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Abstract: In this report, the fundamental limits of simultaneous information and energy trans-
mission in the two-user Gaussian multiple access channel (G-MAC) with and without feedback are
fully characterized. More specifically, all the achievable information and energy transmission rates
(in bits per channel use and energy-units per channel use, respectively) are identified. Furthermore,
the fundamental limits on the individual and sum- rates given a minimum energy rate ensured at
an energy harvester are also characterized. In the case without feedback, an achievability scheme
based on power-splitting and successive interference cancellation is shown to be optimal. Alterna-
tively, in the case with feedback (G-MAC-F), a simple yet optimal achievability scheme based on
power-splitting and Ozarow’s capacity achieving scheme is presented. Finally, the energy trans-
mission enhancement induced by the use of feedback is quantified. Feedback can at most double
the energy transmission rate at high SNRs when the information transmission sum-rate is kept
fixed at the sum-capacity of the G-MAC, but it has no effect at very low SNRs.

Key-words: Feedback, Gaussian multiple access channel, simultaneous information and energy
transmission, RF energy harvesting, information-energy capacity region.



L’utilisation de la voie de retour améliore la transmission
simultanée d’information et d’énergie dans les canaux sans

fils à accès multiple
Résumé : Dans le présent-rapport, les limites fondamentales de la transmission simultanée
d’information et d’énergie dans le canal Gaussien à accès multiple (G-MAC) avec et sans voie
de retour sont déterminées. L’ensemble des débits atteignables de transmission d’information et
d’énergie (en bits par utilisation canal et en unités d’énergie par utilisation canal respectivement)
est identifié. En outre, on caractérise les limites fondamentales sur les débits individuels et le
débit-somme de transmission de l’information pour un débit d’énergie donné à l’entrée d’un
collecteur d’énergie Dans le cas sans voie de retour, on démontre qu’un schéma d’atteignabilité,
basé sur la division de puissance et sur l’annulation successive de l’interférence, est optimal.
En contrepartie, dans le cas avec voie de retour (G-MAC-F), un schéma d’atteignabilité, simple
mais optimal, basé sur la division de puissance et sur le schéma d’Ozarow qui atteint la capacité,
est présenté. Finalement, le gain en énergie induit par l’exploitation de la voie de retour est
quantifié. La voie de retour peut au mieux dédoubler le débit d’énergie à fort rapport signal
sur bruit (RSB) pour un débit-somme d’information égal à la capacité-somme. En revanche,
l’utilisation de la voie de retour n’a aucun effect à très faibles RSBs.

Mots-clés : Voie de retour, canal Gaussien à accès multiple (G-MAC), transmission simultanée
d’information et d’énergie, collecte d’énergie RF, région de capacité d’information-énergie.
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1 Introduction
For decades, a traditional engineering perspective was to exclusively use radio frequency (RF)
signals for information transmission. However, a variety of modern wireless systems suggest that
RF signals can be simultaneously used for information and energy transmission [2]. Typical
examples of communications technologies already exploiting this principle are reported in [3].
Beyond the existing applications, simultaneous information and energy transmission (SEIT)
appears as a promising technology for a variety of emerging applications including low-power
short-range communication systems, sensor networks, machine-to-machine networks and body-
area networks, among others [4].

When a point-to-point communication involves sending energy along with information, it
should be designed to simultaneously meet two goals: (i) To reliably transmit information to a
receiver at a given rate with a sufficiently small probability of error; and (ii) To transmit energy to
an energy harvester (EH) at a given rate with a sufficiently small probability of energy shortage.
The EH might not necessarily be co-located with the information receiver. More specifically, the
EH might possess a set of antennas (rectennas) dedicated to the energy harvesting task, which
are independent of those dedicated to the information receiving task. In the special case in which
the receiver and the EH are co-located, that is, they share the same antenna, a signal division
via time-sharing or power-splitting must be implemented. In the former, a fraction of time the
antenna is connected to the information receiver, whereas the remaining time it is connected to
the EH. The latter implies a signal division in which part of the signal is sent to the information
receiver and the remaining part is sent to the EH. This signal processing is out of the scope of
this paper and the reader is referred to [4]. In the realm of information theory, the problem
of point-to-point SEIT with a co-located EH is cast into a problem of information transmission
subject to minimum energy constraints at the channel output [5, 6]. From this perspective, the
case with a co-located EH is a special case of the non-co-located EH case in which the input
signal to the receiver is identical to the signal input to the EH. In this paper, the analysis of SEIT
is general and focuses on the case of non-co-located EHs. Information and energy transmission
are often conflicting tasks, and thus subject to a trade-off between the information transmission
rate (bits per channel use) and the energy transmission rate (energy-units per channel use).
This trade-off is evidenced in finite constellation schemes, as highlighted in Popovski et al.’s [7].
Consider the noiseless transmission of a 4-PAM signal over a point-to-point channel with input
alphabet {−2,−1, 1, 2} and with a co-located EH. Given that the symbols −2 and 2 (resp. −1
and 1) deliver 4 (resp. 1) energy-units/ch.use, without any energy rate constraint, the system
conveys a maximum of 2 bits/ch.use and 5

