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Abstract: The aim of this study was to determine 1) the relevance of using the Pacific oyster Crassostrea 

gigas as a sentinel organism, at a juvenile stage, for polycyclic aromatic hydrocarbon (PAH) and persistent 

organic pollutant (polychlorobiphenyls, PCBs, polybromodimethylethers, PBDEs, and organochlorine 

pesticides, OCPs) contamination, 2) the potential levels of chemical organic contamination in the Marennes-

Oleron Bay, and their potential sources 3) the potential influence of physiological or environmental factors 

on contaminant body burdens in oysters. To this end, juvenile oysters purchased from a oyster hatchery were 

transplanted to a reference site, in Bouin, and to different transplantation sites in the Marennes-Oléron Bay, 

the first oyster production area in France, and in the Gironde Estuary, the biggest estuary in Occidental 

Europe. Transplantations were done during summer and winter. Whole oyster soft tissues from each site 

were analyzed for PAHs, PCBs, PBDEs and OCPs. Results obtained with a transplantation period of 3 

months suggest that the C. gigas, at the juvenile stage, is a relevant sentinel organism for short-term 

contamination for these contaminants. In addition, no significant effects of physiological factors on 

contaminant body burdens were observed. A principal component analysis performed with chemical body 

burdens allowed them to be separated into three groups: 1) the reference site, 2) Les Palles (LP) and Boyard 

(BOY) in winter and 3) all the other sites. The group of LP and BOY was clearly defined by the levels of 

PAHs and OCPs, suggesting higher levels of contamination of these chemical compounds on these sites, 

potentially due to local contamination sources. In addition, no relevant effects of physiological or 

environmental factors on contaminant body burdens were observed. Results suggest also a predominance of 

contaminants related to agricultural activities along the Marennes-Oléron Bay, and therefore, further studies 

on the presence of pesticides in this region should be considered. 

 

Keywords: Polycyclic aromatic hydrocarbons - Persistent organic pollutants - Bivalve - Bioaccumulation - 

Active biomonitoring 
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 1. Introduction 

 

 Polycyclic aromatic hydrocarbons (PAHs) are chemical compounds with a molecular structure 

containing at least two merged aromatic rings, each ring has five or six carbon atoms. Some PAHs, such as 

naphthalene, anthracene and fluoranthene are listed as priority pollutants by the United States Environmental 

Protection Agency (US EPA) and have been classified by the Water Framework Directive (WFD; Directive 

2000/60/EC) as hazardous substances because they are toxic or mutagenic (genotoxic), in vertebrates and 

invertebrates (EC 2010).  

 Among other hazardous substances, a special attention has been brought to persistent organic 

pollutants (POPs) for several decades, because of their potential impacts on human health and the 

environment (El-Shahawi et al. 2010). POPs are resistant to environmental degradation, i.e. through 

chemical, biological, and photolytic processes. Thus, POPs have been observed to persist in the environment, 

be capable of long-range transport, bioaccumulate in human and animal tissue, and biomagnify in food 

chains. Among POPs, polychlorobiphenyls (PCBs) are a large family of organochlorine compounds of high 

molecular weight, extremely chemically stable, un-inflammable, and with low solubility in water. They have 

been widely used because of their isolating properties as dielectrics in processors and condensators, as 

lubricants in turbines and pumps, or as insulating fluid, among others. Another example of POPs are 

polybromodimethylethers (PBDEs), a group of bromated chemical products, used in certain cases as flame 

retardants in plastic products and textiles. Organochlorine pesticides (OCPs), such as 

dichlorodiphenyltrichloroethane (DDT), lindane and dieldrin, are also classified as POPs, because they are 

toxic, bioaccumulative, mutagenic and teratogenic. 

Marennes-Oléron Bay is the first production site in France of the highly economically and 

ecologically important organism, the Pacific oyster Crassostrea gigas (Soletchnik et al. 1999): for a total 

production in France of 80 600 tones year-1 and a production value of 347 million euros in 2010-2011, the 

production in Marennes-Oléron Bay is of 20 000 tones year-1 (FranceAgriMer 2013). 

 However, this area is also subjected to many recurring anthropogenic contamination by heavy 

metals, PAHs and POPs, influenced mainly by the Charente River, the Seudre River and the Gironde Estuary 

(Miramand et al. 2003, Munaron et al. 2006). In the Marennes-Oléron Bay and the Gironde Estuary, several 



4 

 

studies have been carried out on heavy metal contamination (e.g. Bustamante & Miramand, 2005, Durrieu et 

al. 2005, Pigeot et al. 2006), but only few studies have been done on PAHs and POPs (Miramand et al. 2003, 

Munaron et al. 2006, Romeo et al. 2003). Survey networks such as the chemical contamination monitoring 

network ROCCH (Réseau d’Observation de la Contamination Chimique du littoral, previously RNO, in 

France) use C. gigas as a sentinel species (Beliaeff et al. 1998). Oysters show a relatively rapid uptake and 

depuration and as consequence, they have a relatively short period of integration (Scanes 1997). 

Additionally, many studies have also been performed using caged bivalves as sentinels in active 

biomonitoring studies (Besse et al. 2012, Bourgeault & Gourlay-Francé 2013, Galgani et al. 2011, Gunther et 

al. 1999). The main advantage in using transplanted animals over monitoring naturally settled populations is 

the experimental control. Experimental control is achieved using bivalves of similar genetic and 

environmental stocks at all test sites, pre-selecting test animal size or age group, and monitoring animals 

during the test. Animals can also be transplanted to areas where they might not normally be found. Serial 

transplants and monitoring facilitate the examination of both short- and long-term trends in contaminants 

distribution and related effects. Generally transplantation studies have been carried out in adult and not in 

juvenile organisms. However, massive summer mortalities, particularly of juveniles of C. gigas, have 

become a widespread concern in the world in recent decades (Cheney et al. 2000, Garnier et al. 2007, Perdue 

et al. 1981) and there is growing evidence that contaminants may be partly responsible for the observed 

increase in disease and mortality in C gigas, by adversely affecting their immunity, and more particularly, in 

young life stages (Lacoste et al. 2001, Perdue et al. 1981).  

 In this general context, a transplantation experiment was designed in order to determine 1) the 

relevance of using the Pacific oyster Crassostrea gigas as a sentinel organism, at a juvenile stage, for PAH, 

PCB, PBDE, and OCP contamination, 2) the potential levels of chemical organic contamination in the 

Marennes-Oleron Bay, and their potential sources 3) the potential influence of physiological (lipid content 

in the digestive gland, flesh dry weight, shell dry weight and condition index) or environmental 

(temperature, turbidity, chlorophyll a, phytoplankton abundance and species) factors on contaminant 

body burdens in oysters. Thus, juvenile oysters from an oyster hatchery were transplanted to a reference site 

(Bouin site) for a period of 3 months and were compared to oysters transplanted to different sites in the 
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Marennes-Oléron Bay and the Gironde Estuary for the same time period, i.e. 3 months, and PAH and POP 

body burdens, lipid content in the digestive gland, flesh dry weight and shell dry weight were determined in 

oyster soft tissues from the reference and transplantation sites. Studies were carried out in two different 

seasons, i.e. summer and winter. An additional transplantation site was added to the study (Cordouan site), 

since it is located in the mouth of the Gironde Estuary, the biggest estuary in Occidental Europe (Brosse 

2003). 

