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Abstract. We investigate the combined use of a Kinect depth sensor and of a

stochastic data assimilation method to recover free-surface flows. More specifically,

we use a Weighted ensemble Kalman filter method to reconstruct the complete state

of free-surface flows from a sequence of depth images only. This particle filter accounts

for model and observations errors. This data assimilation scheme is enhanced with the

use of two observations instead of one classically. We evaluate the developed approach

on two numerical test cases: a collapse of a water column as a toy-example and a flow in

an suddenly expanding flume as a more realistic flow. The robustness of the method to

depth data errors and also to initial and inflow conditions is considered. We illustrate

the interest of using two observations instead of one observation into the correction

step, especially for unknown inflow boundary conditions. Then, the performance of

the Kinect sensor to capture temporal sequences of depth observations is investigated.

Finally, the efficiency of the algorithm is qualified for a wave in a real rectangular flat

bottom tank. It is shown that for basic initial conditions, the particle filter rapidly

and remarkably reconstructs velocity and height of the free surface flow based on noisy

measurements of the elevation alone.

Keywords: Data-assimilation, Free-surface flow, Particle filter, Ensemble Kalman filter,

Depth sensor, Shallow-water equations
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1. Introduction

The circulation of water in open channel (or free-surface flow) is a key variable in

many problems involved in hydrology. Most often, it is not possible to observe the

complete free-surface flow (i.e. time and space dependent velocity and elevation) but

only temporal sequences of sparse measurements coming from e.g. drifters, altimeters

or satellites. Although insufficient in complex situations, these observations can be

used as the starting ingredients to obtain a more complete characterization of the flow

under study. A common way to proceed consists in coupling the observations with the

conservation laws of the flow using a data-assimilation (DA) method. In geophysics, DA

has a long history of developments and applications. In fluid dynamics, DA was first used

to provide low order representations of the flow (D’Adamo et al 2007, Cuzol et al 2007).

Then, for the first time, using variational approach and particle filter, turbulent

flow image sequences were coupled with direct numerical simulations (Papadakis

and Mémin 2008) and with vortex particle simulations (Cuzol and Mémin 2009),

respectively. The reader can refer to Heitz et al (2010) for a synopsis of these attempts.

More recently, DA has been carried out either with sequential approaches (Colburn

et al 2011, Suzuki 2012) or with variational approaches (Gronskis et al 2013, Foures

et al 2014, Mons et al 2014) or even through the interesting combination of both schemes

(Yang et al 2015).

1.1. Data-assimilation using noise-free dynamic model

In the context of free-surface flows, many methods propose to tackle the data-

assimilation problem by considering that we know the dynamic model describing the

evolution of the flow under study up to some parameters such as the bed roughness,

the inflow velocity, etc. The goal of the DA method is then to estimate these unknown

parameters of the model, fitting as best as possible the observations. In addition, to

provide an estimate of the free-surface flow, such an approach is able to handle more

specific applications such as: the estimation of equivalent topography (bed geometry

and roughness) to fit the parameters of a given dynamic model to a particular river

then allowing to perform suitable numerical simulations (Roux and Dartus 2006); the

forecasting of a given situation by estimating the current flow and the parameters

of the model. In the literature, it has been many times shown that such methods

successfully perform on synthetic and sometimes real specific application cases (e.g.

Hostache et al 2010, Honnorat et al 2010). As for now, most of these works focused on

the estimation of the initial condition of the flow (Tinka et al 2009, Titaud et al 2010, Lai

and Monnier 2009), the time dependent flow at the open boundaries (Strub, Percelay,

Stacey and Bayen 2009, Bélanger and Vincent 2005, Castaings et al 2006, Lai and

Monnier 2009, Honnorat et al 2009), the bed roughness coefficients (Ding et al 2004) or

the equivalent topography, i.e. the geometry plus optionally the roughness coefficient

(Roux and Dartus 2006, Castaings et al 2006, Honnorat et al 2009), mainly from set

of sparse trajectories, sparse elevations or a combination of them. The associated
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dynamic models can consist of simple 1D/2D shallow water optionally coupled together

(Monnier and Gejadze 2007) or of more sophisticated models such as the regular ocean

modeling system (ROMS) model (Powell et al 2008) or the Mike11-Mike22 flooding

model (Madsen et al 2003, Hartnack et al 2005). The conceptual bottleneck of DA

approaches using noise-free dynamic model is that the behavior of the fluid under

study is assumed to be completely explained by tuning the parameters of the model

(this is the so-called strong-constraint paradigm of the 4D-Var formulation). However,

in practical situations the complete list of parameters involved can be huge: (time-

dependent) wind stress, (time-dependent) topology, bed roughness, (time-dependent)

boundary conditions, ... and for any situation involving parameters not dealt by the

data assimilation method, the estimation is likely to fail. This in particular explains

that such methods have not been exploited in the purpose of fully characterising the flow

under study, with the notable exception of Strub, Percelay, Stacey and Bayen (2009).

1.2. Data-assimilation using stochastic dynamic model

An alternative, and to our opinion a more appropriate, track consists in considering

that we have only an estimate of the true dynamic model describing the evolution

of the flow under study (in the context 4D-Var technique, this is the so-called weak-

constraint paradigm). To model this view, one considers that the actual state of the

system at each time t results from the propagation of the state at time t − 1 through

the estimated (known) dynamic plus a stochastic term. By using such a modeling, one

is tempted to consider the problem of fully estimating the flow understudy (instead of

a set of parameters of the dynamic model). Some authors have followed this track

and most of them uses ensemble-based methods (Salman et al 2006, Verlaan and

Heemink 1996, Madsen et al 2003, Hartnack et al 2005, Wolf et al 2000) to solve the

problem.

Among them, some authors considered the assimilation of a small set of lagrangian

observations, given for example by drifters (Salman et al 2006, Strub, Percelay,

Tossavainen and Bayen 2009). We think that the application of such observations,

limited to particular applications as the acquisition of larges set trajectories, can

be in practice a complicated task. The other authors proposed to use water level

measurements (Verlaan and Heemink 1996, Madsen et al 2003, Hartnack et al 2005, Wolf

et al 2000). In these works, the authors consider the assimilation of a very few

measurements and are interested on the reliability of the observed components of the

flow (velocity or elevation) at some critical points and do not consider the opportunity

to characterize the full flow understudy. Two main reasons can explain this situation. In

the above mentioned articles and in many hydrological applications, observations consist

of sparse local measure of velocity, flow or elevation from which it seems difficult to

estimate a reliable complete characterization of the flow all over the space. Furthermore,

the use of dense observations necessarily add a significant computational cost and

memory usage into the DA procedure. Thanks to the advent of depth-sensors and of
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Monte Carlo methods for high-dimensional problems, one can reconsider this question.

