM algorithm in Section
3.2.

3.1 Kriging in a few words

Let us recall basic kriging for the function f . We work here at a fix time
t. For simplicity of notations, we will not write the dependence in t in this
Section. Assume that in a preliminary step, we have evaluated the function
f exactly at several points zj (1 ≤ j ≤ n). Let us denote D = {z1, . . . , zn}
this set of points, also called kriging basis. Note that the zj are different
from the observations (yij) and also from the (unknown) random individual
parameters Zj. We want to use the exact values of f at D to approximate f
at another point z.
The idea is to suppose that the function f is the realization of a Gaussian
process (Φ(z))z∈S, where S ⊂ Rp, entirely defined by a mean function m(.)
and a covariance function C(., .). In the simplest case, m is assumed to be
constant and the covariance function is assumed to be stationary with the
form:

∀z, z′ ∈ S,C(Φ(z),Φ(z′)) = σ2

p∏
`=1

k(|z` − z′`|; β`)

where the parameter σ2 corresponds to the overall variance on the domain
S, β` to the correlation parameter in the `th direction and k(.; .) is the cor-
relation function. Different choices can be made for the correlation function
depending on the expected regularity of f . For example, if f is highly regu-

lar, the Gaussian kernel k(z, z′; β) = exp(− |z−z
′|2

β2 ) is considered.
Given that probabilistic context, the kriging predictor fapp and the kriging
variance V arapp are the expectation and variance of the process Φ(z) condi-
tional to the exact values of f at points D = {z1, . . . , zn}, i.e.

fapp(z) = m+ c(z)C−1(f1:n −m1n) (9)
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V arapp(z) = σ2 − c(z)C−1c(z)t (10)

where f1:n = (f(zj))j=1:n, 1n is a vector of ones, C = (C(zj′ , zj))j=1:n;j′=1:n

and c(z) = (C(z, zj))j=1:n.
The function fapp(·) is then the best approximation of f in the sense that
it minimizes the mean quadratic error. The variance may be used as a
quality indicator of the approximation of f by fapp. Looking carefully at the
preceding formulas, it can be observed that the kriging predictor fapp is a
linear combination of the exact values (f(zj))j=1:n. The weight of each exact
value f(zj) in the prediction at point z strongly depends on C(z, zj), that is
to say on the distance between the two points. The more zj is close to z, the
more influential is the corresponding observation in the prediction. Moreover,
the predictor is strictly interpolating the observations, the variance is null at
each observation point and increases with the distance to observation points.

In the following of the manuscript, the parameters m,σ2 are considered
known (respectively equal to 0 and 1) and all the correlation parameters
(β`)`=1:p are considered equal (case of geometric isotropy). Of note, the pa-
rameters could be estimated from the observations. Mean m and variance
σ2 are obtained by maximizing the likelihood function. The correlation pa-
rameters (β`)`=1:p are also obtained by maximizing the likelihood function or
by minimizing a cross validation criterion. Further, when trend parameters
m are estimated, an additional variance is added to V arapp that takes into
account the additional source of uncertainty coming from estimation proce-
dure. The choice of the correlation function can also be discussed. Here the
following Matern kernel has been used for its intermediate regularity (Santner
et al. (2003)):

k(h; β) =

(
1 +
√

5
h

β
+

5

3

(
h

β

)2
)
e−
√

5h
β .

3.2 Iterations between SAEM and kriging

Now that the kriging approximation of f has been recalled, we present the
idea of coupling SAEM and the kriging, to obtain a new algorithm called
KSAEM.
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3.2.1 Iterative kriging

In some cases the individual parameters Zi will be concentrated on small
areas of parameter space. In these cases we need to have a precise meta
model in these areas, and do not need precise approximations of f away
from these areas of interest. Of course if the individual parameters fill the
whole parameter space, this observation is useless and what we propose will
not improve very much the computation cost.