2 energy-units/ch.use by choosing all available symbols
with equal probability. However, if the received energy rate must be for instance at least 4
energy-units/ch.use, the maximum information rate is 1 bit/ch.use. This is mainly because the
transmitter is forced to communicate using only the symbols capable of delivering the maximum
energy rate. From this simple example, it is easy to see how additional energy rate constraints
may hinder information transmission in a point-to-point scenario.

In a multi-user scenario, the information-energy rate trade-off is more involved. Usually,
users must coordinate their transmission strategies and cooperate so as to achieve the energy
rate requirement. Consider for instance a network in which one single transmitter simultane-
ously transmits energy to an EH and information to an information receiver. Assume that this
transmitter is required to deliver an energy rate that is less than what it is able to deliver by only
transmitting information. In this case, such a transmitter is able to fulfill the energy-transmission
task independently of the behavior of the other transmitters. More importantly, it can use all
its available power budget to maximize its information transmission rate while still being able of
meeting the energy rate constraint. In this case, the minimum energy rate constraint does not

RR n° 8804
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play a fundamental role. On the other hand, when the same transmitter is requested to deliver
an energy rate that is higher than what it is able to deliver by only transmitting information,
its behavior is totally dependent on the behavior of the other transmitters. Indeed, it depends
on whether or not other transmitters are transmitting signals using an average power such that
the energy rate is met. In this case, the minimum energy rate constraint drastically affects the
way that the transmitters interact with each other. More critical scenarios are the cases in which
the requested energy rate is less than what all transmitters are able to deliver by simultaneously
transmitting information using all the available individual power budgets. In these cases, none
of the transmitters can unilaterally ensure reliable energy transmission at the requested rate.
Hence, transmitters must engage in a mechanism through which an energy rate that is higher
than the energy delivered by exclusively transmitting information-carrying signals is ensured at
the EH. This suggests, for instance, sending signals with correlation to increase the received
energy rates. This correlation can result from the use of power splits in which the transmitted
symbols are formed by an information-carrying and an energy-carrying component. The latter
typically consists in signals that are known at all devices and can be constructed such that the
energy captured at the EH is maximized.

Most of the existing studies of SEIT follow a signal-processing or networking approach and
focus mainly on the feasibility aspects. For instance, optimization of beamforming strategies
was considered for multi-antenna broadcast channels in [8, 9], and [10], and for multi-antenna
interference channels in [11]. SEIT was also studied in the general realm of cellular systems in
[12] as well as in multi-hop relaying systems in [6, 13, 14, 15, 16], and [17]. Other studies in the
two-way channel are reported in [7] and in graphical unicast and multicast networks in [18].

From an information-theoretic viewpoint, the pioneering works by Varshney in [5] and [19],
as well as Grover and Sahai in [20] provided the fundamental limits on SEIT in point-to-point
channels with co-located EH. More specifically, the case of the single-link point-to-point channel
was discussed in [5] while the case of parallel-links point-to-point channel was studied in [19]
and [20]. Despite the vast existing literature on this subject, the fundamental limits of SEIT
are still unknown in most multi-user channels. Multi-hop and multi-antenna wiretap channels
under minimum received energy rate constraints were considered in [6] and [21], respectively. In
the case of the discrete memoryless multiple access channel (DM-MAC), the trade-off between
information rate and energy rate has been studied in [6]. Therein, Fouladgar et al. characterized
the information-energy capacity region of the two-user DM-MAC when a minimum energy rate
is required at the input of the receiver (the receiver and the EH are co-located). An extension
of the work in [6] to the Gaussian multiple access channel (G-MAC) is far from trivial due to
the fact that the information-energy capacity region involves an auxiliary random-variable that
cannot be eliminated as in the case without energy constraints. Moreover, different energy rate
constraints for the G-MAC have also been investigated. For instance, Gastpar [22] considered
the G-MAC under a maximum received energy rate constraint. Under this assumption, channel-
output feedback has been shown not to increase the information capacity region. More generally,
the use of feedback in the K-user G-MAC, even without energy rate constraints, has been shown
to be of limited impact in terms of information sum-rate improvement. This holds even in the
case of perfect feedback. More specifically, feedback increases the information sum-capacity in
the G-MAC by at most log2(K)

2 bits per channel use [23]. Hence, the use of feedback is difficult
to justify from the point of view of exclusively transmitting information.