In this work, we propose a complete system to characterize free-surface shallow

flows. This system is composed of a very affordable commercial depth camera and of

the particle filter data-assimilation method proposed by Papadakis et al (2010), dealing

with stochastic dynamic model and involved in this study to account for the complexity

of real free-surface flows. In section 2, we present the stochastic data assimilation

method reconstructing the spatiotemporal geometry and motion fields of free-surface

shallow flows from sequences of depth images, only. We propose an enhancement of

the particle filter for unknown inflow boundaries by using two observations instead of

one. In section 4.1, we discuss the ability of the Kinect depth sensor having the strong

advantages to be cheap and of easy use. Then, in section 3 and in section 4, we evaluate

the potential of our system by showing its ability to estimate free-surface shallow flows

spatiotemporal geometry and velocity fields from synthetic and real data, respectively.

Finally, we conclude and give some perspectives in section 5.

2. The particle filter to assimilate depth images into a shallow flow model

The problem of estimating the consecutive states x1...t of a physical system from

a sequence of partial observations y1...t is ubiquitous in geosciences. A common

approach consists in stating it as a filtering problem i.e. characterizing the probability

distributions associated to the state space of the physical system given the past

observations and a stochastic dynamic model. More specifically, one states an

observation model and a dynamic model respectively defining the densities pYt(.|xt)

and pXt(.|x0, . . .xt−1) that are then combined via Bayes’ rule to define the posterior

probability pX0,...Xt(.|y0, . . .yt). This last distribution is called the filtering distribution

and generally cannot be given in a computable closed-form solution but can be estimated

using Monte Carlo methods.

2.1. Stating the filtering distribution

The overall model is graphically represented in figure 1 and presented in details in the

three next subsections.

2.1.1. The dynamic model The shallow-water model (often referred to as Saint-Venant

model) is practically suited to handle many hydrological situations such as tides, storm

surges, river and coastal flows, lake flows, tsunamis and more generally is theoretically

supported by the linear wave theory (or airy wave theory) when the ratio water depth

under wave length is smaller than 5.10−2 (Vreugdenhil 1995). Let briefly summarise it.

We consider a liquid in a gravitational field in open channel (or free surface) contained

in a rectangular cuboid of length L. The free surface level is supposed to be a time and

space differentiable function h(x, y, t). The bed topology is flat as sketched in figure

2.1.1. In addition, we assume that the fluid is only subject to gravity, viscous stress and
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Figure 1. Schematic view of the modeling. Each state of the system consists of the

elevation and the velocity components for the given time k∆t. The evolution of the

system is handled by a function f̃ which is unknown (we simply know a simplified

version f). An observation yt is generated from the states each k time step of the

dynamic. The unknown quantities to estimate (i.e. the states xt) consist in the first

row of this scheme while the known variables consist in the second row.

that the liquid is Newtonian, incompressible and of constant viscosity ν.

h
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g

y
x
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v

Figure 2. Free surface flow configuration.

The shallow water approximation consists in considering that ε = hmax/L � 1

(calling hmax the maximal water level) and that the dimensionless parameters follow

the asymptotical dominance as ε → 0: ε/Re = O(ε), 1/(εRe) = O(1) and Fr2 = O(1),

with Re = umaxhmax/ν the Reynolds number and Fr = umax/
√
ghmax the Froude

number. Then, performing a dimensional analysis of the Navier-Stokes equations

for an incompressible flow according to these dominances, integrating the velocity

components u and v along the water depth [0, h], considering that the pressure is

hydrostatic and empirically replacing the two bottom stress component ν ∂u/∂z(x, y, 0)

and ν ∂v/∂z(x, y, 0) by (gn2/h1/3)u|(u, v)| and (gn2/h1/3)v|(u, v)| (from Groves and

Groen formula and Manning formula, n being the Manning bed roughness factor, u

and v being described in a few lines), the shallow water equations read

∂h

∂t
+
∂hu

∂x
+
∂hv

∂y
= 0 (1a)

∂(hu)

∂t
+

∂

∂x

(
hu2 +

1

2
gh2

)
+
∂(huv)

∂y
+
gn2

h1/3
u|(u, v)| = 0 (1b)

∂(hv)

∂t
+
∂(huv)

∂x
+

∂

∂y

(
hv2 +

1

2
gh2

)
+
gn2

h1/3
v|(u, v)| = 0, (1c)
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where u =
∫ h(x,y,t)

0
u(x, y, z)dz and v =

∫ h(x,y,t)

0
v(x, y, z)dz are the depth integrated

horizontal velocities.

On that basis, we consider that the dynamic of the free surface flow under study is

completely described at time t by the state variable xt = [u(x, y, t), v(x, y, t), h(x, y, t)],

satisfying the discrete time integration of the shallow water system dynamics f :

xt = f(xt−∆t). (2)

As previously mentioned, this numerical model is based on physical assumptions and

on numerical truncation errors. In other terms, it is attempt to produce only an

approximation of the actual dynamic of the flow. We model this aspect by considering

the evolution of the state as a stochastic process (in the following we use capital letters

to denote random vectors and caligraphic letters to denote matrices):

Xt = f(Xt−∆t) + Wf
t , (3)

with X0 ∼ N (xinit,R0) and Wf
t ∼ N (0,Rt) (that denotes that the random variable

Wf
t has a normal distribution with mean 0 and covariance matrix Rt). In practice, we

model the spatial components of Wf
t as a stationnary random field whose covariance

coefficients evolve as a function of exp(−r2/r2
h) where r is the distance between the

sites of the field and rh is a bandwith parameter (Evensen 1994). The correlation

between the different times and between the three components h, u and v of Wf
t is

chosen null. We call (3) the dynamic model and we note pXt(.|xt−∆t) the subsequent

conditional probability density function that we call prior. We consider that the discrete-

time variables X0,X∆t,X2∆t, . . .XT are connected in a first order Markov chain (i.e.

p(xt|xt−∆t,xt−2∆t, . . .x0) = p(xt|xt−∆t)) with an initial distribution pX0(.). Each of

these variables Xt is latent (or unobserved) and fully characterizes the state of the

system under study at time t. We call nx the size of each variable Xt.

