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Abstract

In this Note, we address the construction of a class of stochastic Ogden’s stored energy functions associated
with incompressible hyperelastic materials. The methodology relies on the maximum entropy principle, which is
formulated under constraints arising in part from existence theorems in nonlinear elasticity. More specifically,
constraints related to both polyconvexity and consistency with linearized elasticity are considered and potentially
coupled with a constraint on the mean function. Two parametric probabilistic models are thus derived for the
isotropic case and rely in part on a conditioning with respect to the random shear modulus. Monte Carlo simula-
tions involving classical (e.g. Neo-Hookean or Mooney-Rivlin) stored energy functions are then performed in order
to illustrate some capabilities of the probabilistic models. An inverse calibration involving experimental results is
finally presented.

Résumé

Sur une classe de potentiels élastiques stochastiques pour les matériaux hyperélastiques incom-
pressibles isotropes. Dans cette Note, on s’intéresse à la construction d’une classe de modèles stochastiques
pour des matériaux hyperélastiques incompressibles. La méthodologie de construction repose sur le principe du
maximum d’entropie, formulé à partir de contraintes induites par les théorèmes d’existence en élasticité non-
linéaire. Plus précisément, des contraintes associées à la polyconvexité et à la cohérence avec l’élasticité linéarisée
sont introduites, et éventuellement couplées avec une contrainte relative à la fonction moyenne. Deux modèles
probabilistes paramétriques pour les densités d’énergie considérées sont par suite proposés dans le cas isotrope,
et reposent notamment sur un conditionnement vis-à-vis du module de cisaillement aléatoire. Des simulations
numériques de Monte Carlo pour des potentiels classiques (e.g. Néo-Hookéen ou Mooney-Rivlin) sont ensuite
conduites afin d’illustrer les capacités du modèle. Une identification inverse basée sur des résultats expérimentaux
est enfin présentée.
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1. Introduction

In this work, we address the construction of parametric probabilistic representations for stored energy
functions defining incompressible hyperelastic materials. Such models are dedicated to predictive model-
ing in nonlinear elasticity, where engineered or biological materials can exhibit uncertainties (at some scale
of interest) that are worth taking into account. This random behavior may arise from e.g. batch-to-batch
variability or processing defects for manufactured composites, or from intrinsic variability in the case of
complex heterogeneous materials (see [1] and the references therein for a discussion regarding experimen-
tal results in biomechanics, for instance). Unlike the linear case, where the modeling and propagation of
uncertainties gave rise to an extensive literature (both in applied mathematics and computational me-
chanics; see the references below), the nonlinear case has surprisingly received little attention – at least,
from a modeling standpoint. Uncertainty propagation from microscale to macroscale was analytically ad-
dressed in [2], where bounds on effective properties are expressed, by means of Hashin-Shtrikman bounds,
in terms of the fluctuation terms. Computational multiscale frameworks based on a microscale description
were further proposed in [3,4] and rely on the combination between interpolation schemes (in the space
of macroscopic deformations) and polynomial chaos expansions [5]. The construction of relevant para-
metric probabilistic representations for stored energy functions exhibiting some uncertainties therefore
remains an intricate and open question. In this paper, we propose a very first contribution to this field
in the framework of Information Theory, and restrict the derivations to the isotropic case for the sake
of readability. The aim is to develop a methodology for the derivation of relevant probabilistic models
for stochastic stored energy functions, thanks to the principle of maximum entropy. In order to ensure
mathematical consistency, the latter is formulated under constraints related to existence theorems in
nonlinear elasticity and coherence at small strains. These constraints can be subsequently supplemented
with an additional one associated with the mean function, if need be. The paper is organized as follows.
For completeness, a brief review of hyperelasticity is first presented in section § 2. The construction of a
class of stochastic stored energy functions for incompressible hyperelastic materials is then addressed in
section § 3. Monte Carlo simulations and an inverse identification based on experimental data are finally
presented in section § 4 in order to illustrate the model capabilities.

Notation. Throughout this paper, use will be made of the following matrix sets:

(i) Md(R) the set of real (d× d) matrices;

(ii) Ld(R) the set of real (d× d) matrices with an unitary determinant.

Deterministic (resp. stochastic) scalar-valued random variables are denoted α or a (resp. � or A). Similarly,
deterministic (resp. stochastic) vectors are denoted by a (resp. A).