 

2. Materials and methods 

2.1.  Study area and transplantation design 

 

At the beginning of each transplantation period, juvenile Pacific oysters C. gigas from same size, i.e. 3-4 

cm in height (1 year-old), were purchased from the oyster hatchery France Naissain, located  in Vendée, 

France. All animals were issued from the same cohort in order to reduce genotype variability, i.e. all 

individuals were from the same pool of spawners, with same age and genetic homogeneity. Juveniles 

purchased from the oyster hatchery were transplanted to Bouin (B; 46° 58’ 28” N, 2° 00’ 02” W), considered 

as a reference site (Fig. 1a), i.e. since it is located in a zone near the oyster hatchery where oysters were 

purchased and because it possesses different seawater physico-chemical characteristics in comparison to the 

transplantation zone (Geffard et al. 2002). Juvenile oysters were also transplanted to four transplantation 

sites, Boyard (BOY; 45° 58’ 0” N, 1° 15’ 0” W), under the double influence of the Gironde and the Charente 

estuaries; Les Palles (LP; 45° 58’ 0” N, 1° 08’ 0” W), highly influenced by the Charente River; Mus du Loup 

(ML; 45° 46’ 10” N, 1° 08’ 30” W), mildly influenced by the Seudre River, and Cordouan (C; 45° 35’ 11” N, 

1° 10’ 24” W), highly influenced by the Gironde Estuary (Fig. 1b). A total of 100 individuals were placed in 

HDPE (high-density polyethylene) oyster bags, all with the same size, i.e. 1 m x 0.5 m, and the same mesh 

size, i.e. 2 cm. For each site, all individuals were transplanted in the same oyster bag and at the same 

location. These oyster bags were placed on oyster aquaculture tables, placed at a height of 40 cm from the 

substrate. Tables were all located on the same hypsometric level, in order to have an equivalent immersion 

time (<15% of the time over a tidal cycle) for all the individuals that were transplanted, regardless of the 

geographic location (iso-altitude of about 1 m corresponding to low-tide water level, coefficient 90). 
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Transplantation was carried out for a period of three months (i.e. 90 days for each transplantation period and 

for each site), from April to June 2008 and from October to December 2008. Three months after 

transplantation, 5 oysters from each site were collected for chemical analyses in summer (June 2008) and 

winter (December 2008) and were processed immediately after their arrival in the laboratory. Back to the 

laboratory, soft tissues were removed from the shells, homogenized using an Ultra Turrax (T25 basic, IKA-

WERKE) and a Thomas-Potter homogenizer (IKA-Labortechnik RW 20.n, size 0.13-0.18 mm), freeze-dried 

and weighted (dry weight; dw) for condition index analyses, and then pooled and frozen (-80ºC) for chemical 

analyses.  

 

2.2. Chemical analyses 

 

Chemical analyses were carried out in one pool of 5 oysters per site and per season. Each pool was 

analysed in triplicate for all the analyses. Freeze-dried oysters (0.5 g) were extracted by Accelerated Solvent 

Extraction (ASE) system with dichloromethane (adapted from Tapie et al. 2008). The internal standards were 

gravimetrically added prior to the extraction and one extraction blank was performed with each series of 

extraction. 

For PAH analysis (Baumard et al. 1999), the ASE extract (same parameters as above without acidic 

silica gel) was directly preconcentrated using a Vacuum Evaporation System (Rapidvap Labconco, Kansas 

city, MO, USA). A purification step on alumina and silica micro-columns was performed. The extract was 

passed through the alumina column and PAHs were further eluted with dichloromethane. The sample was 

then loaded onto the silica column. The aliphatic fraction eluted with pentane was discarded and PAHs were 

then eluted with a mixture of pentane/dichloromethane (65/35, v/v). The final extract was preconcentrated in 

isooctane and analysed by gas chromatography/mass spectrometry (GC-MS). Perdeuterated phenanthrene, 

fluoranthene, chrysene benzo[e]pyrene, benzo[a]pyrene and benzo[ghi]perylene were used as internal 

standards. 

In order to determine PCB, PBDE and OCP concentration in oyster tissues, an extraction-purification 

performed by the ASE 200 System (Dionex, Voisins le Bretonneux, France) coupled with purification on an 

acid silica gel column was applied (Tapie et al. 2008). Extraction cells of 22 ml were used. Then, acidic 
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silica gel (5 g) was added to the extraction cell and then the sample (0.5 g) was introduced, and mixed with 

glass pearls. The parameters used during the extraction procedure were as follows: temperature (100°C), 

static time (8 min), solvent (dichloromethane), pressure (130 bars), heating time (5 min), flush volume (60 

%), and purge time (60 s). The final extract was preconcentrated in isooctane and analysed by gas 

chromatography coupled to electron capture detector (GC-ECD). DDTd8, and PCB congeners 30, 103, 155, 

and 198 were used as internal standards.  

Polyaromatic hydrocarbons (PAHs) were measured using a gas chromatograph (HP 6890. Agilent 

technologies, Palo Alto, CA, USA) equipped with a splitless injector and coupled to a MSD 5975 mass 

spectrometer (Baumard et al. 1999). A total of 29 PAH compounds were analysed (Table 1). 

Organohalogenated compounds, i.e. polychlorobiphenyls (PCBs), polybromodimethylethers (PBDEs) and 

organochlorine pesticides (OCPs), were quantified using a gas chromatograph (HP 6890 Hewlett Packard, 

Palo Alto, Ca, USA) equipped with a splitless injector and coupled to an electron capture detector 

(Thompson & Budzinski 2000; Tapie et al. 2008) and confirmed using a gas chromatograph (Agilent 

Technologies 7890A) coupled to MS/MS (Agilent technologies 7000).  

A total of 10 PCB congeners, 4 PBDE and 13 OCP congeners were analysed (Tables 2 and 3). 

Concentrations of organic contaminants are expressed in µg kg-1 flesh dry weight (dw). 

 

2.3. Quality control 

 

To ensure quality assurance, procedural blanks were regularly performed during the extraction 

process (representing less than 10% of the sample content) and all the results presented are corrected by 

taking into account blank levels. Recoveries of internal standards were greater than 70% in all cases with an 

average of 90%. The validity of this method for PAH, PCB, PBDE and OCP analyses was confirmed by the 

extraction and analysis of a certified matrix SRM 2977 (mussel tissues, Perna perna, from Guanabara Bay, 

Brazil) provided by the NIST (Gaithersburg, MD, USA). The recoveries for five replicates on this SRM were 

between 72% and 116% with reproducibility ranging from 7% to 17% depending on the compounds. Syringe 

standards (pyrene d10, octachloronaphthalene) were added just before the injection to control recoveries of 

internal standards used for quantification. Purity of standards varied between 98.7% and 100% and were 
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purchased at LGC standard (Molsheim, France) for PCB, OCP, PBDE119 and PBDE99 standards, at 

Interchim (Montluçon, France) for PBDE47 and PBDE153 standards, and at Cluzeau Info Labo (Sainte Foy 

La Grande, France) for 4,4' DDT standard. Limits of quantifications were comprised between 0.3 and 0.6 µg 

kg-1 dw depending on the compounds (limits of detection were comprised between 0.1 and 0.2 µg kg -1 dw). 

 

2.4. Lipids in the digestive gland and condition index 

 

Lipids were quantified in three pools of digestive gland from three oysters each, per site and per 

season. Methodology for obtaining data for this parameter is described in Luna-Acosta et al., submitted for 

this volume.  

 Condition index in juvenile oysters was calculated by the method of Lobel and Wright (1982), and 

expressed in mg flesh dry weight g-1 shell dry weight. 

 It is important to note that these parameters have been presented, analysed and discussed in Luna-

Acosta et al., submitted for this volume, and therefore, results of these parameters will only be presented in 

the discussion section of this manuscript.  