2.1.2. The observation model We consider that we acquire an observation yt of the

geometry of the free surface z = h(x, y, t) using a perspective range camera (often refer

to as 2.5D camera). We call g the function such that yt = g(xt) = g(h(., ., t)). There is

no simple formula giving the value of the observation yt for a given elevation function

h. A first solution consists in using a ray casting procedure to simulate the operator

g. However, such a solution can be very time consuming considering the number of

observations that we will have to perform to solve the filtering problem. To simulate

the range camera operator, the observation yt can be back-projected into the state grid

xt using an appropriate matrix G converting camera frame coordinates to object frame

coordinates. This way g(xt) simply consists in subsampling the elevation component of

xt. We tested both methods and we do not noticed any significant difference. For that

reason, we used the back-projection approach in order to speed-up the computations.

In the following, the values yt are considered to be rearranged in a vector form (to

facilitate the algebraic formulations). As the acquisition process is subject to noise, we

model the observation of the state xt as a stochastic process given by

Yt = g(Xt) + Wg
t , (4)
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where Wg
t ∼ N (0,Qt). In practice, we consider that there are no spatial correlation,

thus Qt is a diagonal matrix. We call (4) the observation model. We consider the set

of discrete-time variables Y1, . . . ,Yt, . . . ,YT conditionally independent provided that

X0 . . .Xt, . . . ,XT are known. We note pYt(.|xt) the subsequent conditional probability

density function. We call ny the size of each variable Yt.

2.1.3. The filtering model The overall model formally reads
X0 ∼ N (xinit,R0)

Xt|Xt−∆t = xt−∆t ∼ N (f(xt−∆t),Rt)

Yt|Xt = xt ∼ N (g(xt),Qt).

(5)

Then, given an initial guess of the system at time t = 0 (xinit,R0) and the set of

observations y1,...,T , we want to estimate the filtering laws pX0...t(.|y1...t) (for t ∈ [0, T ])

or one of their estimator such as the root mean square estimator

Ê(X0...t) =

∫
p(x0...t|y1...t)x0...t dx0...t . (6)

In the present study this estimator provides the elevation ĥ and the depth integrated

horizontal velocities ˆ̄u and ˆ̄v.

2.2. Solving the filtering problem : the Weighted Ensemble Kalman Filter

From a theoretical point of view, the evolution of the conditional density pX0...t(.|y1...t)

is described by the Fokker-Planck (or forward Kolmogorov) equation (Jazwinski 1970).

However, its direct numerical evaluation is intractable in real situations. In this context,

the representation of the conditional pdf as an ensemble or a set of particles and the

integration through time of each of the ensemble elements leads to particularly tractable

algorithms. The sequential importance sampling (SIS) filters (Doucet et al 2000, Gordon

et al 1993) and the ensemble Kalman filters (EnKF) (Evensen 2003), including its

numerous variants, are probably the most used methods. In this work, we followed the

recent works of Papadakis et al (2010) who proposed the Weighted Ensemble Kalman

Filter (WEnKF), a sequential importance sampling filter relying on an ensemble Kalman

filter. It combines the best of particle filter and EnKF. The algorithm is based on the

Ensemble Kalman Filter updates of samples in order to define a proposal distribution

for the particle filter that depends on the history of measurement. In the present study

we propose to enhanced the WEnKF scheme with the use of two observations yt and

yt+1 instead of one. This provides a better coupling of elevation and velocity component

estimations when considering unknown inflow boundary conditions.

In the following, we simplify the notations with ∆t = 1 so that e.g. Xt+1 = Xt+∆t.

In section 2.2.1, we recall the foundation of the sequential importance sampling filter.

In section 2.2.2, we discuss the use of an ensemble Kalman to build a specific sequential

importance sampling filter. In section 2.2.3, we propose to modify the stochastic process

underlying the ensemble Kalman filter procedure so that it uses two observations yt and
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yt+1 instead of one. In section 2.2.4, we discuss a method to build efficiently the Kalman

gain, which is the main ingredient of the ensemble Kalman filter.

2.2.1. Bayesian filtering of a non-linear process using sequential importance sampling

The sequential importance sampling method stands on the point that we can compute

any estimator of pX0...t(.|y1...t) using sequences of samples (xi
t) iteratively drawn from

a proposal density function q (optionally parametrized in y1...T ). We denote this

general proposal as qXQ
t

(.|x0,...,t−1; y1...T ) (calling XQ
t the associated random vector).

In particular, we can write the root mean square estimator (RMSE) associated to the

filtering distribution as

Ê(X0...t) = lim
N→∞

1
N

∑
iwt(x

i
0...t)x

i
0...t

1
N

∑
iwt(xi

0...t)
, (7)

where each sample xi
k (k ∈ [1, . . . , t], i ∈ [1, . . . , N ]) is generated from the distribution

of density qXQ
k

(.|xi
0,...,k−1; y1...T ) and where the weights wt are built recursively as

wt(x
i
0...t) = wt−1(xi

0...t−1)
p(yt|xi

t)p(x
i
t|xi

t−1)

q(xi
t|xi

0..t−1; y1...T )
, (8)

with for t = 0, w0(xi
0) = 1/N and each sample xi

0 is drawn according to the distribution

of density pX0(.).

The combination of the equations (7) and (8) is the keystone of any SIS filters and

leads to the following algorithm:

Algo SIS: basic sequential importance sampling algorithm

init:

for i = 1 : N

wi
1 = 1

N

draw xi
0 with density pX0

for t = 1 : T

Sampling: for i = 1 : N

draw xi
t with density qXQ

t
(.|xi

0,...,t−1; y1...T )

Weighting: for i = 1 : N

wi
t = wi

t−1(p(yt|xi
t)p(x

i
t|xi

t−1))/q(xi
t|xi

0:t−1; y1...T )

Normalising: for i = 1 : N

ŵi
t = wi

t/
∑

j w
j
t

Ê[X0...t] =
∑

i ŵ
i
tx

i
0...t .