1.1 Contributions
This paper studies the fundamental limits of SEIT in the two-user G-MAC with an EH, with and
without feedback. It shows that when the goal is to simultaneously transmit both information

RR n° 8804
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and energy, feedback can significantly improve the global performance of the system in terms of
both information and energy transmission rates. More specifically, the paper provides the first
full characterization of the information-energy capacity region for the G-MAC with and without
feedback, i.e., all the achievable information and energy transmission rates in bits per channel
use and energy-units per channel use, respectively. Furthermore, the fundamental limits on the
individual and sum- rates given a minimum energy rate ensured at the EH are also provided.
In the case without feedback, an achievability scheme based on power-splitting and successive
interference cancellation is shown to be optimal. Alternatively, in the case with feedback (G-
MAC-F), a simple yet optimal achievability scheme that is based on power-splitting and Ozarow’s
capacity achieving scheme is presented. Although the proofs of achievability and converse build
upon standard information-theoretic techniques, extending these techniques to account for the
energy constraint involves many challenges. For instance, to derive upper bounds on the achiev-
able information-energy rate triplets, there are two parts to consider: one that is related to the
information transmission for which Fano’s inequality is used, and another that is related to the
energy transmission for which concentration inequalities are used to derive an upper bound on
the energy rate. Finally, the enhancement of the energy transmission rate induced by the use
of feedback is quantified. It is shown that feedback can at most double the energy transmission
rate at high SNRs when the information transmission sum-rate is kept fixed at the sum-capacity
of the G-MAC, but it has no effect at very low SNRs.

1.2 Organization of the Report
The remainder of the report is structured as follows. Sec. 2 formulates the problem of SEIT in
the two-user G-MAC-F and G-MAC with a non-co-located EH. Secs. 3-7 show the main results
of this paper for the G-MAC and the G-MAC-F with an EH. Namely, for both settings the
following fundamental limits are derived: (a) the information-energy capacity region; and (b)
the maximum information individual rates and sum-rates that can be achieved given a targeted
energy rate. A global comparison of the fundamental limits in terms of information transmission
rates is provided in Sec. 6. In Sec. 7, the maximum energy rate improvement that can be obtained
at the input of the EH by using feedback given a targeted information rate is characterized as
well as its low and high SNR asymptotics. Finally, Sec. 8 concludes the report and discusses
possible extensions. The appendices expose the proofs of the main results.

2 Gaussian Multiple Access Channel With Feedback and
Energy Harvester

Consider the two-user memoryless G-MAC with an EH with perfect channel-output-feedback
(G-MAC-F) in Fig. 1 and without feedback in Fig. 2. In both channels, at each channel use
t ∈ N, X1,t and X2,t denote the real symbols sent by transmitters 1 and 2, respectively. Let
n ∈ N denote the blocklength. The receiver observes the real channel output

Y1,t = h11X1,t + h12X2,t + Zt, (1)

and the EH observes
Y2,t = h21X1,t + h22X2,t +Qt, (2)

where h1i and h2i are the corresponding constant non-negative real channel coefficients from
transmitter i to the receiver and the EH, respectively. The channel coefficients are assumed to
satisfy the following L2-norm condition:

∀j ∈ {1, 2}, ‖hj‖2 6 1, (3)
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Figure 1: Two-user memoryless G-MAC-F with an EH.

Transmitter 1M1

h11

h21

h12

x1,t

h22
x2,t

Transmitter 2M2

Zt

Qt

(M̂
(n)
1 , M̂

(n)
2 )Receiver

Energy
Harvester

Energy

Yt

St

⌦

⌦

⌦

�

�

1

Figure 2: Two-user memoryless G-MAC with an EH.

with hj , (hj1, hj2)T to satisfy the principle of conservation of energy.
The noise terms Zt and Qt are realizations of two identically distributed zero-mean unit-

variance real Gaussian random variables. In the following, there is no particular assumption on
the joint distribution of Qt and Zt.