 

2.5. Statistical analysis  

 

 All values are reported as mean ± standard deviation (SD). Statistical analysis was carried out with 

STATISTICA 7.0. Values were tested for normality (Shapiro test) and homogeneity of variances (Bartlett 

test). In some cases, logarithmic transformations (Log10) were used to meet the underlying assumptions of 

normality and homogeneity of variances. Two-way MANCOVAs (covariate: shell dry weight, flesh dry 

weight or condition index) were used to compare oyster contaminant contents between different seasons, 

with site and season as fixed factors (Zar 1984). Statistical significance was designed as being at the level of 

p < 0.05. Since no effects were observed by the tested covariates (p>0.05), a two-way MANOVA was used 

to test significant differences of contaminants between sites and seasons, with site and season as fixed factors 

(Zar 1984). When the null hypothesis (H0: no difference between sites or within sites at different seasons) 

was rejected, significant differences were tested using Tukey's HSD test. Then, we analyzed the relationships 



9 

 

between contaminants (PAHs, PCBs, PBDEs, OCPs) using a principal component analysis (PCA). The PCA 

was based on the correlation matrix and normalised data for each variable (i.e. centred and divided by the 

standard deviation). 

 

3. Results and discussion 

 

 Tables 1, 2 and 3 show mean levels (± SD, in µg kg-1 dry weight) of PAHs, PCBs, PBDEs and OCPs 

in oyster soft tissues. Over the different sampling stations (i.e. reference and transplantation sites) and 

seasons (i.e. summer and winter), these levels ranged between 81±11 and 236±43 µg kg-1dw for PAHs, 15±1 

and 89±39 µg kg-1 dw for PCBs, 0.4±0.3 and 2.9±0.7 µg kg-1 dw for PBDEs, 3±0 and 19±1 µg kg-1 dw for 

OCPs (Tables 1-3). Results on lipids in the digestive gland, flesh dw, shell dw and condition index are 

presented in Table 4. Two-way MANCOVAs revealed no significant effect of lipids in the digestive gland 

(F(4,16)=1.02, p=0.43), flesh dw (F(4,16)=0.62, p=0.65), shell dw (F(4,16)=1.56, p=0.23) or condition index 

(F(4,16)=0.54, p=0.71), on contaminant body burden in oysters. Since no effects were observed by the tested 

covariates (p>0.05), a two-way MANOVA was used to test significant differences of contaminants between 

sites and seasons, with site and season as fixed factors, and results revealed a significant effect of site and 

season (F(16,53)=6.8, p<0.001). Since the null hypothesis (H0: no difference between sites or within sites at 

different seasons) was rejected, significant differences were tested using Tukey's HSD test for each 

contaminant and results are presented in Tables 1, 2 and 3. 

 

3.1. PAHs 

 

 Values of PAH body burden of the present study, varied from 80±32 to 236±43 µg kg-1 dw (Table 1), 

and are in the range of previous transplantation studies with caged mussels (Mytilus galloprovincialis) in the 

Mediterranean Sea for 12 weeks (i.e. 3 months), at 123 stations along the Mediterranean coasts of Spain, 

France, Italy, North Tunisia, Algeria and Morocco (range of 22 to 106 μg kg-1 dw; Galgani et al. 2011), and 

in sites close to sites of the present study, i.e. Fier d´Ars, Baie d'Aguillon and La Rochelle, for 

transplantation periods of 1 month (range of 105 to 420 μg kg-1 dw; Romeo et al. 2003). In summer, PAH 
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levels were ~2.5-fold significantly (p<0.05) higher in oysters from LP (LPs) than in oysters from ML (MLs) 

and C (Cs) but no significant differences were found with the reference site (Bs; Table 1). In winter, PAH 

levels in oysters from BOY (BOYw) were ~1.5-fold significantly (p<0.05) higher than in oysters from B 

(Bw) and PAH levels in oysters from BOY (BOYw), LP (LPw) and ML (MLw) were ~1.5 to 2–fold 

significantly (p<0.05) higher than in oysters from C (Cw; Table 1). Moreover, significant differences 

(p<0.05) of ΣPAH body burdens were found between BOYs in summer (BOYs) and BOYw and between 

MLs and MLw, with maximal levels in winter and minimal levels in summer. These results are in agreement 

with in situ studies carried out with oysters and mussels in the Bay of Biscay, on the Atlantic coast (Orbea et 

al. 2002), and in the northwest coast of the Mediterranean Sea (Bodin et al. 2004), in which PAH levels were 

higher in winter than in summer. In addition, PAH levels increased significantly only in BOYw and MLw, 

suggesting a specific PAH contamination source in the south of Marennes-Oléron Bay (i.e. ML) and at 

proximity of Marennes-Oléron islands (i.e. BOY) in winter. This also suggests that, in these sites in summer, 

PAHs are either rapidly depurated and/or metabolised and that this could be related to seawater temperatures 

above 19°C in summer (Bustamante et al. 2011; Table 1).  

Phenanthrene, fluorene, triphenylene+chrysene, benzo(b,k,j)fluoranthene and C2-napthalene 

accounted among the most accumulated PAHs in oyster tissues: in B, the most accumulated PAHs were 

phenanthrene and benzo(b,k,j)fluoranthene (12-15%), in BOY, phenanthrene (9-11%), 

benzo(b,k,j)fluoranthene (8-16%) and fluorene (9-14%), in LP, benzo(b,k,j)fluoranthene (10-12%) and 

fluorene (17-19%), in ML, benzo(b,k,j)fluoranthene (18-20%), in C, benzo(b,k,j)fluoranthene (9-11%) and 

fluorene (8-14%; Table 1). In all sites and seasons, parent PAHs were more present than alkylated PAHs 

with a percentage of 70-90% of total PAHs. Heavy PAHs (containing more than 3 aromatic rings) 

represented 60-80% of total PAHs, except for B and C in summer were they accounted for 46% of total 

PAHs (Table 1). Heavy PAHs, which are more hydrophobic than light PAHs, were more accumulated in 

oysters than the latter. This result is in agreement with Gunther et al. (1999) and Orbea et al. (2002), who 

reported a strong ability of oysters and mussels to accumulate high molecular weight PAHs. This result is 

also in agreement with Baumard et al. (1999), who reported that bivalves collected in the Altantic coast, 

considered as a turbid area, are likely to be exposed mainly to particulate contamination, and therefore to 

accumulate higher molecular weight compounds in a greater extent than the lower molecular weight 
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compounds, in comparison to bivalves sampled in clear waters (low turbidity) of the Mediterranean, where 

bivalves are mainly exposed to the dissolved fraction of contamination. 

 In addition, phenanthrene/anthracene, fluoranthene/pyrene and methyl phenanthrene/phenanthrene 

ratios indicated that PAHs levels in the present study were mostly of pyrolytic origin, i.e. by the incomplete 

combustion of organic matter (Readman et al. 2002), except for Bs, BOYs and winter and Cw, where results 

of the phenanthrene/anthracene ratio suggest a potential petrogenic source, i.e. as a result of spillage oil of 

diesel and/or fuel oil (Readman et al. 2002; Fig. 3). 

PAH body burdens of the present study were compared to data collected by the national monitoring 

program ROCCH, from 2003 to 2007 at, or at proximity of, the sites chosen in the present study (Table 5). 

Fluoranthene levels in the present study were lower to previous values reported in ML, BOY and LP by 

ROCCH (Table 5). This could be due to the fact that ROCCH collects adult oysters, while the present study 

was based on juvenile oysters. Young organisms are known to have an increased metabolic rate, which may 

affect chemical uptake and distribution rates (Black et al. 1997), with probable higher accumulation and/or 

depuration rates of some chemical compounds, according to their properties. It is important to notice also 

that oysters in the present study were only present in the reference and transplantation sites for a period of 3 

months, contrary to oysters collected by ROCCH, i.e. not transplanted but found in situ. Nevertheless, it is 

interesting to notice that levels equivalent to the ones reported by ROCCH were detected in LPs and in 

BOYw in the present study, suggesting local sources of PAHs. 