2.2.2. The proposal distribution q In practice, any proposal qXQ
t

(.|xt−1,...,0; y1...T )

can be used and the different instanciations of the SIS filter mainly differ by this

choice. There are two main characteristics to consider when choosing the proposal

qXQ
t

(.|xt−1,...,0; y1...T ). Firstly, it must be possible to sample it a moderate time (sampling

q is needed for the SIS algorithm). Secondly, it has to be as close as possible to the
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target pdf pXt(.|y1...t) to provide a reliable estimation of the target estimator (for a

given number of particle N). A classical choice for q consists of qXQ
t

(.|xt−1,...,0; y1...T ) =

pXt(.|xt−1), resulting in the so-called bootstrap algorithm (Gordon et al 1993). Another

classical choice consists of qXQ
t

(.|xt−1,...,0; y1...T ) = pXt(.|xt−1,yt), resulting in the so-

called optimal SIS algorithm (Doucet et al 2000). While theoretically supported, these

instances of the SIS algorithm are often considered as practically less efficient than the

ensemble Kalman filter. However it seems apropriate to mention that unlike the SIS

algorithm, the ensemble Kalman filter does not converge, as the number of ensemble

members tends to infinity, to the target estimator. In this work, we combine the

benefits of the two algorithms by using an ensemble Kalman filter to build the proposal

distributions q of a SIS filter.

Interestingly, Le Gland et al (2009) showed that the ensemble Kalman filter can be

seen as a Monte Carlo simulation of the following stochastic process:

XQ
t = XQf

t +Kt(yt + Wg
t − g(XQf

t )),

with XQf

t = f(XQ
t−1) + Wf

t (f standing for forecast) and where Kt the Kalman gain

associated to samples XQf

t reads

Kt = cov(XQf

t , g(XQf

t ))(Rt + cov(g(XQf

t ), g(XQf

t )))−1.

In practice, the Kalman gain Kt is estimated from the set of samples used in the

simulation process. As a consequence the simulated random variables XQ
t are not

independent and identically distributed. However, it has been shown by Le Gland

et al (2009) that when N tends to infinity, Kt tends to its deterministic limits and the

simulated random variables tend to be independent and identically distributed according

to the normal distribution:

XQ
t |X

Q
t−1 = xt−1; y1,...,T ∼ (9)

N (f(xt−1) +Kt(yt − g(f(xt−1))), (I +KtG)Rt(I +KtG)T +KtQtKT
t ),

G being the matrix associated to the observation operator g (see Section 2.1.2). This

finally permits to define properly a proposal distribution qXQ
t

(.|xt−1,...,0; y1...T ) and a

procedure (the ensemble Kalman filter) to sample it (in the limit of large samples).

Then, one can easily restate Algo SIS as:
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Algo WEnKF: Sequential importance sampling with Kalman proposal

for i = 1 : N

draw xi
0 with density pX0

wi
0 = 1

N

for t = 1 . . . T

1) Draw xi
t:

1.1) Forecast step:

for i = 1 : N

xif

t = f(xi
t−1) + wi

t with wi
t generated from N (0,Qt)

1.2) Analysis step:

for i = 1 : N

yi
t = yt + vit with vit generated from N (0,Rt)

build Kt = cov((xf i

t ), (g(xf i

t )))× (cov((g(xf i

t )), (g(xf i

t ))) +Rt)
−1

for i = 1 : N

xi
t = xif

t +Kt(y
i
t − g(xif

t ))

set xi
0...t = [xi

0...t−1,x
i
t]

2) Weight samples:

for i = 1 : N

wi
t = wi

t−1(p(yt|xi
t)p(x

i
t|xi

t−1))/q(xi
t|xi

t−1; yt)

3) Compute estimators:

Ê[x1...t] =
∑

i(w
i
t/
∑

j w
j
t )x

i
1...t

A resulting challenge consists in performing the step 2) of this algorithm : evaluating

the three densities pYt(.|xt), pXt(.|yt) and qXQ
t

(.|xt−1; yt). Whereas pYt(.|xt), can be

evaluated very efficiently, the two other terms are more difficult to address. Following

previous works (Hoteit et al 2008, Papadakis et al 2010), we chose to drop these two

terms. More justifications about this choice can be found in (Papadakis et al 2010).

Further work is needed to evaluate the theoretical impact of this choice.

2.2.3. Using two observations for a better coupling of the state variables To improve the

previously stated algorithm, we slightly modify the proposal distribution q to incorporate

two observations yt and yt+1 instead of one. By doing this, we do not simply consider the

relationship linking the observation of the current state g(xt) and the state xt itself to

compute the Kalman gain but also introduce the next observation yt+1. Our motivation

is to provide a better coupling between the estimation of the elevation and the velocity

components of the state variables by analyzing through the observation yt and yt+1

their combined effects over the time interval [t, t + 1] instead of a simply considering

successively each observation independently from each others. In practice, this yields to

the following stochastic process:

XQ
t = XQf

t +Kt,t+1([yt,yt+1] + [Wg
t ,W

g
t+1]− [g(XQf

t ), g(XQff

t+1 )]), (10)
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where [v1,v2] denotes the concatenation of vector v1 and v2 and with,

XQf

t = f(XQ
t−1) + Wf

t ,

XQff

t+1 = f(XQf

t ) + Wff
t ,

with Wff
t ∼ N (0,Rt) and where Kt,t+1 is the Kalman gain expressing the linear

relationship between the observations yt and yt+1 and the state variable XQf

t . It writes:

Kt,t+1 = cov(XQf

t , [g(XQf

t ), g(XQff

t+1 )])×(
cov

(
[g(XQf

t ), g(XQff

t+1 )], [g(XQf

t ), g(XQff

t+1 )]
)

+R2ny

)−1

,

where R2ny is the 2ny×2ny block diagonal matrix composed of two copies of the matrix

R. We expect this process to give more suited samples to approximate the filtering

distribution pX0...T
(.|y1,...T ) and we use it as a generator for the proposal distribution q.

The question of whether this process properly defines a density q is not addressed in

this work and is a future research direction. As observed in the validation section, such

a choice improved quantitatively the estimations.