The main idea is to iteratively improve the meta model during the itera-
tions of the SAEM algorithm. Each time we need to evaluate our model f at
some new candidate point Z̃, we approximate this value by our meta model.
Kriging gives an estimation fapp,k(Z̃) (9) based on the current kriging basis
Dk = {z1, . . . , znk} that contains nk points and their corresponding exact
evaluations (f(zj))j=1:nk . We also obtain an estimate on the kriging error
V ark(Z̃) (10).

If the kriging error is small enough, we use fapp(Z̃) as a good approxima-
tion of f . If the kriging error is too large, we directly compute f(Z̃). This is
a long step, but it increases the precision of our evaluation of f not only at Z̃,
but also in the neighborhood of Z̃. As we assume that individual parameters
Zi are localized, we hope that this refinement will be used in future steps of
SAEM, for larger k. We thus expect that this costly improvement will be
used in the forthcoming steps of the algorithm.

As θk converges, we have a more and more precise idea of the areas
of interest, and we can gradually improve our meta model in these areas,
in order to decrease the approximation error f − fapp in these areas. To
decrease this error everywhere is useless since few individual parameters will
be outside the areas of interest. To improve the approximation is costly, but
hopefully will be focused on small areas, and of limited extent.

3.2.2 KSAEM algorithm

Let us now describe our algorithm called KSAEM. We choose a precision δk
which slowly goes to 0. For notation’s simplicity, we present the algorithm
with one chain L = 1.

At iteration k of the SAEM algorithm, given the current value of the
parameter θk, of the individual parameters Z

(k−1)
i and the current kriging

basis Dk, we proceed as follows:
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• Simulation step: For each individual i, i = 1, . . . , N , (this step can

be parallelized), we construct a sequence Z
k(m)
i for 1 ≤ m ≤ M ,

for some fixed M , starting from Z
(k−1)
i and targeting the distribution

p(Zi|(yij)j; θk) (7), using a Metropolis-Hastings algorithm:

– We simulate some new parameter Z̃ with a proposal law q(Z̃, Z
k(m−1)
i ).

We will not detail the proposals q here since they are exactly the
same as in the classical SAEM algorithm.

– We approximate f(tij, Z̃): two cases appear

∗ Either V ark(Z̃) < δk. In this case we approximate f(tij, Z̃)
by fapp,k(tij, Z̃).

∗ Or V ark(Z̃) ≥ δk. In this case we do compute f(tij, Z̃) ex-
actly. We add Z̃ and f(tij, Z̃) to our kriging basis: Dk+1 =
Dk∪{Z̃} and include them for any further computation. This
updates fapp,k, by progressive inclusion of new points.

– Using this evaluation of f(tij, Z̃), we compute the acceptance
probability:

α(Z̃, Z
k(m−1)
i ) = min

{
1,

p(Z̃, (yij)j|θk)
p(Z

k(m−1)
i , (yij)j|θk)

q(Z
k(m−1)
i , Z̃)

q(Z̃, Z
k(m−1)
i )

}
,

(11)

– We define Z
k(m)
j = Z̃ with probability α(Z̃, Z

k(m−1)
i ) and else

Z
k(m)
j = Z

k(m−1)
i . After M iterations, we set Zk

j = Z
k(M)
i .

• Stochastic Approximation step: We update Qk (6)

Qk = (1− γk)Qk−1 + γk log p
(

(yij)ij, (Z
k
i )i; θ

)
• Maximization step: Computation of θk+1 as for the usual SAEM algo-

rithm.

In the following applications we choose a piecewise decreasing profile for
δk but this choice can be discussed. And its influence can be of importance
for the sequential process.

The complete study of the convergence of KSAEM is beyond the scope
of this paper.
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4 A first example: theophylline degradation

4.1 Model

To illustrate our method, let us begin with a very simple case: the phar-
macokinetic (PK) degradation of theophylline, an anti-asthmatic drug. This
example is widely discussed in Monolix Team (2012).