Moreover, results of the present study, revealed relatively low PAH levels, even if they were above 

50 μg kg-1 dw, which is considered as the limit for background pollution (Ruiz et al. 2011), except for 

BOYw, LPw and MLw, where PAH body burden were equal to or above 200 µg kg-1 dw (i.e. 236±43, 205±9 

and 200±40 µg kg-1 dw for BOYw, LPw and MLw, respectively), which suggests the vicinity of urban or 

industrial hydrocarbon sources in these sites, in winter (Ruiz et al. 2011). 

 

3.2. PCBs 

 

 In summer and winter, significant (p<0.05) differences were observed between the reference (B) and 

the transplantation sites, with PCB levels in oysters from the former being ~2-5-fold significantly (p<0.05) 
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higher than in oysters from LP, ML and C (Table 2). Oysters accumulated mainly penta- (18 to 40%) and 

hexachlorobiphenyls (30 to 70%) and the hexachlorobiphenyl congener PCB153 was the most accumulated 

PCB, accounting for 30 to 50% of total PCBs (Table 2). These results are in agreement with previous studies 

on oysters and mussels (Porte & Albaiges 1993; Orbea et al. 2002).  

 B was considered as a reference site in previous studies carried out with heavy metals (Geffard et al. 

2002). However, results of the present study reveal that B should no longer be considered as a reference site 

and show that special care must be taken when selecting a reference site. For monitoring it is essential that 

the reference population for transplantation is considered carefully since it should not be considered as a 

reference site for a certain type of contaminants, e.g. metals but no others, e.g. organic contaminants. In 

previous studies, it has been noted the difficulty to establish a reference site that is not polluted (Davies & 

Vethaak 2012). In addition, control seawater may not be appropriate as a reference because it lacks the 

physico-chemical and microbiological properties of an elutriate, some of which may affect the response 

(Davies & Vethaak 2012) Davies, I. M. and Vethaak, A. D. 2012). Integrated marine environmental 

monitoring of chemicals and their effects. ICES Cooperative Research Report No. 315. 277 pp.). On the top 

of that, other parameters, such as natural marine upwelling, may also affect contamination levels in a 

reference site (Greenfield et al. 2014).  

Nevertheless, B possesses different seawater physico-chemical characteristics and river inputs in 

comparison to the transplantation zone, and therefore information on bioaccumulation and depuration 

processes of chemical contaminants in oysters can be evaluated. Results on PCB levels suggest also that 

oysters are able to depurate important quantities of PCB if they are transferred to sites possessing low levels 

of PCB, and this, independently of the season. Additionally, lower levels of PCBs were reported in the 

present study in comparison to data collected by ROCCH, especially in C (Table 6).  This result suggests that 

pollution sources of PCB in C diminished in 2008 and/or that lower levels were due to a lower time of 

exposure in the present study, i.e. 3 months. PCB levels varied from 71 to 303 μg kg-1 dw  in a 

transplantation study for periods of 1 month with M. galloprovincialis in sites close to sites of the present 

study (Romeo et al. 2003). These values were higher than levels from the present study which varied from 

15±1 to 89±39 μg kg-1 dw, which is in agreement with the hypothesis of a decrease of PCB levels in recent 

years.   
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3.3. PBDEs 

 

 Concerning PBDEs, levels were low in all sites, no significant differences were observed in summer 

between the sites (Table 2), and only a significant (p<0.05) increase was observed in winter in B, in 

comparison to summer, suggesting a potential income of PBDEs from the Loire river. Moreover, mean body 

burdens of the sum of PBDEs ranged between 0.4 and 2.9 µg kg-1 dw, with PBDE47 and PBDE99 body 

burdens ranging between 0.4 to 1.5 and between 0.2 and 1.5 µg kg-1 dw, respectively. These values are in the 

range of results of a previous study, in which the mean body burden of the sum of 13 PBDEs (Σ13 PBDEs, 

instead of 4 PBDEs in the present study) in mussels collected from Normandy, on the French Atlantic coast, 

and from Thau Lagoon, on the French Mediterranean coast, were equal to 0.4  and 0.9 µg kg-1 dw, 

respectively (Bodin et al. 2007, Hong et al. 2009), and were lower than values obtained in Masan Bay (South 

Korea), a site presenting a growing pollution problem, i.e. 13 µg kg-1 dw (Hong et al. 2009). However, these 

studies were carried out in mussels collected directly on the site and to our knowledge, no previous 

transplantation studies have been carried out in oysters to evaluate PBDE body burdens, and therefore, 

further comparisons with our findings were not possible.  

 

3.4. OCPs 

 

In summer, OCP levels in oysters from B and BOY were ~3-fold significantly (p<0.05) higher than 

in oysters from ML and C (Table 3). In winter, OCP levels were ~2-fold significantly (p<0.05) higher in 

oysters from BOY than in oysters from B. Moreover, OCP levels in oysters from BOY were ~2-fold 

significantly (p<0.05) higher than in oysters from LP and C. The most accumulated OCP compounds were 

lindane and DDT metabolites: ~21% of lindane and ~22% of 2,4’-DDE of total OCPs in B samples, ~26% of 

2,4’-DDE and 33% of 4,4’DDE+dieldrin in BOY samples, 28, 26 and 33% of 4,4’DDE+dieldrin in LP, ML 

and C samples, respectively, and 23, 34 and 30% of 4,4’-DDD in LP, ML and C samples, respectively (Table 

3). 

In France, it is forbidden to sell and use DDT and lindane since 1972 and 1998, respectively. 

However, DDT metabolites and lindane were the most accumulated OCPs in the present study. Interestingly, 
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DDT (and metabolites) levels were higher in BOY and LP in the present study than levels collected by 

ROCCH, especially in winter, and lindane levels were higher in the reference site and in LP in winter than 

levels collected by ROCCH (Table 6). These results suggest local pollution sources of pesticides, especially 

in BOY and LP. 

The organochlorine compound pp´-dichlorodiphenylethylene (pp´-DDE) is a degradation product of 

pp´-dichlorodiphenyltrichloroethane (pp´-DDT). Since DDT is an hydrophobic compound, it persists in the 

environment, especially in soils in areas treated with DDT in the past. DDT is also volatile and can be 

evaporated and transported away from application sites as a gas (Sanchez et al. 1993). The DDT degradation 

is slow and consequently it is conditioned by different variables. DDE can be formed from DDT, for 

example, either by UV-irradiation in the atmosphere or by metabolisation by micro-organisms under aerobic 

conditions, which may lead to high levels of accumulation in abiotic and biotic matter (Brown et al. 1986). 

Indeed, DDE is even more persistent in the environment and at least as toxic as DDT (Sanchez et al. 1993). 

Neither DDT nor DDE dissolves well in water, and they combine quite strongly with soil particles. As a 

result these compounds concentrate in sediments and can be transported from application sites as dust and 

eroded sediment carried by water. The highest concentrations of pp´-DDE were found in oysters transplanted 

to BOY, during winter (12 µg kg-1 dw). Like the concentrations of PAHs and PCBs, those of pp´-DDE in the 

soft tissue of oysters C. gigas confirm the influence of local pollution sources on the distribution of pp´-DDE 

in the Marennes-Oléron Bay.  