2.2.4. Computing the Kalman gain Kt To our opinion, the main challenge in the

EnKF procedure consists in computing efficiently reliable Kalman gain Kt,t+1 (or

Kt in the original version). Indeed, this matrix is crucial as it determines how to

convert the errors from the observation grid into the state grid and ultimately how

to compute the correction term associated to xi
t regarding the observation yt and the

past uncertainty. We assume the covariance matrix Rt associated to the observation

noise as known and hence focus our interest on how to estimate the covariance

matrices cov
(
XQf

t , [g(XQf

t ), g(XQff

t+1 )]
)

and cov
(

[g(XQf

t ), g(XQff

t+1 )], [g(XQf

t ), g(XQff

t+1 )]
)

(or cov
(
XQf

t , g(XQf

t )
)

and cov
(
g(XQf

t ), g(XQf

t )
)

in the basic version).

In the original EnKF implementation, these covariance matrices are estimated as

the empirical covariance matrices of the samples§. However, the empirical covariance

is only a rough estimate of the true covariance when N << nx (this is a case of the

so-called large p-small n inference problems). Indeed, the number of degree of freedom

(nx(nx + 1)/2) is too high to express correctly the covariance matrices using only N

samples. However, Xt (and g(Xt)) represents a space-structured random vectors and

we can infer a structure on their covariance matrix. Adding a structure to or regularizing

the covariance matrices will decrease the number of degree of freedom of the statistic.

Then, the estimated regularised covariance matrices are likely to better characterize

the sample statistic (for a given sample size) and thus to result in a more appropriate

Kalman gain and analysis. In this context, a pragmatic solution consists in smoothing

the covariance matrix and imposing a complete independence between spatially distant

points of the state grid (Houtekamer and Mitchell 2001). Such a localization increases

virtually the size of the ensemble. In this work, we choose to use a strategy similar

§ This choice leads to the algebrical reformulation exploited by the reduced rank, and the EnTKF

formulation.
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to the one proposed by Houtekamer and Mitchell (2001), that consists in performing

the product between the empirical covariance coefficients and a slowly positive definite

radial basis function decreasing with point-to-point distance and canceling at a fixed

cut-off distance hcorrel. In practice, we use a Buhmann (2003) function. Then all

matrices involved in the analysis step (step 1.2 in Algo SIS-KF) become sparse and

the analysis step becomes a sparse linear algebra problem that can be solved efficiently

using appropriate optimization algorithms (Golub and Van Loan 1996).

3. Numerical validation

In this section, we investigate the performance of the WEnKF method to estimate the

dynamic of a free-surface flow from synthetic sequences of depth data.

The robustness of the proposed method to simulated depth data quality is evaluated

for two flow configurations: a collapse of a water column as a toy-example and a flow

in an suddenly expanding flume as a more realistic flow. Furthermore, we illustrate the

interest of using two observations instead of one observation into the correction step

(see section 2.2.3). We note oneObs and twoObs the two WEnKF algorithms using in

the correction step one observation and two observations, respectively.

The numerical dynamical model used to simulate the two flow configurations

involves a finite volume implementation of the shallow-water system of equations

(1a,1b,1c) as proposed by Bradford and Sanders (2002). Time integration is performed

with a second-order Runge-Kutta scheme. A no-slip boundary condition is applied on

the walls.

The true states x̃1...t are calculated with this numerical model running from an

initial condition x̃0. Based on that true state we build the synthetic depth data

sequences taking every fourty time step ∆t of the numerical model integration. Then,

to simulate the depth sensor image quality, we add a white noise of standard deviation

σobs and introduce a percentage of outliers pout in the depth images. That provides the

observations y1...t. Note that for the sake of simplicity the observations are created with

the same spatial resolution as the numerical simulation grid.

The initial state xinit is obtained by deteriorating the initial true state x̃0. For that

purpose we add a random noise with a covariance having a large range (as for the noise

on the dynamical model) such that the initial state perturbation parameter

Einit =
||x̃0 − xinit||
||x̃0||

, (11)

is equal to a given quantity (typically 0.1), where ||.|| = √< ., . > is the L2-norm acting

on the whole flow domain. The following states x1...t are estimated by assimilating the

observations y1...t given the perturbated initial state xinit.

To assess the accuracy of the free-surface flow reconstruction we compare the

estimated flows x̂1...t to the true ones x̃1...t such as the assimilation errors read

Eˆ̄u,ˆ̄v =
||ŵ − w̃||

u0

and Eĥ =
||ĥ− h̃||
h0

, (12)
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where x̂ = (ŵ, ĥ) = (ˆ̄u, ˆ̄v, ĥ) and x̃ = (w̃, h̃) = (˜̄u, ˜̄v, h̃) are the estimated (via

assimilation) and true state components, respectively, and where u0 and h0 are a

characteristic velocity and a characteristic length scale, respectively. In addition, we

define the free-run errors

Eū,V =
||w − w̃||

u0

and Eh =
||h− h̃||
h0

, (13)

where x = (w, h) = (ū, v̄, h) are the free-run state components calculated with the

shallow-water numerical model from the initial condition xinit up to time t. Then, to

give an insight of the gain obtained using the observations driving the model instead

of running the model alone, we compute the ratios between assimilation and free-run

errors for the velocity Eˆ̄u,ˆ̄v/Eū,v̄ and for the elevation Eĥ/Eh.

The same set of parameters was used to evaluate our method for both synthetic

flow configurations. The number of particles N was set to 100. The initial standard

deviations of the covariance matrixR0 were equal to 0.05h0 and 0.25u0 for the elevation

and the velocity components, respectively. Then the standard deviations of Rt were

set to 0.04h0 and 0.06u0 for the elevation and the velocity components, respectively.

The bandwith parameter rh indicating the spatial decrease of R0 and Rt covariance

coefficients was set to 2h0. The covariance matrix Qt was set diagonal (no spatial

dependance on noise) with constant standard deviation equal to 0.114 h0 (this value

was estimated for the Kinect depth sensor, see section 4.1). Finally, hcorrel, the cut-off

distance of the radial basis function used for the localization process described in section

2.2.4, was set equal to 0.6h0.