The general context is the following: subject i receives an initial dose B
at time 0 and serum concentrations (yij) are measured at times (tij). The
degradation is modeled by a first-order (absorption) one-compartment model

yij =
Bkaikei

Cli(kai − kei)

(
e−kei tij − e−kai tij

)
+ εij, (12)

where Cli is the clearance, kai and kei are the absorption and elimination
rates of subject i. The vector of individual parameters is

φi = (log(kai), log(kei), log(Cli)).

We assume φi to be a log-normal random variable with a diagonal variance
matrix, namely

log(kai) ∼ N (µka , ω
2
ka)

log(kei) ∼ N (µke , ω
2
ke)

log(Cli) ∼ N (µCl , ω
2
Cl

)

Note that the model depends on four parameters: ka, ke, Cl and on time
t, and is simply

f(ka, ke, Cl, t) =
Bka ke

Cl(ka − ke)

(
e−ket − e−ka t

)
.

Three possibilities appear to incorporate time in our analysis. The first and
the simplest is to compute kriging on three parameters ka, ke, Cl for each
time step (see Marrel et al. (2011) for the spatial case). Another one is to
consider time as an additional parameter and to use kriging algorithm on
the four parameters ka, ke, Cl and t. The difficult aspect of this approach
is to choose a good covariance function (Picheny and Ginsbourger (2013)).
The last option is to consider that there are only three parameters ka, ke,
Cl and that the output of the model is the function t→ f(ka, ke, Cl, t). The
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usual idea is to reduce the functional output space to a vectorial one by
decomposing the functional output on a functional basis. Each coefficient
from decomposition is approached by a kriging metamodel (see Auder et al.
(2012) and Moutoussamy et al. (2015)). Here, the difficulties are the choice
of an appropriate functional basis (wavelets, splines etc.), the choice of the
right number of functions in the basis and the modelling of the possible
dependance between coefficients. In our examples, we always consider the
first approach, a little bit more time consuming than the others, but that
gives good results.

4.2 Data analysis

We simulate 100 sets of data with N = 100 subjects, 12 points per subjects
following the design of the original set of data (see Monolix Team (2012)
for more details). The parameter values are set as follows: µka = 1.5, µke =
0.08, µCl = 0.04, ω2

ka
= 0.01, ω2

ke
= 0.01, ω2

Cl
= 0.01 and σ2

ε = 0.55. We
want to compare the behavior of KSAEM and SAEM algorithms when esti-
mating these 7 parameters. Algorithms are initialized with µ0,ka = 1, µ0,ke =
0.025, µ0,Cl = 0.05, ω2

0,ka
= 1, ω2

0,ke
= 1, ω2

0,Cl
= 1 and σ2

0,ε = 1.
For the SAEM algorithm we use standard parameters (300 iterations

during the first phase of the algorithm, 300 in the second phase, L = 3 chains
and two iterations per kernel). During its run, SAEM evaluates about 850000
times the model. Note that the model is so simple that its precise evaluation
is very quick. As a consequence, SAEM algorithm converges within a few
minutes on current laptops.

For KSAEM, we use a Matern kernel, with β = 0.5. We do not change
the kernel during the run. This could be done in order to update the cor-
relation function while new model values are evaluated (the study of this
improvement is postponed to later works). We first evaluate the model on
30 points uniformly spread out over the parameters domain. The choice of
δk is somehow arbitrary. If δk decreases too fast, the error of approximation
of the meta model becomes much smaller than the error of SAEM algorithm.
This does not improve the quality of the result of KSAEM, but leads to a
large number of evaluations of the complete model, and thus to large com-
putational times. If δk decreases too slowly, the error of approximation of
the meta model is too large, and the results of KSAEM are of poor quality.
For this example, after a few trials we have chosen to improve one hundred
times the quality of kriging approximation with respect to the quality of the
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Parameters True values SAEM KSAEM
µka 1.5 1.476 (0.265) 1.837 (0.733)
µke 0.08 0.081 (0.015) 0.088 (0.027)
µCl 0.04 0.040 (0.004) 0.041 (0.011)
ω2
ka