It seems also that the high concentration of DDE in oysters from BOY in winter could be due to high 

oxygen content in the ambient water, which promotes the conversion of DDT to DDE. Elevated contents of 

DDT and metabolites in BOY and LP, in comparison to other sites, also suggest that the presence of these 

contaminants in these zones could be related to the influence of the Charente River. 

In the present study, values of the PCBs/pp´-DDE and PAHs/pp’-DDE ratios ranged from 4 to 24 (Fig. 4a) 

and to 19 to 216 (Fig. 4b), respectively. There is only one study to our knowledge in which PCBs/pp’-DDE 

and PAHs/pp’-DDE ratios have been calculated in bivalves (Potrykus et al. 2003). For this study, contents 

and patterns of selected organic pollutants (PAHs, PCBs and DDTs) were assessed in the southern part of the 

Baltic Sea, using blue mussels, M. trossulus, as sentinel organisms. In the present study, PCBs/pp’-DDE 

ratio ranged from 2 to 5 and PAHs/pp’-DDE ratio ranged from 2 to 10, and it was concluded that the higher 
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PCBs/pp’-DDE and PAHs/pp’DDE ratios in contaminated versus reference sites, reflect the predominance of 

industrial over agricultural activities in these contaminated sites (Potrykus et al. 2003). Contrary to this 

study, the PCBs/pp´-DDE ratio in oysters transplanted in the Marennes-Oléron Bay and the Gironde Estuary 

in the present study, is two to four times lower than the PCBs/pp´-DDE ratio in oysters from the reference 

point (B). These results suggest a predominance of agricultural over industrial activities, as potential sources 

of contamination in Marennes-Oléron Bay and Gironde Estuary sites, except for ML in winter.  

 

3.5. Correlations between contaminant contents 

 

The first two principal components had eigenvalues > 1 and accounted for 82% of the total variation 

present in the data set (46% and 36% for axis 1 and 2, respectively). PAH and OCP values were the variables 

more contributing to the first axis, whereas PCB and PBDE were the variables more contributing to the 

second one (i.e. contribution of the variable ≥ 25%, Fig. 2). Principal component 1 indicated that increased 

PAH concentrations were associated with increased OCP concentrations (Fig. 2). Principal component 2 

showed that increased PCB concentrations were associated with increased PBDE concentrations (Fig. 2). 

Similar correlations observed between PAH and OCP, and between PCB and PBDE levels, suggest similar 

contamination sources of these two types of contaminants, respectively. Site sample analysis (Fig. 2) shows 

three well-defined groups, depending on levels of contaminants: 1) the first group, with Bs and Bw, 

corresponding to the reference site in summer and winter respectively, is clearly defined by the levels of 

PCBs and PBDEs 2) the second group, with Les Palles in winter (LPw) and Boyard in winter (BOYw) is 

clearly defined by the levels of PAHs and OCPs, and 3) the third group encompasses all the other sites. 

These results suggest that, in terms of PAH and OCP contents in oyster tissues, the sites of Boyard and Les 

Palles in Marennes-Oléron Bay are likely to be the most contaminated of all the studied sites. 

 In addition, although the total content of lipids in oysters was not determined in this study, we have 

taken into consideration two important physiological parameters characterising the bivalves exposed to 

organic contaminants: lipid levels in the digestive gland and the condition index (expressed in mg flesh dry 

weight g-1 shell dry weight; Table 4). Two-way MANCOVA analyses were carried out to test if these 

parameters affect contaminant body burdens and no significant differences (p>0.05) were observed, i.e. the 
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lipid content in the digestive gland, the size and/or the gross body state of oysters had no significant effect on 

PAH, PCB, PBDE or OCP body burdens. These results are in agreement with previous studies that have 

suggested that neither PAH, PCB, nor DDT contamination levels are affected by the condition index and/or 

the % content of lipids, concerning the bivalves (Galgani et al. 2011; Thompson et al. 1999). 

 Moreover, based on environmental data collected from French monitoring networks, differences in 

temperature, turbidity, chlorophyll a, phytoplankton abundance and species were observed for all sites 

between summer and winter (Table 4). Independently of the site, temperature, phytoplankton concentration 

and chlorophyll a levels were lower, in winter in comparison to summer, while turbidity levels were higher. 

Thus, environmental factors could explain, in part, differences observed in the present study in levels of 

PAHs, PCBs and PBDEs between summer and winter. A slight increase of the temperature was observed in a 

North-South gradient in summer, with higher values observed in C. However, no increase or decrease of 

contaminant contents was observed in a North-South gradient. Therefore, these data suggest that 

environmental parameters are not the main cause of differences in contaminant content in oysters´ flesh 

between sites, and are in agreement with the hypothesis of local inputs, as major sources of contamination 

observed in the present transplantation study.  

 

4. Conclusion 

 

In the present study, a transplantation experiment was designed in order to determine the relevance of 

using juvenile Pacific oysters Crassostrea gigas as a sentinel organisms for chemical organic contaminants, 

the potential levels of chemical organic contamination in the Marennes-Oléron Bay and their potential 

sources and the potential effects of physiological or environmental factors on contaminant body burdens in 

oysters. Results obtained with a transplantation period of 3 months suggest that the C. gigas, at the juvenile 

stage, is a relevant sentinel organism for short-term contamination for PAHs, PCBs, PBDEs and OCPs. 

Additionally,  an important difference in the distribution of contaminants in B and C in comparison to BOY, 

ML and LP, which is not likely to be influenced by the physiological (i.e. lipid content in the digestive gland, 

flesh dry weight, shell dry weight and condition index) or environmental factors (i.e. temperature, turbidity, 
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chlorophyll a, phytoplankton abundance and species) measured and collected by French monitoring 

networks, respectively,  suggest different sources of pollution, depending on the season.  

It could be interesting to  carry out transplantation experiments with oysters at different depths from 

the surface, in order to evaluate the vertical distribution of contaminants and potential pollution sources (e.g. 

sediments or outfall; e.g. Salazar & Salazar 1995). In order to avoid some difficulties encountered in the 

present study, it could be also interesting to analyze inorganic and organic contaminant body burdens in 

bivalves from different potential reference sites on the French Atlantic coast, at different seasons, and 

determine which sites could be used as reference sites for this type of studies. If bivalves for transplantation 

studies are bought in a hatchery, it should not be assumed that, since they would be sold for human 

consumption they should be free or have very low levels of contaminants, and therefore, it could be also 

interesting to evaluate contaminant contents of these bivalves prior to the transplantation study.  

Additionally, the potential predominance of agricultural over industrial activities as contamination sources 

along the Marennes-Oléron Bay, except for ML in winter, suggests that further studies on the presence of 

pesticides in this region should be considered, especially in winter and in zones influenced by the Charente 

River. 
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Figure 1. Estuarine sampling areas in French Atlantic coast (a) Location of reference (B, Bouin) and transplantation 

sites: Boyard (BOY), Les Palles (LP), Mus du Loup (ML) in the Marennes-Oléron Bay and Cordouan (C) in the 

Gironde Estuary.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 

 

 

 

Figure 2. Principal component ordination of oyster tissue contaminant concentrations. (a) Projection of the variables on 

the factor-plane. (b) Projection of the sites on the factor-plane. PAH: polyaromatic hydrocarbons; PCB: 

polychlorobiphenyls; PBDE polybromodimethylethers; OCP: organochlorine pesticides; B: Bouin; BOY: Boyard; ML: 

Mus du Loup; LP: Les Palles; C: Cordouan; s: summer; w: winter. 
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Figure 3. Chemical indices to discriminate petrogenic/pyrolytic aromatic hydrocarbons. Phen/Anth, 

phenanthrene/anthracene ratio, Flt/P, fluoranthene/pyrene ratio, MPhen/Phen methyl phenanthrene/phenanthrene ratio, 