2. Framework for deterministic hyperelasticity

Let Ω ⊂ R3 be a bounded open connected set with a sufficiently regular boundary, and denote by Ω its
closure. It is assumed that Ω is occupied by a homogeneous incompressible isotropic hyperelastic material
characterized by a stored energy function ŵ : L3(R)→ R such that [6,7,8,9]:

[T̂ ([F ])] =
∂ŵ([F ])

∂[F ]
− h̃[F ]−T ,∀[F ] ∈ L3(R) , (1)
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where [T̂ ] : L3(R) → M3(R) is the response function associated with the first Piola-Kirchoff tensor [T ] :
Ω→ M3(R), [F ] is the deformation gradient and h̃ is a Lagrange multiplier (which is typically interpreted
as an hydrostatic pressure) enforcing the incompressibility condition. In addition to isotropy, the stored
energy function is classically assumed to satisfy frame-invariance, so that according to representation
theorems, there exists a function w such that:

ŵ([F ]) = w(υ1([F ]), υ2([F ]), υ3([F ])) , (2)

where {υj([F ])}3j=1 are the eigenvalues of [F ]. Such a class of strain energy functions was extensively
studied for natural rubbers and proposed, on the basis of phenomenological concerns, by Ogden [10,11].
More specifically, the following algebraic form was postulated [10]:

ŵ([F ]) =

m∑
i=1

αiΦγi([F ]) +

n∑
j=1

βjΥδj ([F ]) , ∀ [F ] ∈ L3(R) , (3)

where {αi, γi}mi=1 and {βj , δj}nj=1 are sets of model parameters. In Eq. (3), Φ : L3(R) → R and Υ :
L3(R)→ R are the functions defined as

Φγi([F ]) = υ1([F ])γi + υ2([F ])γi + υ3([F ])γi − 3 (4)

and
Υδj ([F ]) = (υ1([F ])υ2([F ]))δj + (υ1([F ])υ3([F ]))δj + (υ2([F ])υ3([F ]))δj − 3 (5)

for any deformation gradient [F ] ∈ L3(R). The above stored energy density function can be shown to be
polyconvex whenever the above parameters verify αi > 0 for 1 6 i 6 m, γ1 > · · · > γm > 1, βj > 0 for
1 6 j 6 n and δ1 > · · · > δn > 1. This polyconvexity property, together with suitable growth conditions,
ensures the existence of minimizers for the total energy functional [12] (see also [13,7] for discussions).
If γ1 > 2 and δ1 > 3/2, the stored energy density function defined by Eq. (3) can be shown to exhibit
a coercivity property which implies the existence of a global minimizer of the total energy function for
pure displacement, pure traction and displacement-traction problems [14] (note that similar results exist
for compressible materials; see [12,7]).

For m = n = 1 and γ1 = δ1 = 2, the stored energy function under consideration reduces to the
Mooney-Rivlin model for incompressible materials:

ŵ([F ]) = α1

(
‖[F ]‖2 − 3

)
+ β1

(
‖Cof([F ])‖2 − 3

)
, ∀ [F ] ∈ L3(R) , (6)

where α1 > 0 and β1 > 0 by the constraint of polyconvexity. The Neo-Hookean model for incompressible
materials [15] can be recovered by disregarding the second term in the right-hand side of Eq. (3) and by
setting m = 1 and γ1 = 2:

ŵ([F ]) = α1

(
‖[F ]‖2 − 3

)
, ∀ [F ] ∈ L3(R) , (7)

with α1 = µ/2 > 0 by the consistency condition. Specific discussions on existence theorems for the
Neo-Hookean model can be found in [12,16].

3. Stochastic models of stored energy functions for incompressible hyperelastic materials

3.1. Definition of a parametric probabilistic representation

Let Ŵ be the stochastic stored energy function corresponding to the probabilistic modeling of ŵ, and
let p and η be the vectors in Rnp such that

p = (α1, . . . , αm, β1, . . . , βn) , η = (γ1, . . . , γm, δ1, . . . , δn) , (8)
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with np := m+ n. In this work, it is assumed that the model exponents involved in Ŵ are deterministic
(and may correspond to a fit with respect to a mean response function, for instance), whereas the re-
maining coefficients are modeled as statistically dependent random variables. Let P be the vector-valued
random variable corresponding to the stochastic modeling of p and for which the probabilistic model is
sought. The construction of the latter is performed by imposing that the stochastic stored energy function
is:

(i) polyconvex almost surely (a.s.), which follows whenever 0 < Pk, 1 6 k 6 np, a.s.;

(ii) coherent at small strains, meaning that P and η satisfy the usual consistency condition with lin-
earized theory [8,9]:

np∑
k=1

Pkη
2
k = 2� , (9)

where � is the random variable with values in ]0,+∞[ modeling the stochastic shear modulus, and

Pk <
2�
η2
k

, 1 6 k 6 np (10)

almost surely (recall that ηk > 0, 1 6 k 6 np, by construction). For an incompressible Mooney-
Rivlin material, the above constraints reduce to 2(P1 + P2) = � and 0 < Pk < �/2, i ∈ {1, 2},
a.s.

Note that since the exponents are assumed to be deterministic, the coercivity property does not constraint
the construction of the probabilistic model. From a methodological standpoint, and following Eqs. (9)
and (10), a probabilistic model is first constructed for the random shear modulus �, and the one related
to P is then derived through a conditioning on �. In order to ensure that Eq. (9) holds a.s., an arbitrary
component of P , say Pnp

, is algebraically defined as

Pnp
=

1

η2
np

{
2�−

nq∑
k=1

Pkη
2
k

}
, (11)

so that the construction of the probabilistic model is achieved on the random vector Q := (P1, . . . , Pnq
)

that takes its values in a subset of Rnq , with nq := np − 1. Note here that the probabilistic models for
Q and � completely define the system of marginal probability distributions for the stochastic process
{Ŵ ([F ]), [F ] ∈ L3(R)}. One is then concerned with the construction of the joint probability density
function p�,Q of random variables � and Q such that:

p�,Q(µ, q) = p�(µ)× pQ|�=µ(q) . (12)

Next, a normalized vector-valued random variable U is introduced and defined as

Uk :=

(
η2
k

2µ

)
(Qk|� = µ) , 1 6 k 6 nq , (13)

with µ > 0 a.s. Hence

pQ|�=µ(q) = pU ([G(µ)]−1q)× 1

(2µ)nq

nq∏
k=1

η2
k , (14)

where [G(µ)] is the invertible diagonal (nq × nq) matrix given by

[G(µ)]kk =
2µ

η2
k

, 1 6 k 6 nq , (15)
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and

p�,Q(µ, q) = p�(µ)× pU ([G(µ)]−1q)× 1

(2µ)nq

nq∏
k=1

η2
k . (16)

It can be deduced from Eqs. (10), (11) and (13) thatU takes its values in the interior of the nq-dimensional
simplex S, independent of the shear modulus, such that:

S :=

{
u ∈ Rnq | 0 < uk < 1, 1 6 k 6 nq, 1−

nq∑
k=1

uk > 0

}
. (17)

Below, the explicit forms of p� and pU are constructed in the framework of Information Theory and
more precisely, by invoking the principle of maximum entropy (MaxEnt) [17,18,19]. The latter allows
for the derivations of probability distributions that, while consistent with the information available on
the random variables to be defined, maximize the uncertainties as measured by Shannon’s differential
entropy. Such an approach is therefore well suited in order to derive unbiased probabilistic models, and
was fruitfully used so as to construct stochastic representations for tensor-valued random variables and
random fields in linear elasticity [20,21,22,23]. To the best knowledge of the authors, this work is the first
attempt to construct information-theoretic models in finite elasticity.

3.2. Stochastic modeling of the random shear modulus

It is assumed that random variable � satisfies the following constraints:

E {�} = µ , (18a)

E {log(�)} = ν , |ν| < +∞ . (18b)

The first constraint given by Eq. (18a) means that the mean value of � is known, whereas the second
one is a repulsive constraint implying that � and �−1 are both second-order random variables [24]. The
MaxEnt based probability density function of random variable � is then given by:

p�(µ) = 1R∗
+

(µ) k0 µ
ρ1−1 exp

(
− µ

ρ2

)
, ∀µ > 0 , (19)

where 1R∗
+

is the indicator function of R∗+, k0 is the normalization constant and (ρ1, ρ2) is a set of strictly
positive Lagrange multipliers raised by the MaxEnt principle. It can further be shown after little algebra
that (ρ1, ρ2) = (δ−2