3.1. Collapse of a water column

In this simple case, a small circular column of water placed at the center of a square

container collapses under gravity and generates a wave. The initial elevation h0 of the

water column above the initial container water level h∞ was such that h0 = 0.5 d0,

where the water column diameter d0 = 2 cm and with h∞ = 1.5 d0. The width of the

container was equal to L = 10 d0. The initial velocity in the container was zero. To

non-dimensionnalize the results we define the characteristic time scale t0 =
√
h0/g and

the characteristic velocity u0 =
√
gh0. The collapse of the water column was simulated

with the shallow-water numerical model in a computational domain Lx × Ly = L × L
discretized on a square grid of nx × ny = 200× 200 points and integrated in time with

a time step ∆t u0/h0 = 0.006.

Here, we considered the initial state xinit as the “perfect” case described above,

i.e. with flat and static initial water surfaces (top of the water column and around

in the container), whereas the initial true state x̃0, considered as the “real” case, was

more complex, i.e. with a large scale random extra component providing non smooth

initial water surfaces with local non-zero velocities. The observation y1...t were built

from snapshots of the true state elevation component taken every 40∆t u0/h0, leading

to an observations Strouhal number Stobs = h0/(40∆t u0) = 4.15.
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Figure 3 displays the time evolution of the observations, the free-run simulation,

the particle filter estimations and the true at three time steps. The results given by

the proposed WEnKF method showed a good agreement with the true for both the

elevation and the velocities. As expected for a sequential data assimilation scheme, the

agreement improved in time. The free-run states, i.e. the simulation starting from xinit,

rapidly diverged from the truth whereas the data assimilation scheme, starting from

an ensemble of simulations around xinit rapidly recovered the true states over time. It

should be noted here that the proposed data assimilation approach reconstructs the full

states of the free-surface flow (i.e. elevations and velocities) based on depth observations

alone. This is quite remarkable, given the limited input information. Following those

encouraging results, obtained for parameters fixed to median values, it was legitimate

to analyse the sensitivity of the method to the data quality and to the initialisation.

To this end we investigated varying parameter horizons, ranging from σobs = 0.015 d0 to

σobs = 0.12 d0, from pout = 0 to pout = 0.35 and from Einit = 0.025 to Einit = 0.5.

Figure 4 represents data assimilation errors as a function of the non-dimensional

level of noise σobs/ho, the rate of outliers pout and the rate of initial perturbation Einit,

for twoObs at t/t0 = 9.51. Whatever the parameter values, the three estimated state

components had the same low error level, below 2%. The rate of outliers (given

realistic ratio below 35%) did not influence the estimations. On the contrary the

errors increased with the level of noise in the observations. For σobs/h0 larger than

10% and 5% the errors reached a plateau slightly decreasing for the elevation h and

slightly increasing for the two velocity components ū and v̄, respectively. Note that this

changing slope might be correlated with the noise standard deviations of the observation

and dynamical models (covariance matrices Rt and Qt) equal to 11% and 6% of h0,

respectively. This asymptotic behavior, also reflected in figure 5a, indicated the good

robustness of the WEnKF scheme. The slope difference seen between the elevation

and the velocity component errors could be due to the fact that the elevation was the

observed component. Another feature of the observed component was clearly exhibited

when plotting the errors as a function of the initial perturbation level Einit (see figures

4 and 5b): the elevation component estimations were not sensitive to Einit whereas the

velocity component estimation errors slightly increased with Einit. Note that the noise

standard deviation of the observation model

As a conclusion of this first simple flow configuration experiment, the proposed

particle filter method exhibited very interesting reconstruction and robustness

properties. Furthermore, we indicate that we did not observed any significant differences

between the methods oneObs and twoObs. This result can be explained by the fact that

in the present configuration, the only source of departure from the free-run flow to the

true flow came from the unknown initial state. As a result, one did not need a complex

coupling between the model and the observation after the first few time integration

because by itself the model was able to explain the flow. The two schemes (oneObs and

twoObs) will be compared further more extensively for more realistic flow configurations

when adding unknown varying inflow conditions and a stochastic forcing term. In the
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following we fix data quality and initialisation parameters to pout = 0.1, σobs = 0.03 d0

and Einit = 0.2, respectively.

3.2. Flow in an suddenly expanding flume

In this case study, we considered the flow in a suddenly expanding flume as described

in figure 6. The flume consisted of a L = 10 cm long, L wide approach flume

before a sudden expansion and a L long, 2L wide expanding flume. The inflow water

surface elevation and velocities were oscillatory in phase with a frequency of 1 Hz

and amplitudes of 1 cm and 0.22 m/s, respectively. The inflow mean elevation and

mean velocity were Hin = 1 cm and Uin = 0.22 m/s, respectively. The corresponding

inflow Froude number Fr = Uin/
√
g Hin = 0.7 was lower than unity which indicates

that the flow was subcritical, i.e. behaved like a fluvial motion. A characteristic of

this flow lies in the sudden expansion where the flow separates and generates a two

dimensional vortex. In addition we considered two cases for the oscillatory inflow:

one with a uniform inlet velocity profile and another with a half bell-shape (square-

cosinus) inlet velocity profile leading to a more complex free surface flow dynamic. Both

expanding flume flow configurations were simulated with the shallow-water numerical

model in a computational domain Lx × Ly = 2L × 2L discretized on a square grid of

nx × ny = 200× 200 points and with a time step ∆t u0/L = 0.006, where u0 =
√
g Hin.

The true inflow states x̃in,0...t were varying periodically in elevation and in velocity.

For the assimilation methods, the variations in time of the inflow conditions were

considered as unknown and in practice were fixed to their mean values Hin and Uin. We

stress the fact that to show the ability of the stochastic model (3) to handle unexpected

situations, the inflow components were not considered as an unknown vector parameter

of an augmented model system like in Gronskis et al (2013), but just as state variable

inlet values. Moreover we considered the case, named stochastic forcing, where we add

a random large scale extra component to the state vectors when generating true states

x̃0...t before each time integration. Hence, each true states included the stochastic forcing

transported by the dynamical model during one time step ∆t and more. This was done

to mimic the complexity of real free surface flows which cannot be simulated with

the deterministic shallow water model (1a,1b,1c). In contrast with data assimilation

methods considering “perfect” models, the stochastic data-assimilation scheme (5)

carried out in this study better modeled such complex situations. The noisy observations

y1...t were built from the true state elevation component taken every 40∆t u0/L, thus

leading to an observations Strouhal number Stobs = L/(40∆t u0) = 4.17.