0.01 0.040 (0.084) 0.023 (0.031)
ω2
ke

0.01 0.041 (0.090) 0.011 (0.010)
ω2
Cl

0.01 0.010 (0.004) 0.013 (0.011)
σ2
ε 0.55 0.040 (0.084) 0.024 (0.032)

Table 1: Simulation study with PK model (Theophylline): results obtained
from 100 repetitions, with N = 100 individuals with the exact SAEM and
KSAEM (SAEM coupled with a kriging approximation of the model). Re-
sults are presented in means and standard deviation in brackets.

initial kriging grid. We therefore choose δk as follows. During the first 50000
evaluations of the model, we add a new point to the kriging if the variance
is larger than 0.05. Between 50000 and 500000, we add a new point if the
variance is larger than 5.10−3 and after 500000 if the variance is larger than
5.10−4.

At the end of the run, KSAEM has evaluated about 850000 times the ap-
proximate meta model through kriging, and has added 63 new kriging points.
In this case KSAEM needs 93 evaluations of the complete model. This has
to be compared with the 850000 evaluations of the model by SAEM. Hence,
in this particular case, KSAEM needs close to 10000 times less evaluations
of the complete model than SAEM needs.

Estimation results are presented in Table 1. The mean parameters µka ,
µke and µCl are very well estimated with SAEM. The variance parameters
are more difficult to estimate but this is well-known in this model. The
estimations of the mean parameters by KSAEM are not as good as for SAEM
(which is in agreement with the fact that a meta model is used instead of
the complete model) but they are reasonably accurate.
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5 A second example: KPP

5.1 Model

As a second illustration of KSAEM we will consider the following classical
version of the KPP (or reaction-diffusion) equation

∂tu−∇.(ν∇u) = λu(1− u) (13)

where u(x) is the unknown concentration (assumed to be initially a compact
support function for instance), ν the diffusion coefficient and λ the reaction
rate. These equations are posed in a domain ∆ with Neumann boundary
conditions. Initially we assume that the support of u is very small and
located at some point x0 ∈ ∆. We will assume that we do not observe u
directly but only the total amount of u, namely

S(t) =

∫
∆

u(t, x) dx.

For instance, this equation can be used to model tumor growth. Often we
do not have the precise location of the tumor (or do not want to enter into
the difficulties of imaging) and only have an estimate of tumor size.

We will use this model in one space dimension. This model already retains
some difficulties of partial differential equations based models (importance
of space dimension, slow numerical evaluation) but not the difficulties of
geometry which appear in two or three space dimensions. Note that even
with refined numerical methods, if the diffusion ν is small and the reaction
λ is large, equation (13) is stiff and therefore long to evaluate numerically.
The evaluation time may be hundred or thousand times longer than for a
classical ordinary differential equations system.

If we try to apply directly SAEM algorithm on this model, we have to deal
with a very large computational cost (3 days on a laptop). In a former paper
Grenier et al. (2014), we coupled SAEM algorithm with a precomputation
step on a grid. This already speed up the algorithm, however the precom-
putation step can be shortened by our approach (see below). This model
is therefore a good benchmark for population parametrization of complex
systems.
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5.2 KSAEM

We assume that the three parameters of our model x0, λ and ν follow a log-
normal distribution. The values used for the simulations are the following:
µλ = 0.0236, µν = 8.195 × 10−7 and µx0 = 0.4. The variances are all chosen
equal ω2

λ = ω2
ν = ω2

x0
= 0.04 and the measurement noise is set to σ2

ε = 0.05.
We generate randomly 100 sets of data with 100 individuals and simulate the
complete model for these individuals. We then run both the SAEM and the
KSAEM algorithms on these observations to compare the estimation of the
7 population parameters. Algorithms are initialized with µ0,λ = 0.008, µ0,ν =
3× 10−7, µ0,x0 = 0.8, ω2

0,λ = ω2
0,ν = ω2

0,x0
= 1 and σ2

0,ε = 1.
The SAEM algorithm requires about 900000 evaluations of KPP, namely

almost one million evaluations of a partial differential equation which may
be stiff if the diffusion is small. This lasts about 3 days on a laptop with our
current implementation (C++ code).