� , µ δ2
�), with δ� and µ the coefficient of variation and mean value of � respectively, so

that the above probability density function writes

p�(µ) = 1R∗
+

(µ)
µδ

−2
� −1

(µ δ2
�)δ

−2
� Γ(δ−2

� )
exp

(
− µ

µ δ2
�

)
, ∀µ > 0 , (20)

where Γ is the Gamma function [25] defined as:

Γ(z) =

∫ +∞

0

tz−1 exp (−t) dt , ∀z > 0 . (21)

It follows that under the constraints defined by Eqs. (18a) and (18b) (which correspond to the minimal
mathematical requirements), the random shear modulus is a Gamma-distributed random variable with
parameters (δ−2

� , µ δ2
�).
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3.3. Construction of a probabilistic model under constraints related to polyconvexity and coherence at
small strains

3.3.1. General derivations
Let us consider the following constraints on random variable U :

E {log (Uk)} = νk, 1 6 k 6 nq , (22a)

E

{
log

(
1−

nq∑
k=1

Uk

)}
= νnp

, (22b)

where |νk| < +∞ for 1 6 k 6 np. These equality constraints are repulsive with respect to the boundaries
of simplex S, thus insuring that U has values in S almost surely. Let (1 − λ1), . . . , (1 − λnp

) be the
associated (np) Lagrange multipliers. It can then be shown that the probability density function pU of
U takes the form

pU (u) = 1S(u)

{
Γ
(∑np

k=1 λk
)∏np

k=1 Γ(λk)

} (
nq∏
k=1

uλk−1
k

)(
1−

nq∑
k=1

uk

)λnp−1

, ∀u ∈ S . (23)

It follows that U is distributed according to a Dirichlet-type I distribution [26] with parameters λ1, . . . ,
λnp . Whereas the integrability condition requires that the Lagrange multipliers are all strictly positive,
the property λk > 1, 1 6 k 6 np, is further imposed in order to ensure unimodal first-order marginal
probability functions, as well as proper repulsion conditions from the boundaries of S. Let Dλ denote the
admissible set for the vector-valued representation of the Lagrange multipliers:

Dλ := {λ ∈ Rnp | λk > 1, 1 6 k 6 np} . (24)

In addition, it can be deduced that each random variable Uk, 1 6 k 6 nq, follows a beta-type I distribution
with parameters (λk, ξk), where ξk := (

∑np

`=1 λ`)− λk, and

pUk
(u) = 1]0;1[(u) {B (λk, ξk)}−1

uλk−1(1− u)ξk , ∀u ∈]0, 1[ , (25)

in which B : R∗+ × R∗+ → R is the beta function given by [25]:

B (x, y) =

∫ 1

0

tx−1(1− t)y−1 dt . (26)

The following proposition can then be deduced from the above derivations.
Proposition 3.1 Let Ŵ : L3(R)→ R be the stochastic stored energy function defined as

Ŵ ([F ]) :=
m∑
i=1

Qi|�Φγi([F ]) +
n−1∑
j=1

Qm+j |�Υδj ([F ]) + δ−2
n

(
2�−

nq∑
k=1

Qk|� η2
k

)
Υδn([F ]) , (27)

for all [F ] ∈ L3(R), in which nq := m+ n− 1 and

(1) γ1 > 2 and γ1 > . . . γm > 1;

(2) δ1 > 3/2 and δ1 > · · · > δn > 1;

(3) the random shear modulus � is a Gamma-distributed random variable with parameters (δ−2
� , µ δ2

�) ,
in which µ and δ� are respectively the mean value and coefficient of variation of �;

(4) the random variable Q|� is defined component-wise as (Qk|� = µ) := 2µUkη
−2
k , 1 6 k 6 nq, where

the random variable U takes its values in the interior of the nq-dimensional simplex

S :=

{
u ∈ Rnq | 0 < uk < 1, 1 6 k 6 nq, 1−

nq∑
k=1

uk > 0

}
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and follows a Dirichlet-type I distribution with vector-valued parameter λ such that λk > 1 for
1 6 k 6 np.

Then, Ŵ is polyconvex, coherent at small strains and satisfies the coerciveness inequality almost surely.