Results showing the particle filter estimations for an homogeneous inlet velocity

profile are given in figure 7 together with the true states. The free surface elevation

and motion were reconstructed well for all the time steps considered, but were in less

agreement near the inlet area especially when the surface dynamic was more complex

due to the stochastic forcing. As reflected in figure 8 this behaviour was emphasized

with more complex half-bell shape inlet velocity profile. The errors of the estimations
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Table 1. Ratios between assimilation and free-run errors for the suddenly expanding

flume flow at time t u0/L = 1.98.

oneObs twoObs
Inlet velocity Stochastic

profile forcinga Eĥ/Eh Eˆ̄u,ˆ̄v/Eū,v̄ Eĥ/Eh Eˆ̄u,ˆ̄v/Eū,v̄

Homogeneous No 0.05 0.08 0.04 0.06

Homogeneous Yes 0.19 0.21 0.16 0.19

Hall-bell shape No 0.17 0.25 0.15 0.26

Hall-bell shape Yes 0.30 0.57 0.20 0.53

a included in the true states x̃0...t and therefore in the observations y1...t.

performed in the configuration with stochastic forcing and uniform inlet velocity profile

are displayed in figure 9. In the inlet region the highest errors reached 20% and 43%

for the elevation and for the motion, respectively. However, the use of two observations

(twoObs) instead of only one (oneObs) improved significantly the agreement for both

the elevation and the motion. This demonstrated the capability of the proposed particle

filter scheme to deal with complex free surface flow configurations, and as it was expected

the use of more observations was necessary to reconstruct better the flow. Table 1

summarizes the influence of the inlet velocity profile shape, of the stochastic forcing and

of the number of observations considered, on the estimations accuracy. These results also

indicate the gain obtained using the observations driving the model instead of running

the model alone. The ratios between assimilation and free-run errors for the velocity

EÛ ,V̂ /EU,V and for the elevation Eĥ/Eh increased with the complexity of the flow and

decreased when using two observations instead of one. This illustrates the importance

of coupling the data and the dynamical model to reconstruct the overall flow state

(elevation and motion) with a single partial observation (elevation at the inflow location

at a given time).

4. Experimental demonstration

We now characterize the ability of the proposed WEnKF scheme, to reconstruct free

surface real flows geometry and motion, given only Kinect based measurements of the

elevation.

4.1. Kinect depth sensor

Capturing the geometry of a 3D object is of great interest for many applications.

Different strategies (e.g. stereovision, shape from deformations) handling different

technologies (e.g. binocular system, structured light) have lead to a large variety of

sensors having different characteristics. We report the reader to the work of Herbort

and Wöhler (2011) for an introduction to depth sensors. Note that recently stereoscopic

particle images velocimetry approaches have been proposed to estimate simultaneously
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morphology and velocity of moving free surfaces (Turney et al 2009, Gomit et al 2013,

Chatellier et al 2013). In this work, we choose to use the Kinect sensor to estimate

the geometry of a free surface flow for the first time (Combès et al 2011). More

recently Mankoff and Russo (2013) introduced the Kinect sensor to the earth science

community. This depth sensor has the advantage to be cheap (about 150 e), to provide

high-level programming interfaces and not to need any specific calibration. These three

characteristics make it a good candidate for practical use. It is partly composed of a

320 × 240 RGB sensor at 30 Hz, a 320 × 240 infrared sensor at 30 Hz and an infrared

pattern projector. Range images are obtained from the so-called light-coding technique:

the projection of the infrared pattern on the object under study is captured by the

infrared sensor and the analysis of this projection is used to recover the geometry of

the object. This approach is close to the optical profilometry technique proposed by

Cobelli et al (2009) for the measurement of water waves and in practice provides range

images of 640× 480 pixels at 30 Hz. To the best of our knowledge, the Kinect sensor is

not well-documented and the main available information are shared by users from the

web. Note that in the paper of Mankoff and Russo (2013) hardware and software are

described and a code for data processing is provided.

In this work, we do not focus on the technology of the Kinect and of its subsequent

limitations and facilities but use it, as best as we can, in a ”black-box” way. For that

purpose, we investigated its accuracy to estimate range images of solid and liquid smooth

surfaces. Liquid’s light diffusivity was enhanced by the addition of white dye for the

use of the Kinect sensor. For a sake of simplicity, our study was restricted to surfaces

located between 680 and 780 mm from the device. However, note that the devise is

able to estimate depth data up to 13 meters leading to an observable surface of about

10 m× 14 m with a magnification of about 2 cm near the optical axis and 20 cm at the

periphery of the observable window. A more complete description of our experiments

can be found in Combès et al (2011). The main conclusion of our studies were the

following: On solid surface, the Kinect sensor displayed a measurement uncertainty of

0.9 mm for both flat and sinus-like surfaces; The sensor captured successfully sinus-like

varying elevations with spatial periods smaller than 20 mm and amplitudes smaller than

2 mm; Measurement errors coming from observations of solid and liquid surfaces were

comparable when the attenuation coefficient of the liquid was larger than 113 m−1. As

an illustration, figure 10 shows a 3D temporal reconstruction of a water wave moving

in a rectangular flat bottom tank, captured by the Kinect.

4.2. Wave in a rectangular flat bottom tank

The real experiments carried out in this study consisted in observing the free surface of

a fluid contained in a rectangular flat bottom tank of size Lx×Ly = 250 mm×100 mm

as illustrated in figure 10. More specifically we observed the evolution of a unidirectional

wave generated by an initial free surface height difference h0 = 1 cm. In the following

the characteristic velocity u0 is considered as an approximation of wave phase velocity
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√
g h0. The wave propagation was simulated with the shallow-water numerical model

in a computational domain Lx × Ly discretized on a square grid of nx × ny = 222× 88

points and with a time step ∆t u0/Lx = 0.0042.

The Kinect depth observations were characterized by a high level of noise and

exhibited large regions of missing data on the boundaries due to light reflections on the

tanks wall. The observed free surface behaved roughly as an unidirectional wave along

the x axis. The initial state xinit was considered with a flat surface and a null velocity

although the real state was a moving wave. The observations y1...t were assimilated every

10∆t u0/L, leading to an observations Strouhal number Stobs = L/(10∆t u0) ' 24, that

was rather high. We tested ensemble size from 20 to 200 and in practice when N > 100

we do no more observe any significant reduction the estimation error. As a result, we use

N = 100. Assimilating each observation took about 10 minutes on a standard personal

computer.