B: Bouin; BOY: Boyard, LP: Les Palles, ML: Mus du Loup; C: Cordouan; s: summer; w: winter. MPhen/Phen in 

squares; Phen/Ant in circles. Continuous dotted line correspondss to the limit between petrogenic and pyrolytic sources 

according to the ratios MPhen/Phen and Phen/Ant; discontinuous dotted line corresponds to the limit between 

petrogenic and pyrolytic sources according to the ratio Flt/Pyr. 
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Figure 4. PCBs/pp´DDE (a) and PAHs/pp´DDE (b) ratios in the soft tissue of the Pacific oyster Crassostrea gigas from 

reference (Bouin) and transplantation sites, in the Marennes-Oléron Bay (Boyard, Les Palles, Mus du Loup) and in the 

Gironde Estuary (Cordouan). 
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Table 1. Polyaromatic hydrocarbon (PAH) content in oyster’s flesh at two seasons after 3 months of transplantation. Mean ± SD (µg kg-1 dw), n =3 (i.e. 3 replicates from 1 pool 

of 5 oysters), * significant differences (p<0.05) with B, superscript letters indicate significant (p<0.05) differences between transplantation sites, per season. B: Bouin; BOY: 

Boyard; LP: Les Palles; ML: Mus du Loup; C: Cordouan; dw: dry weight; nd: not detected. 

 

PAHs (parents and alkylated) 
No. of 

aromatic rings 

Molecular 

weight (g.mol-1) 

Concentration (µg.kg-1 dw) 

Summer Winter 

B BOY LP ML C B BOY LP ML C 

Naphthalene 3 128 7.5±0.3 4.9±1.4 3.0±1.1 4.8±0.2 5.7±3.3 2.9±0.9 3.2±2.0 3.8±1.5 4.0±0.2 3.2±0.6 

C1-Naphthalene 3 143 4.2±0.5 4.5±2.0 3.8±2.5 4.8±0.5 5.1±2.6 2.9±0.7 4.9±2.7 3.6±0.8 3.0±0.7 3.5±0.3 

C2-Naphthalene 3 158 6.6±0.4 8.1±4.4 7.3±5.6 8.7±0.7 9.7±5.5 5.2±0.9 8.4±4.4 7.2±1.7 5.7±1.4 6.5±0.5 

Acenaphtylene 3 155 nd nd nd nd nd 0.5±0.1 0.6±0.1 nd 0.5±0.1 0.5±0.1 

Acenaphtene 3 154 3.3±0.0 2.1±0.2 2.3±0.1 0.9±0.1 1.6±0.3 2.3±0.6 3.3±1.3 2.8±0.4 4.5±0.2 4.7±1.3 

Fluorene 3 166 3.3±0.4 2.9±0.2 3.0±1.0 0.5±0.1 1.9±0.9 2.5±0.8 2.9±0.8 1.6±1.0 1.6±0.2 2.2±0.7 

Phenanthrene 3 178 19.6±0.8 16.4±0.1 12.5±1.5 2.1±0.0 8.0±5.5 20.5±8.7 21.4±4.8 20.1±6.4 8.2±3.2 10.2±1.8 

C1-+C9-Phenanthrene+C1-Anthracene 3 208-238 7.1±0.4 6.4±0.2 4.7±1.7 1.4±0.3 3.5±3.8 10.8±4.5 7.8±1.1 7.4±2.1 4.4±0.8 4.9±1.5 

C2-+C3-Phenanthrene 3 223-238 12.5±5.3 8.2±1.4 5.5±1.1 1.8±0.1 6.0±2.0 16.5±10.0 11.1±5.0 8.9±2.2 5.6±0.3 5.4±1.1 

Anthracene 3 178 1.9±0.1 1.0±0.1 2.4±0.3 1.2±0.1 1.4±0.7 2.4±1.9 2.0±1.0 2.3±0.4 2.4±0.1 0.8±0.4 

C2-Anthracene 3 193 0.6±0.2 1.9±1.4 1.5±0.6 0.6±0.2 1.0±0.4 nd 0.9±0.0 0.8±0.6 0.4±0.0 1.1±0.5 

Dibenzothiophene 3 184 1.6±0.3 1.0±0.2 0.9±0.3 nd 0.9±0.4 2.2±0.7 1.6±0.3 0.8±0.8 0.5±0.2 0.5±0.1 

∑ Light PAHs 68±6 58±9 47±14 27±1 45±25 69±16 68±19 60±12 41±5 44±5 

Fluoranthene 4 202 7.9±0.3 12.0±1.6 21.4±0.3 6.3±0.4 6.1±2.6 15.1±2.1 33±5.9 20.6±3 21.3±4.7 16.1±2.4 

Pyrene 4 202 4.7±0.4 6.2±0.5 13.9±2 6.1±0.5 2.8±1.4 8.8±0.8 23.6±2.9 16.9±1.2 17.3±4.1 12±1.6 

Benzo(a)anthracene 4 228 2.2±0.6 6.1±1.7 10.2±4.1 3.9±1.1 2.9±0.9 3.9±0.3 13.9±2.2 9.9±0.7 9.2±4.3 3.1±0.6 

Triphenylene+Chrysene 4 228 4.2±0.4 8.9±2.1 13.1±3.5 5.8±0.7 3.4±1.1 8.2±1.4 21.1±0.6 15.9±0.9 18.9±1.3 8.7±1.4 

Benzo(b)naptho(2,1-d)thiophene 4 234 0.7±0.0 1.3±0.1 3.6±0.8 0.9±0.2 0.4±0.2 1.1±0.7 3.3±0.3 3±0.7 3.1±0.7 1.2±0.2 

Benzo(b, k, j)fluoranthene 5 252 15.7±0.8 22.5±3.1 36.6±4.4 14.6±3.3 6.8±1.4 19.8±2.9 21±19.7 36±3.0 39.5±2.9 13.3±2.4 

Benzo(e)pyrene 5 252 8.0±0.9 10.9±1.6 15.0±2.5 6.5±1.5 3.5±0.2 8.4±1.5 15.5±2.0 13.8±2.0 17.7±0.4 7.8±1.7 

Benzo(a)pyrene 5 252 2.4±0.4 2.5±0.3 5.0±1.6 1.8±0.5 1.3±0.6 2.7±0.4 9.5±3.0 7.6±0.2 7.0±5.3 1.6±0.3 

Perylene 5 252 6.9±1.1 4.5±0.0 6.3±0.2 3.4±0.6 5.3±0.7 8.3±0.8 5.5±0.3 4.8±0.8 4.6±2.0 6.8±0.3 

Benzo(g,h,i)perylene 5 276 4.3±0.4 2.9±0.7 5.6±1.2 2.1±0.7 1.1±0.1 4.5±1.6 9.1±0.5 6.7±0.3 8.9±3.7 2.5±0.5 

Indeno(1,2,3-cd)pyrene 5 276 2.8±0.2 3.0±0.2 8.2±2.0 2.0±0.8 1.3±0.5 4.6±1.1 10.1±0.7 8.2±0.3 9.6±4.8 2.5±0.2 

Dibenzo(a,h)anthracene+dibenzo(a,c)anthracene 5 278 nd 0.5±0.1 2.6±1.0 0.4±0.1 nd 1.2±0.4 1.8±0.1 1.7±0.2 2.4±1.0 0.9±0.2 

∑ Heavy PAHs 60±1 81±10 141±11 54±10 35±7 87±10 167±25 145±3 159±34 76±12 

∑ Total PAHs 129±6 139±19a,b 189±25a 81±11b 80±32a,b 155±25 236±43*,a 205±9a 200±40a 120±16b 
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Table 2. Polychlorobiphenyl (PCB) and polybromodimethylether (PBDE) contents in oyster’s flesh at two seasons after 3 months of transplantation. Mean ± SD (µg kg-1 dw), n 

=3 (i.e. 3 replicates from 1 pool of 5 oysters), * significant differences (p<0.05) with B, † significant differences (p<0.05) between B samples from summer and winter. B: Bouin; 

BOY: Boyard; LP: Les Palles; ML: Mus du Loup; C: Cordouan; dw: dry weight; nd: not detected. 
 

