The abundance of 26Al-rich planetary systems in the Galaxy - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Astronomy and Astrophysics - A&A Année : 2015

The abundance of 26Al-rich planetary systems in the Galaxy

Résumé

One of the most puzzling properties of the solar system is the high abundance at its birth of 26Al, a short-lived radionuclide with a mean life of 1 Myr. Now decayed, it has left its imprint in primitive meteoritic solids. The origin of 26Al in the early solar system has been debated for decades and strongly constrains the astrophysical context of the Sun and planets formation. We show that, according to the present understanding of star-formation mechanisms, it is very unlikely that a nearby supernova has delivered 26Al into the nascent solar system. A more promising model is the one whereby the Sun formed in a wind-enriched, 26Al-rich dense shell surrounding a massive star (M > 32 M ). We calculate that the probability of any given star in the Galaxy being born in such a setting, corresponding to a well-known mode of star formation, is of the order of 1%. It means that our solar system, though not the rule, is relatively common and that many exo-planetary systems in the Galaxy might exhibit comparable enrichments in 26Al. Such enrichments played an important role in the early evolution of planets because 26Al is the main heat source for planetary embryos.

Dates et versions

hal-01223797 , version 1 (03-11-2015)

Identifiants

Citer

Matthieu Gounelle. The abundance of 26Al-rich planetary systems in the Galaxy. Astronomy and Astrophysics - A&A, 2015, 582, pp.A26. ⟨10.1051/0004-6361/201526174⟩. ⟨hal-01223797⟩
29 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More