Figure 11 shows estimated free-surface elevation colormap and motion vector fields

for a water wave propagating in a rectangular flat bottom tank. This time sequence in

a plan view exhibits one back and forth of the wave. The reconstructed height sequence

is a compromise between noisy Kinect observations and an imperfect dynamical model,

exhibiting the spatiotemporal complexity of the free surface motion. The predicted free

surface motion fields indicated the highest velocities on the wave crest and recirculation

regions on either side upstream and downstream of the wave. Providing a physically

consistent initial state for such a real flow was not straightforward: we could use

the measured elevation however the associated motion fields was difficult to model.

Interestingly, although we initiated the assimilation process with a flat surface and a

null velocity, as time proceeds the particle filter rapidly provided accurate estimations.

The whole free surface geometry dynamics was remarkably reconstructed from noisy

measures of the elevation only.

5. Conclusion & perspectives

Most of the time there are only temporal sequences of sparse data coming from

lagrangian or eulerian measurements of the flow elevation to characterize a free surface

flow dynamics. Although sparse and noisy, these observations when properly coupled

with a shallow water model contain enough information to reconstruct the whole free

surface flow dynamics.

This paper has presented the first free surface flow reconstruction using Kinect

based depth measurements only. The Kinect sensor was able to capture observations

of wave-like surfaces with wavelengths and amplitudes sufficiently small to support

applications such as flow monitoring or medium to large scale flows characterization. The

sequential data assimilation algorithm, based on a particle filter stochastic approach,

has been validated on two numerical cases and a real experiment in laboratory. Results

have shown remarkable reconstruction of both elevation and velocities of the free

surface flows. In addition, the influence of noise and outliers in the input depth
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data has been assessed, indicating that the method has exhibited good robustness

properties up to large deteriorations of the data quality. Another feature of the proposed

WEnKF scheme has been the quasi non-sensitivity to the initial state perturbation

levels. When starting from flat surface and null velocity the technique has rapidly and

accurately recovered the dynamics of complex free surface flows. The enhancement

of the particle filter with two observations instead of classically using only one has

improved significantly the agreement for both the elevation and the motion. Finally,

in contrast with data assimilation methods considering “perfect” models, the stochastic

data-assimilation scheme carried out in this study has yielded remarkable estimations,

given the complexity of the flow configurations and the limitations of the dynamical

model.

Note that all the presented results characterized acquisitions within an area near the

image center and from a short range. Future works will consist in investigating the data

assimilation technique over larger ranges (we recall that the Kinect is able to estimate

depth data up to 13 meters leading to an observable surface of about 10 m× 14 m with

a magnification of about 2 cm near the optical axis and 20 cm at the periphery of the

observable window) and under more practical conditions such as discharge estimation.

Future works will also consist in estimating parameters of the model such as the bed

roughness in addition to the model noise term in order to reduce the departure of our

model to the actual dynamic of the fluid and ultimately to estimate more accurately

the states of the system.
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Figure 3. Comparisons of elevation colormaps in millimeters and of free-surface

motion vector fields, for the water column collapse. From top to bottom: observations

y, free-run states x, assimilated states x̂, true states x̃. From left to right: t/t0 = 3.17,

t/t0 = 6.34 and t/t0 = 9.51. Perturbation parameters on the observations and on the

initial state were set to σobs/h0 = 0.16, pout = 0.1 and Einit = 0.1.
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Figure 4. Results for the collapse of a water column, for twoObs at t/t0 = 9.51: Left,

elevation component errors Eĥ; Right, velocity components errors Eˆ̄u,ˆ̄v as defined in

(12). From top to bottom, errors as a function of: the non-dimensional level of noise

σobs/ho with pout = 0.1 and Einit = 0.1; the rate of outliers pout with σobs/h0 = 0.1

and Einit = 0.1; the rate of initial perturbation Einit with pout = 0.1 and σobs/h0 = 0.1.
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Figure 5. Error maps for the water column collapse at time t/t0 = 6.34: (a),

with increasing additive noise level σobs/d0 ∈ [0.01, 0.04, 0.08]; (b), with increasing

perturbations of the initial condition Einit ∈ [0.1, 0.2, 0.3]. First rows: elevation errors

||h− h̃|| in [mm]. Second rows: velocity errors ||w − w̃|| in [cm/s].
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Figure 6. Schematic view of the suddenly expanding flume for two inflow

configurations: left, uniform inlet velocity profile; right, half bell-shape inlet velocity

profile.
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Figure 7. Comparisons of elevation colormaps in millimeters and of free-surface

motion vector fields, for the suddenly expanding flume flow with uniform inlet velocity

profile: (a) without stochastic forcing; (b) with stochastic forcing; Top row, estimations

using twoObs; Bottom row, true states; From left to right, time t u0/L = 1.19,

t u0/L = 1.57 and t u0/L = 1.98.
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Figure 8. Comparisons of elevation colormaps in millimeters and of free-surface

motion vector fields, for the suddenly expanding flume flow with half-bell shape

inlet velocity profile: (a) without stochastic forcing; (b) with stochastic forcing; Top

row, estimations using twoObs; Bottom row, true states; From left to right, time

t u0/L = 1.19, t u0/L = 1.57 and t u0/L = 1.98.
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Figure 9. Error maps for the suddenly expanding flume flow with stochastic forcing:

(a), estimations for oneObs; (b), estimations for twoObs. Left, t u0/L = 1.19. Right,

t u0/L = 1.98. First rows: elevation errors Eĥ in [%]. Second rows: velocity errors

Eˆ̄u,ˆ̄v in [%].
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Figure 10. 3D water surface geometry estimated with a Kinect sensor: left,

picture of the experimental setting when observing a moving wave in a water tank;

right, 3D reconstruction of the wave moving in the tank from Kinect acquisitions at

t = 0.15, 0.3, 0.45 and 0.6 seconds. All spatial scales are in millimeters. From Combès

et al (2011).
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Figure 11. Elevation colormaps in millimeters and free-surface motion vector fields

for a wave in a rectangular flat bottom tank. From left to right and top to bottom,

snapshots of the estimation displayed every 20 time step ∆tu0/Lx.
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