The above proposition ensures that for the constructed class of stochastic stored energy function, there
exists a global minimizer for the energy functional almost surely (which is a fundamental property).
Finally, and from a practical standpoint, it is worth noticing that if Y1, . . . , Ynp

are independent Gamma
random variables with respective parameters (λ1, 1), . . . , (λnp

, 1), then the random variable U such that

Ui := Yi ×

(
np∑
k=1

Yk

)−1

, 1 6 i 6 nq , (28)

is distributed according to a Dirichlet-type 1 distribution with parameters (λ1, . . . , λnp
) (see Theorem

4.1, p. 594 in [27] for instance) – hence providing a very simple and robust generator for the random
variable U involved in the above proposition.

3.3.2. Particular case of an incompressible Neo-Hookean material
For an incompressible isotropic Neo-Hookean material, the stochastic stored energy function then takes

the following form:

Ŵ ([F ]) =
�
2

(
‖[F ]‖2 − 3

)
, ∀[F ] ∈ L3(R) , (29)

in which � is the Gamma-distributed random variable defined in section 3.2, with parameters (δ−2
� , µ δ2

�).

3.3.3. Particular case of an incompressible Mooney-Rivlin material
In the case of an incompressible isotropic Mooney-Rivlin model (for which m = n = 1 and γ1 = δ1 = 2),

the stochastic stored energy function reduces to:

Ŵ ([F ]) = Q|�
(
‖[F ]‖2 − 3

)
+
(�

2
−Q|�

)(
‖Cof([F ])‖2 − 3

)
, ∀[F ] ∈ L3(R) , (30)

where (Q|� = µ) := µU/2 and the random variable U follows a beta-type I distribution with parameters
λ1 > 1 and λ2 > 1:

pU (u) = 1S(u) {B (λ1, λ2)}−1
uλ1−1 (1− u)λ2−1 , ∀u ∈ S , (31)

with S =]0, 1[.

3.4. Construction of a probabilistic model under constraints related to polyconvexity, coherence at small
strains and mean values

3.4.1. General derivations
Here, the previous constraints are supplemented with constraints related to the mean values. More

specifically, the probabilistic model is derived under the constraints given by Eqs. (22a)-(22b), as well as
under the following algebraic constraint

E {U} = u , (32)

related to the mean value of U . The probability density function pU of U then takes the form:

pU (u) = 1S(u) k0

(
nq∏
k=1

uλk−1
k

)(
1−

nq∑
k=1

uk

)λnp−1

exp

(
−

nq∑
k=1

ξkuk

)
, (33)

7



where S is the nq-dimensional simplex defined by Eq. (17), k0 is the normalization constant, {λk}
np

k=1

and {ξk}
nq

k=1 are the sets of Lagrange multipliers associated with constraints given by Eqs. (22a)-(22b)
and Eq. (32), respectively. Note that the above probability density function corresponds to a multivariate
Kummer-Beta distribution whenever ξk = ξ, 1 6 k 6 nq, in which case an explicit algebraic expression
for k0 can be obtained in terms of confluent hypergeometric functions [28]. It is worth mentioning that
the result stated in Proposition 3.1 similarly holds when U follows the probability distribution defined
by Eq. (33), hence ensuring the consistency of the proposed probabilistic model.

Finally, it should be pointed out that the above probability density function is a labelled but nonstan-
dard one, for which there is no simple generator available. In this work, the adaptive algorithm proposed
in [29] is used for sampling purposes.

3.4.2. Particular case of an incompressible Mooney-Rivlin material
For the incompressible Mooney-Rivlin model, the probability density function pU of the normalized

random variable U is a Kummer-Beta distribution with parameters (λ1, λ2, ξ1), that is:

pU (u) = 1]0;1[(u) k0 u
λ1−1(1− u)λ2−1 exp (−ξ1u) , (34)

where λ1 > 1, λ2 > 1 and ξ1 ∈ R. It can be deduced that the normalization constant takes the form:

k−1
0 = B (λ1, λ2)F (λ1, λ1 + λ2,−ξ1) , (35)

in which F stands for the confluent hypergeometric function (see e.g [25]):

F(x, y, z) =
1

B(x, y − x)

∫ 1

0

ux−1(1− u)y−x−1 exp (zu) du , (36)

for all x > 0, y > 0 and z ∈ R.
Upon evaluating the constraints given by Eqs. (22a), (22b) and (32) (with m = n = 1), it can be shown

that the Lagrange multipliers satisfy the following set of nonlinear equations:

ν1 = ψ (λ1)− ψ (λ1 + λ2) +
∂ log (F (λ1, λ1 + λ2,−ξ1))

∂λ1
, (37a)