Congeners 
No. of chlorine or 

bromine atoms 

Molecular 

weight (g mol-1) 

Concentration (µg kg-1 dw) 

Summer Winter 

B BOY LP ML C B BOY LP ML C 

PCB 

CB 50+28 4 292-256 1.3±0.2 0.6±0.2 0.4±0.1 1.0±0.6 1.3±0.8 2.9±1.8 0.5±0.3 0.5±0.2 0.5±0.1 0.7±0.2 

CB 52 4 292 16.7±1.5 3.1±1.2 1.8±0.2 1.2±0.6 3.3±2.5 14.4±7.6 4.9±3.0 3.3±0.2 0.4±0.0 2.7±2.5 

CB 101 5 326 14±0.5 3.6±1.8 1.4±0.5 0.9±0.0 4.0±1.7 17.2±8.7 5.1±3.1 1.2±0.0 2.6±0.8 3.4±0.8 

CB 118 5 326 15.7±3.1 5.8±2.2 4.3±0.9 2.3±0.2 5.2±3.6 20.2±11.1 11.5±3.5 8.1±5.0 2.1±1.2 4.3±0.7 

CB 138 6 361 12.9±1.8 6±0.6 4.0±0.9 2.4±0.1 7.3±2.8 11.1±2.5 8.8±3.0 4.7±0.1 3.1±2.5 8.3±1.7 

CB 153 6 361 17.8±2.3 9.7±2.3 9.2±2.2 6.4±0.4 15.4±1.7 19.3±6.2 15.3±7.2 11.5±1.8 6.8±1.4 21.7±6.7 

CB 180 7 395 2.3±0.1 1±0.4 1.5±0.5 0.5±0.1 2.4±0.5 3.6±1.1 1.3±0.2 0.8±0.2 1.1±0.1 2.6±0.2 

Σ PCBs 
   

81±9 30±3* 23±4* 15±1* 39±12* 89±39 47±3* 30±3* 17±6* 44±4* 

PBDE 

BDE 47 4 486 0.9±0.0 0.4±0.3 0.4±0.3 0.4±0.0 0.9±0.2 1.5±0.4 0.5±0.3 0.5±0.3 0.6±0.1 0.5±0.1 

BDE 99 5 565 nd 0.2±0.0 nd nd nd 1.5±0.4 0.4±0.0 0.9±0.0 nd nd 

BDE 119 5 565 nd nd nd nd nd nd nd nd nd nd 

BDE 153 6 644 nd nd nd nd nd nd nd nd nd nd 

Σ PBDEs 
   

0.9±0.0 0.4±0.4 0.4±0.3 0.4±0.0 0.9±0.2 2.9±0.7† 0.6±0.3* 1.0±0.7* 0.6±0.1* 0.5±0.1* 
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Table 3. Organochlorine pesticide (OCP) content in oyster’s flesh at two seasons after 3 months of transplantation. Mean ± SD (µg kg-1 dw), n =3 (i.e. 3 replicates from 1 pool of 

5 oysters), * significant differences (p<0.05) with B, superscript letters indicate significant (p<0.05) differences between transplantation sites, per season. B: Bouin; BOY: 

Boyard; LP: Les Palles; ML: Mus du Loup; C: Cordouan; dw: dry weight; HCB: hexachlorobenzene; DDT: dichlorodiphenyltrichloroethane; DDE: 

dichlorodiphenyldichloroethylene; DDD: dichlorodiphenyldichloroethane; CB: chlorobiphenyl; nd: not detected.  

 

OCP (common name) 

No. of 

chlorine 

atoms 

Molecular 

weight (g 

mol-1) 

Concentration (µg kg-1 dw) 

Summer Winter 

B BOY LP ML C B BOY LP ML C 

HCB 6 285 1.4±0.5 1.6±1.0 1.4±0.3 0.4±0.0 0.4±0.0 1.2±0.6 1.9±0.2 2.2±0.8 nd 0.6±0.1 

Lindane 6 291 2.1±0.4 0.6±0.1 0.4±0.0 nd nd 2.2±1.1 0.5±0.2 1.3±0.3 0.6±0.0 0.7±0.4 

2,4'DDE 4 318 2.2±1.0 2.4±1.0 1.5±0.2 nd 0.3±0.0 2.5±1.4 5.5±2.9 2.4±1.2 nd nd 

4,4'DDE + Dieldrin 4-6 318-381 1.4±0.2 3.6±1.3 2.4±0.3 0.9±0.1 1.9±0.1 1.2±0.2 6.8±2.3 3.7±0.9 0.8±0.1 3.0±1.6 

2,4'DDD + (CB154+77) 4-6-4 320-361-295 nd nd nd nd nd nd nd nd nd nd 

4,4'DDD 4 320 2.3±0.0 1.9±0.3 2.0±0.1 1.0±0.0 1.1±0.1 1.5±0.6 2.8±0.4 3.7±0.8 1.9±0.1 3.9±0.4 

2,4'DDT 5 355 0.4±0.1 nd nd nd nd 0.9±0.6 nd nd 0.8±0.1 1.2±0.2 

4,4'DDT 5 355 nd nd nd nd nd nd nd nd nd nd 

Heptachlor 7 373 0.3±0.0 0.8±0.5 0.6±0.0 nd nd nd 1.6±0.7 1.9±1.0 0.5±0.0 0.7±0.3 

Heptachlor hepoxide 7 373 nd nd nd nd nd nd nd nd nd nd 

Cis-chlordane 8 410 nd nd nd nd nd nd nd nd nd nd 

Trans-nonachlor 9 444 0.6±0.1 nd nd nd 0.4±0.0 nd nd nd Nd 0.7±0.3 

Mirex + CB170 12-7 546-395 nd nd nd nd nd nd nd nd nd nd 

ΣOCPs 
  

11±2 11±1a 8±0a,b 3±0*,b 4±0*,b 10±5 19±1*,a 15±3a,c 5±0b,c 11±1c 
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Table 4. Sum of polyaromatic hydrocarbons (ΣPAHs), sum of polychlorobiphenyles (ΣPCBs), sum of polybromodimethylethers (ΣPBDEs), and sum of organochlorine pesticides 

(ΣOCPs) content in oyster’s flesh at two seasons after 3 months of transplantation. Mean ± SD (µg kg-1 dw), n =3 (i.e. 3 replicates from 1 pool of 5 oysters), * significant 

differences (p<0.05) with B, superscript letters indicate significant (p<0.05) differences between transplantation sites, per season, † significant differences (p<0.05) between B 

samples from summer and winter. B: Bouin; BOY: Boyard; LP: Les Palles; ML: Mus du Loup; C: Cordouan; dw: dry weight; nd: not detected. 

