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1 Introduction

Capturing the geometry of a 3D object is of great interest for many applications. Different
strategies (e.g. stereovision, shape from deformations) handling different technologies (e.g.
binocular system, structured light) have lead to a large variety of sensors having different
characteristics (we report the reader to the article of Herbort and Wöhler (2011) for an
introduction to depth sensors). In this work, we choose to use the Kinect senor. This depth
sensor has the advantage to be cheap (about 150$), to provide high-level programming
interfaces and not to need any specific calibration. These three qualities make it a good
candidate for practical use. It is partly composed of a 30 Hertz 320×240 RGB sensor, a
30 Hertz 320×240 infrared sensor and an infrared pattern projector. Range images are
obtained from the so-called light-coding technique: the projection of the infrared pattern
on the object under study is captured by the infrared sensor and the analysis of this
projection is used to recover the geometry of the object. This approach is close to the
optical profilometry technique proposed by Cobelli, Maurel, Pagneux and Petitjeans (2009)
for the measurement of water waves and in practice provides range images of 640×480 pixels
each 0.03 second. To the best of our knowledge, the Kinect sensor is not well-documented
and the main available information are shared by users from the web. In this work, we do
not focus on the technology of the Kinect and of its subsequent limitations and facilities
but use it, as best as we can, in a ”black-box” way. For that purpose, we propose to
investigate its accuracy to estimate range images of solid and liquid smooth surfaces. For a
sake of simplicity, we restrict our study to surfaces located between 680 and 780 mm from
the device. However, note that the devise is able to estimate depth data up to 13 meters
leading to an observable surface of about 10m × 14m with a magnification of about 2 cm
near the optical axis and 20cm at the periphery of the observable window.
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2 Modeling

In this subsection, we point-out a few modeling choices and their implications.
Calibration law: It is not clear how the raw data r computed from the Kinect are

related to the true distance z to the sensor. To answer this question empirically, we acquired
a set of range data for known distance-to-sensor z. For this purpose, we set the camera
at a given position and fix the optical axis orthogonally to the horizontal, then we fix a
flat board at a given distance z and we acquire the corresponding raw data r (Fig. 1-
left). This process is repeated by moving the observed flat surface along the elevation axis
using calibrated spacers (Fig. 1-center). We plotted z as a function of r in Fig. 1-right.
These results suggest the need to correct the raw values using a tangent law of the form
z = a tan(br+c)+d. We estimated the parameters (a, b, c, d) by minimising the sum of the
square errors between the actual distances z and the estimated distances a tan(br + c) + d
using a gradient descent algorithm. The estimation leads to a residual error of 1.13mm2.

Figure 1: Calibration law of the Kinect From left to right: i) schema of the experimental
set-up, ii) location of the metal spacers used to modify the z value and iii) plot of z = f(r)
(black dots) and of the tangeant calibration law (red curve).

Projection model: We modeled the geometry of the sensor as a projection model
in its simplest form which depends only on a focal length that we estimated equal to 587
pixels.

Quantisation error: The raw data given by the sensor are encoded on 11-bits. We
computed the mean quantisation error as the mean error between the true distance d and its
nearest value given by the quantification process i.e. 1

zmax−zmin

∫ zmax

z=zmin
minr∈N |a tan(br +

c) + d− z|dz which was 0.6 mm in the range of interest (680 to 780 mm). Concerning the
horizontal dimension, the magnification coefficient was about one mm per pixel near the
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optical axis.

Figure 2: Experimental characterisation of the sensor. A: Test of equivalence be-
tween errors from flat and curved surface and from solid and liquid surfaces; the errors
measured from the flat solid surface are considered as the reference. Departures of errors
from curved surfaces and liquid surfaces and their 95% confidence intervals are plotted
together with the quantification error bar (0.6mm). B: estimation of slopes from 3 points,
red lines indicate actual slopes and black ones indicate estimated slopes. C: estimation of
a sinusoidal surface, the red curves indicate the actual sinusoid and the black dots indicate
the z estimated from Kinect data.

3 Experimental characterisation

3.1 Experimental characterisation with solid surfaces

Pixel-wise error: We acquired a set of solid surfaces (from flat to quickly varying
sinus-like surfaces) at different elevations and then we used the calibration law to estimate
the surface-sensor distances. We obtained a mean error of estimation was from 0.89 mm
for flat surface to 1.05 mm for quickly varying surfaces.

The t-test with H0: ”errors coming from observations of curved and flat surfaces do not
belong to the same normal population” and p− value = 0.1 fails and the plot box (Figure
2) illustrating an equivalence testing using the errors from the flat surface as a reference
does not allow us to conclude on equivalence (or not) of the two errors (using a zone of
indifference of ± quantisation error=0.6mm).

Spatial repartition of the error: To investigate the spatial repartition of the errors
in the depth map, we analysed the values of the spatial autocorrelation of the measurement
error (Moran’s I). This analysis does not allow us to give any conclusion. Similarly, a
qualitative analysis of the errors with respect to its distances to the optical axis was not
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concluding. We think that this question is difficult to answer because of the discrete nature
of the data r and of the high value of the quantification error (about 0.6 mm) with respect
to the actual measurement error.

Shape recovering: We investigated the ability of the sensor to recover known geomet-
rical patterns. In particular, we qualitatively noticed that the the sensor is able to recover
surfaces with steep slopes and to capture wave-like patterns of small spatial periods (< 20
mm) and small amplitudes (< 2 mm). Figure 2.B and 2.C show examples of estimated
point sets.

3.2 Experimental characterisation with liquid surfaces

Since water was used as a working liquid, liquid’s light diffusivity was enhanced by the
addition of white dye. We qualitatively noticed that errors coming from observations of
solid and liquid surfaces looks comparable when the attenuation coefficient of the liquid
is larger than 113 m−1. Moreover, the t-test with H0: ”errors coming from observations
of liquid and solid flat surfaces does not belong to the same normal population” and
p − value = 0.1 fails and the plot box (Figure 2) illustrating an equivalence testing using
the errors from the flat surface as a reference suggests an equivalence of the two errors (using
a zone of indifference of ± quantisation error=0.6mm). We noticed that when observing
bright surfaces (which includes the water surfaces we studied), the sensor is unable to
provide a depth data for some pixels. For an acquisition of a moving water surface in
laboratory, this phenomenon affected about 1% of the pixels.
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