ν2 = ψ (λ2)− ψ (λ1 + λ2) +
∂ log (F (λ1, λ1 + λ2,−ξ1))

∂λ2
, (37b)

E {U} =
λ1

λ1 + λ2

F (λ1 + 1, λ1 + λ2 + 1,−ξ1)

F (λ1, λ1 + λ2,−ξ1)
. (37c)

where ψ is the Digamma function defined as [25] (see [30] for results similar to Eqs. (37a) and (37b)):

ψ(z) =
Γ′(z)

Γ(z)
, ∀z > 0 . (38)

In practice, solving for ξ1 in the last equation of Eqs. (37) allows one to enforce the constraint on the mean
value for given repulsion conditions (as controlled in a forward manner by λ1 and λ2) at the boundaries
of S.
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4. Numerical illustrations and model calibration with experimental data

4.1. Monte Carlo simulations without constraints on mean values

In this section, an incompressible isotropic Ogden material defined by the stochastic stored energy
function given by Eq. (27) is considered. It is assumed that a coupon occupied by this material undergoes
a simple tension defined by the principal stretches υ1 = υ and υ2 = υ3 = υ−1/2. Let Σ be the real-valued
random variable corresponding to the stochastic modeling of the non-vanishing principal Cauchy stress.
Upon substituting the expression of the stochastic stored energy function in the definition of the Cauchy
stress, it can be shown that the random principal Cauchy stress Σ takes the form:

Σ(υ) =

m∑
i=1

Qi|� γi
(
υγi − υ−γi/2

)
+

n−1∑
j=1

Qm+j |� δj
(
υδj/2 − υ−δj

)
+δ−1

n

(
2�−

nq∑
k=1

Qk|� η2
k

)(
υδn/2 − υ−δn

)
.

(39)

for any υ > 0. Below, the computation of the Lagrange multipliers for given equality constraints is not
addressed: alternatively, these multipliers are considered as free model parameters and parametric studies
are subsequently performed in order to illustrate the model capabilities.

4.1.1. Incompressible Neo-Hookean material
The random Cauchy stress in the case of the incompressible Neo-Hookean model is given by:

Σ(υ) = �

(
υ2 − 1

υ

)
. (40)

The mean value µ of the shear modulus is chosen as µ = 4.1860 kg × cm−2. Confidence intervals (at
90%) for the random Cauchy stress (with υ ∈ [1, 10]) are shown in Fig. 1, for different values of δ�.
As expected, the model allows one to generate different levels of statistical fluctuations around the given

υ

1 2 3 4 5 6 7 8 9 10

Σ
(υ
)

0

100

200

300

400

500

600

Figure 1. Confidence regions (with a probability level of 0.9) of the Cauchy stress for the incompressible Neo-Hookean model.
Confidence regions are delimited by squares for δ� = 0.3, triangles for δ� = 0.2 and circles for δ� = 0.1.

mean function υ 7→ µ
(
υ2 − 1/υ

)
. For a given value of δ�, the variance thus exhibited turns out to increase

along with the stretch, which is in accordance with the experimental trends provided elsewhere [1] (see
also the references therein).
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4.1.2. Incompressible Mooney-Rivlin material
In the particular case of an incompressible Mooney-Rivlin material, the above stochastic Cauchy stress

reduces to:

Σ(υ) =

(
2Q|� +

�− 2Q|�
υ

)(
υ2 − 1

υ

)
, (41)

where (Q|� = µ) := µU/2 and U follows a Beta-type I distribution with parameters λ1 > 1 and λ2 > 1.
Confidence intervals (at 90%) for the random Cauchy stress are shown in Fig. 1 for λ1 = λ2 = λ ∈
{1 + 10−16, 5, 30}, δ� = 0.2 (left panel) and δ� = 0.05 (right panel). It is seen that due to symmetrical
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Figure 2. Confidence regions at 0.9 of the Cauchy stress for different values of λ1 = λ2 = λ. Square markers: λ = 1 + 10−16.

Triangle markers: λ = 5. Circle markers: λ = 30. Left panel : δ� = 0.05. Right panel : δ� = 0.2.

repulsion conditions (since λ1 = λ2), the mean function remains the same, regardless of the current value
of λ (for given values of µ and δ�). It is also found that the level of statistical fluctuations increases
together with υ. The evolution of the coefficient of variation for the random variable Σ(10), denoted by
δΣ(10) hereinafter, is shown in Fig. 3 for λ1 = λ2 = λ ∈ [1 + 10−16, 50] and δ� ∈ {0.05, 0.1, 0.2}. As

λ

0 10 20 30 40 50

δ
Σ
(1
0
)

0.1

0.2

0.3

0.4

0.5

Figure 3. Graph of the coefficient of variation for the random Cauchy stress Σ(10) w.r.t the Lagrange multipliers λ1 = λ2 = λ.