 

Contaminants 

Concentration (µg kg-1 dw) 

Summer Winter 

B BOY LP ML C B BOY LP ML C 

∑ PAHs 129±6 139±19a,b 189±25a 81±11b 80±32a,b 155±25 236±43*,a 205±9a 200±40a 120±16b 

∑ PCBs 81±9 30±3* 23±4* 15±1* 39±12* 89±39 47±3* 30±3* 17±6* 44±4* 

∑ PBDEs 0.9±0.0 0.4±0.4 0.4±0.3 0.4±0.0 0.9±0.2 2.9±0.7† 0.6±0.3* 1.0±0.7* 0.6±0.1* 0.5±0.1* 

∑ OCPs 11±2 11±1a 8±0a,b 3±0*,b 4±0*,b 10±5 19±1*,a 15±3a,c 5±0b,c 11±1c 
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Table 5. Physico-chemical and biological parameters of the reference (Bouin, B) and the transplantion sites (Boyard, BOY; Les Palles, LP; Mus du Loup, ML; Cordouan: C) in 

summer (June) and winter (December), 2008. 

 
 Summer Winter 

 B BOY LP ML C B BOY LP ML C 

Physicochemical parameters           
          Temperature (°C)a 18 ± 2 19 ± 2 20 ± 2 20 ± 2 21 ± 2 9 ± 2 9 ± 2 8 ± 2 10 ± 3 8 ± 3 
          Salinitya 33 ± 1 33 ± 1 33 ± 1 33 ± 1 33 ± 2 31 ± 2 32 ± 2 31 ± 3 30 ± 3 32 ± 3 
          Turbidity (NTU)a 4 ± 5 6 ± 4 4 ± 1 10 ± 8 4 ± 6 34 ± 27 22 ± 11 12 ± 8 14 ± 12 10 ± 11 
Biological parameters           
Chlorophyll a (µg l-1) 1.6 ± 1.91 a 2.8 b 5.4 ± 3.3 a 2.6 b 3.1 a 1.1 ± 0.9 a 1.1 b 0.8 ± 0.4 a 0.6 b 1.2 a 
Phytoplancton (cells l-1)a           
         Cryptophyceae (Cryptophyceae) 105-6 - - - - - - - - - 
         Asterionellopsis glacialis (Diatomophyceae) 
         Chaetoceros sp.(Diatomophyceae) 
         Cylindrotecha closterium (Diatomophyceae) 

105-6 
105-6 
- 

- 
105-6 

- 

- 
105-6 
- 

- 
105-6 
- 

- 
105-6 
- 

- 
- 
103-4 

- 
103-4 
103-4 

- 
103-4 
103-4 

- 
103-4 
103-4 

- 
- 
- 

         Guinardia delicatula (Diatomophyceae) 
         Leptocylindrus sp. (Diatomophyceae) 

- 
105-6 

- 
105-6 

- 
105-6 

- 
105-6 

105-6 
105-6 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

         Nitzchia longissima (Diatomophyceae) 105-6 105-6 105-6 105-6 105-6 - - - - 103-4 
         Paralia sulcata (Diatomophyceae) - 105-6 105-6 105-6 103-4 - 103-4 103-4 103-4 105-6 
         Skeletonema costatum (Diatomophyceae) 105-6 - - - 105-6 103-4 <103 <103 <103 - 
         Thalassiosira sp. (Diatomophyceae) - - - - 105-6 103-4 - - - - 
         Gymonodiniaceae (Dinophyceae) - - - - 105-6 - - - - - 
Phytoplancton producing phycotoxins (cells l-1) a     -      
        Alexandrium sp. (Diatomophyceae) ≤102 ≤101 ≤101 ≤101 103-4 ≤101 ≤101 ≤101 ≤101 ≤102 
        Dinophysis sp. (Dinophyceae) ≤102 ≤102 ≤101 ≤101 ≤101 ≤101 ≤101 ≤101 ≤101 ≤101 
        Pseudo-nitzchia sp. (Diatomophyceae) ≤104 ≤103 ≤102 ≤102 ≤104 ≤101 ≤102 ≤101 ≤101 ≤101 
Phycotoxinsa           

         Amnesic shellfish poisoning (ASP) - - - - - - - - - - 

         Diarrheic shellfish poisoning (DSP) - - - - - - - - - - 
        Paralytic shellfish poisoning (PSP) - - - - - - - - - - 
Fecal contamination (E.coli 100-1 g-1 ILC) a <230 <230 <230 <230 to 4 600 <230 <230 <230 <230 <230 <230 
Juvenile oyster physiological parameters           
       Digestive gland lipids (mg g-1 dw)† 51±6c 71±22 82±2* 50±6 109±9*** 28±1d 43±2 40±1 41±1 59±3*** 
       Flesh dry weight (mg) 193±33c 393±15*** 326±23** 494±15*** 608±50*** 150±12d 185±27 170±17 192±10 271±14 
       Shell dry weight (g) 6.1±0.5c 9.8±1.0* 7.6±0.7 9.0±0.6* 9.7±1.0* 8.8±0.3d 11.1±0.6* 8.6±0.2 10.9±0.8* 12.6±1.0* 
       Condition index 193.5±33.0c 392.7±14.5** 326.1±23.0*** 494.2±14.6*** 607.7±49.9*** 150.1±12.4d 184.9±26.8 170.1±16.8 191.6±10.3 217.1±13.9 

 “-“: not detected 

ILC: intervalvular liquid content 
a Mean values ± SD adapted from 2000 to 2006 data of the website “Site Ifremer consacré à l’environnement littoral”: http://www.ifremer.fr/envlit/.  
b Mean values of 2008, collected by the French network Razlec (Ifremer, http://www.ifremer.fr/lerpc/reswaterx/hydro/resul_hydro.htm). Values corresponds to the mean of June and December of 

2008 of two measurements carried out per month at the bottom and at the top of the water surface from ML and sites near BOY and LP. 

* p<0.05, ** <p0.01, *** p<0.001.  
c, d Significant (p<0.05) differences between B samples from summer and winter. 
†Methodology for the obtention of data for this parameter is described in Luna-Acosta et al., submitted for this volume. 

 

http://www.ifremer.fr/envlit/
http://www.ifremer.fr/lerpc/reseaux/hydro/resul_hydro.htm
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Table 6. Contaminant contents in oysters reported by ROCCH (Réseau d'Observation de la Contamination Chimique du littoral) in the reference site (Bouin, B) and the 

transplanted sites (Boyard, BOY; Les Palles; LP, Mus du Loup, ML; Cordouan, C), from 2003 to 2007, and data collected in the present study in summer and winter in 2008. 

 

Contaminant contents Data from 
Sites 

B BOY LP ML C 

PAHs (µg kg-1dw) Fluoranthene 

ROCCH 2003-2007a 20 28 24 34 23 

Summer 2008 8±0 12±2 21±0 6±0 6±3 

Winter 2008 15±2 33±6 4±2 4±0 3±1 

PCBs (µg kg-1dw) PCB153 

ROCCH 2003-2007a 37 16 17 16 65 

Summer 2008 18±2 10±2 9±2 6±0 15±2 

Winter 2008 19±6 15±7 12±2 7±1 22±7 

Pesticides (µg kg-1dw) 

DDT, 

metabolites 

ROCCH 2003-2007a 6 4 5 8 17 

Summer 2008 6±1 8±1 7±1 4±3 4±1 

Winter 2008 6±3 12±5 10±1 6±3 10±3 

Lindane 

ROCCH 2003-2007a 0.4 0.8 0.5 0.9 0.4 

Summer 2008 2.1±0.4 0.6±0.1 0.4±00 0.1±0.1 0.1±0.0 

Winter 2008 2.2±1.1 0.5±0.2 1.3±0.3 0.6±0 0.7±0.4 

   a Mean values collected from 2003 to 2007 data, at the website “Site Ifremer consacré à l’environnement littoral”: http://www.ifremer.fr/envlit/. 

 

 

 

 
 

 

 
 

http://www.ifremer.fr/envlit/