For KSAEM, we use the Matern kernel with β = 0.99. We start with
20 evaluations of KPP. We will use a uniform 20 points basis for the kriging
before running SAEM. It is also possible to start from optimized sets of points
(Dupuy et al. (2015), Pronzato and Muller (2012) and Jin et al. (2005)),
however this leads to bad results, in coherence with the theoretical results
established in Barbillon et al. (2015) for other models. The sequence δk
is chosen in order to increase the accuracy of the meta model by a factor
100. To this end, we update the kriging mesh before 50000 iterations if
the variance is larger than 0.05, between 50000 and 500000 if the variance
is larger than 5.10−3 and after 500000 if the variance is larger than 5.10−4.
After this whole process, only 22 points have been added in the basis, while
the KSAEM run made about 930000 calls to the approximate meta model
through kriging. Therefore the total number of KPP evaluations needed by
KSAEM is 42. This is to be compared with the 900000 evaluations of KPP
needed by SAEM. In this case KSAEM is much faster than SAEM since the
kriging evaluation time is much smaller than the KPP evaluation time. A
typical KSAEM run is about 1 minute (vs. 3 days for SAEM).

We compare the results obtained with KSAEM and with the exact SAEM.
Results are presented in Table 2. The exact SAEM gives very good results
for all the parameters, except σ2

ε which is slightly underestimated. KSAEM
gives good results to estimate the three mean parameters λ, ν and x0. The
three individual variances ω2

λ, ω
2
ν and ω2

x0
are overestimated, especially the

first two. Thus, iterative kriging seems to be a good strategy, both saving
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Parameters True values SAEM KSAEM
µλ 0.0236 0.0229 (0.009) 0.0259 (0.013)
µν (× 107) 8.195 8.6327 (4.058) 8.3869 (4.390)
µx0 0.4 0.4024 (0.107) 0.5615 (0.200)
ω2
λ 0.04 0.0391 (0.035) 0.1382 (0.143)
ω2
ν 0.04 0.0451 (0.050) 0.1688 (0.173)
ω2
x0

0.04 0.0426 (0.030) 0.0905 (0.113)
σ2
ε 0.05 0.0391 (0.035) 0.1383 (0.143)

Table 2: Simulation study with KPP model: results obtained from 100 repe-
titions, with N = 100 individuals with the exact SAEM and KSAEM. Results
are presented in means and standard deviation in brackets.

computation time and providing reasonable estimates of the parameters.

6 Conclusion

The use of genuine SAEM algorithm on complex models leads to very long
computation time. A first idea is to replace the evaluation of the complete
model by a simple interpolation on a precomputed grid. This approach re-
quires a long off line step, but SAEM is then very fast. This approach will
be interesting if the same model must be run on many different data sets,
and if the offline step can take place before the first analysis is necessary.

An other idea is to start from a few precomputed values of the complex
model and to complete this basis upon request. In the current approach
the off line step is much faster, and the online step is parsimonious. This
approach can be useful if there is a few different data sets to analyze.

A drawback of the current algorithm is the necessity to choose the various
δk. If δk decreases too fast, useless evaluations of the complete model will
lengthen the computation. On the contrary if δk remains too large, the
precision of the result of KSAEM will be impaired. To choose optimally δk
implies to understand the link between the convergence speed of the meta
model and the convergence speed of SAEM, a question which is widely open.
In our two examples, the choice of δk has been done after a few trial and
error.

Note that the mathematical proof of the convergence of KSAEM is open
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and appears to be a difficult question.
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11-LABX-0025-01), the PEPS Egalité Integer Project and the Fédération
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