Squares (�) for δ� = 5%, triangles (∆) for δ� = 10% and circles (◦) for δ� = 20%.

expected, it is seen that the mapping λ 7→ δΣ(10) is monotonically decreasing, no matter the value of δ�,
and that larger levels of fluctuations are obtained for larger values of the coefficient of variation for the
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random shear modulus. Similar results are finally displayed in Figs. 5 and 4, for various combinations
of λ1 and λ2. It is seen for different behaviors can be emulated by properly selecting the values of the
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Figure 4. Confidence regions (with a probability level of 0.9) of the Cauchy stress for different sets of Lagrange multipliers

(λ1, λ2) delimited by (left panel) (1, 5) for squares, (5, 1) for triangles, (right panel) (1, 30) for circles and (30, 1) for down
triangles (δ� = 0.1, µ = 4.1860 kg×cm−2).
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Figure 5. Confidence regions (with a probability level of 0.9) of the Cauchy stress for different sets of Lagrange multipliers
(λ1, λ2) delimited by (left panel) (5, 1) for squares, (1, 5) for triangles, (right panel) (30, 1) for circles and (1, 30) for down
triangles (δ� = 0.2, µ = 4.1860 kg×cm−2).

Lagrange multipliers, hence illustrating the flexibility offered by the formulation.

4.2. Monte Carlo simulations with constraints on mean values: case of a Mooney-Rivlin material

This section is devoted to forward simulations for the stochastic representation arising from the MaxEnt
formulation with repulsion and mean constraints. In the case of a Mooney-Rivlin material, the random
variable U follows a Kummer-Beta distribution (defined by the probability density function given by
Eq. (34)) with parameters λ1, λ2 and ξ1 (see section 3.4.2). Confidence regions of the random Cauchy
stress are displayed in Fig. 6 for λ1 = λ2 = 15 and several values of ξ1. It is seen that whereas the
additional Lagrange multiplier ξ1 allows for specifying some mean function, its value slightly affects the
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Figure 6. Confidence regions (with a probability level of 0.9) of the Cauchy stress for λ1 = λ2 = 15 and δ� = 0.2. Left panel
: (�) ξ1 = 5, (∆) ξ1 = 10 and (◦) ξ1 = 20. Right panel : (�) ξ1 = −5, (∆) ξ1 = −10 and (◦) ξ1 = −20.

level of fluctuations whenever the repulsion conditions remain fixed. In order to proceed with a target
mean function while selecting a given level of fluctuations, it is then necessary to enforce that Eq. (37c)
holds for arbitrary couples (λ1, λ2). For illustration purposes, let us assume that the target mean value
of random variable Q is given by E{Q} = 0.8372, with µ = 4.1860 kg×cm−2 and δ� = 0.2 (hence,

E{U} = 0.4). For any (λ1, λ2) in (]1,+∞[)2, ξ1 must satisfy the equation

λ1

λ1 + λ2

F (λ1 + 1, λ1 + λ2 + 1,−ξ1)

F (λ1, λ1 + λ2,−ξ1)
= 0.4 , (42)

which can be solved by using, for instance, a nonlinear least-square algorithm. The graph (λ1, λ2) 7→ ξ1
thus constructed is shown in Fig. 7. Next, confidence regions for the random Cauchy stress obtained for
all these triplets are shown in Fig. 8 (left panel), where the corresponding probability density functions
associated with random variable U are also shown on right panel. As expected, the probabilistic model

5

4

λ1

3

22

3

λ2

4

15

10

5

0

-5
5

ξ 1

Figure 7. Graph of (λ1, λ2) 7→ ξ1 for all (λ1, λ2) ∈ ({2, 3, 4, 5})2 such that E{Q} = 0.8372, µ = 4.1860 kg.cm−2 and δ� = 0.2.

allows for prescribing a desired mean function, as well as a target level of statistical fluctuations, and
therefore exhibits enhanced capabilities as regards inverse identification based on (experimental) data.
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Figure 8. Confidence regions (with a probability level of 0.9) of the Cauchy stress for (λ1, λ2) ∈ ({2, 3, 4, 5})2 (left panel).
Associated probability density functions u 7→ pU (u) (right panel).

4.3. Model calibration with experimental data

Below, we finally address the calibration of the stochastic representation defined in section 3.3, taking
into account some experimental realizations. The material under consideration is a Styrene-Ethylene-co-
Butylene-Styrene (SEBS) thermoplastic elastomer. Results from uniaxial quasi-static tensile tests (see
[32] for details) demonstrates an isotropic and incompressible behavior, and exhibit a non-negligible
variability. In practice, each realization of the stress-stretch curve is seen to be very well represented by
having recourse to an Odgen-type model, with m = 1 and n = 2. Therefore, the stochastic stored energy
function is written as

W ([F ]) = Q1|�Φγ1([F ]) +Q2|�Υδ1([F ]) +
(
2�− γ2

1Q1|�− δ2
1Q2|�

)
Υδ2([F ]) , ∀[F ] ∈ L3(R) , (43)

and depends on:
— the deterministic vector η = (γ1, δ1, δ2) corresponding to the model exponents;
— the parameters involved in the probability distribution of the shear modulus, namely µ and δ�;
— the Lagrange multipliers (λ1, λ2, λ3) defining the probability distribution of random variable U (see

Eq. (23)).
In a first step, the mean model (as defined by η, µ and q := E{Q}) is calibrated by imposing a nominal
stress-stretch curve. The latter is obtained by fitting the mean experimental curve, making use of a
classical least-square algorithm. Next, and upon using the properties of the Dirichlet-type I distribution,
it can be shown that the (total) mathematical expectation of random variable Q is defined as:

E {Q1} =
2µλ1

γ2
1 (λ1 + λ2 + λ3)

, E {Q2} =
2µλ2

δ2
1 (λ1 + λ2 + λ3)

. (44)

Solving for (λ1, λ2) in the above system then yields

λ1 =
γ2

1q1

2µ− γ2
1q1
− δ2

1q2

λ3 , λ2 =
δ2
1q2

2µ− γ2
1q1
− δ2

1q2

λ3 , (45)

where only λ3 > 1 remains unknown (and such that λ1 > 1 and λ2 > 1). Therefore, the Lagrange
multiplier λ3 and δ� can be both considered as tunable parameters, the values of which may be selected
in order to enforce some level of statistical fluctuation at given stretches (in the linear part and for some
large stretch, for instance). Here, and given the very limited number of realizations (which does not allow
for the definition of converged statistical metrics), the values of δ� and λ3 are simply calibrated so that
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the experimental curves are all contained in the confidence region at 90% (see below). This confidence
region, estimated for the stochastic model thus calibrated, is shown, together with the fitted experimental
results, in Fig. (9).
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Mean curve
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Figure 9. Confidence region (with a probability level of 0.9) of the Cauchy stress for the calibrated stochastic stored energy

function.

It is seen that the stochastic representation allows for properly modeling the variability exhibited by
the experimental results, for stretches up to 20.

5. Conclusion

This work has been devoted to the construction of a class of stochastic models for Odgen-type stored
energy functions associated with isotropic incompressible materials. An information-theoretic methodo-
logy was proposed and involves algebraic constraints related to polyconvexity, coerciveness and consistence
with linearized elasticity. Upon plugging these constraints in a maximum entropy formulation, parame-
tric probabilistic models were defined, hence yielding stochastic stored energy functions that are covered,
almost surely, by existence theorems in nonlinear elasticity. It is important to note that the methodology
can be readily generalized to non-isotropic materials, provided that existence theorems hold for the case
under consideration. Forwards simulations involving Neo-Hookean and Mooney-Rivlin materials were
then performed and complemented with an inverse identification procedure involving experimental results.
Whereas the case of random exponents could also be considered, it should be pointed out that the proposed
models are shown to properly reproduce the general trends observed in experimental results, and that
the case of uncertain exponents can be handled by the proposed framework (at the expense of notational
complexity though). In addition, the models interestingly depend on a vector-valued hyperparameter, the
low-dimension of which is intended to facilitate calibration with limited data. Finally, the generalization
to compressible hyperelastic materials is worth investigating: these cases, together with procedures for
statistical inverse identification, are under investigation and will be presented in a forthcoming paper.
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