In the G-MAG-F with an EH, a perfect feedback link from the receiver to transmitter i allows
at the end of each channel use t, the observation of the channel output Yt−d at transmitter i, with
d ∈ N the delay of the feedback channel. Without any loss of generality, the delay is assumed to
be the same from the receiver to both transmitters and equivalent to one channel use, i.e., d = 1.

Within this context, two main tasks are to be simultaneously accomplished: information
transmission and energy transmission.

2.1 Information Transmission
The goal of the communication is to convey the independent messages M1 and M2 from trans-
mitters 1 and 2 to the common receiver. The messages M1 and M2 are independent of the noise
terms Z1, . . . , Zn, Q1, . . . , Qn and uniformly distributed over the setsM1 , {1, . . . , b2nR1c} and
M2 , {1, . . . , b2nR2c}, where R1 and R2 denote the information transmission rates and n ∈ N
the blocklength.

In the G-MAC-F with an EH, at each time t, the existence of feedback links allows the t-th
symbol of transmitter i to be dependent on all previous channel outputs Y1, . . . , Yt−1 as well as
its message index Mi and a randomly generated index Ω ∈ {1, . . . , b2nRrc}, with Rr > 0. The
index Ω is independent of both M1 and M2 and assumed to be known by all transmitters and
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Simultaneous Wireless Information and Energy Transmission in Multiple Access Channels 9

the receiver. More specifically,

Xi,1 = f
(n)
i,1 (Mi,Ω) and (4a)

Xi,t = f
(n)
i,t (Mi,Ω, Y1,1, . . . , Y1,t−1), t ∈ {2, . . . , n}, (4b)

for some encoding functions

f
(n)
i,1 : Mi × N→ R and (5)

f
(n)
i,t : Mi × N× Rt−1 → R. (6)

In the G-MAC with an EH, at each time t, the t-th symbol of transmitter i is

Xi,t = g
(n)
i,t (Mi,Ω), t ∈ {1, . . . , n}, (7a)

where g(n)
i,t : Mi × N→ R is the encoding function.

In the G-MAC-F and in the G-MAC with an EH, for all i ∈ {1, 2}, transmitter i’s channel
inputs Xi,1, . . . , Xi,n satisfy an expected average input power constraint

1

n

n∑
t=1

E
[
X2
i,t

]
6 Pi, (8)

where Pi denotes the average transmit power of transmitter i in energy-units per channel use and
where the expectation is over the message indices, the random index, and the noise realizations
prior to channel use t. The dependence of Xi,t on Y1,1, . . . , Y1,t−1 (and thus on Z1, . . . , Zt−1) is
shown by (4).

The G-MAC-F and G-MAC with an EH are fully described by the signal to noise ratios
(SNRs): SNRji, with ∀(i, j) ∈ {1, 2}2. These SNRs are defined as follows

SNRji , |hji|2Pi, (9)

given the normalization over the noise powers.
The receiver produces an estimate (M̂

(n)
1 , M̂

(n)
2 ) = Φ(n)(Y1,1, . . . , Y1,n,Ω) of the message-pair

(M1,M2) via a decoding function Φ(n) : Rn × N → M1 ×M2, and the average probability of
error is

P (n)
error(R1, R2) , Pr

{
(M̂

(n)
1 , M̂

(n)
2 ) 6= (M1,M2)

}
. (10)

2.2 Energy Transmission
Let b > 0 denote the minimum energy rate that must be guaranteed at the input of the EH in
the G-MAC-F. This rate b (in energy-units per channel use) must satisfy

0 6 b 6 1 + SNR21 + SNR22 + 2
√

SNR21SNR22, (11)

for the problem to be feasible. In fact, 1 + SNR21 + SNR22 + 2
√
SNR21SNR22 is the maximum

energy rate that can be achieved at the input of the EH given the input power constraints
in (8). This rate can be achieved when the transmitters use all their power budgets to send fully
correlated channel inputs.

RR n° 8804
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The empirical energy transmission rate (in energy-units per channel use) induced by the
sequence (Y2,1, . . . , Y2,n) at the input of the EH is

B(n) ,
1

n

n∑
t=1

Y 2
2,t. (12)

The goal of the energy transmission is to guarantee that the empirical energy rate B(n) is not
less than a given operational energy transmission rate B that must satisfy

b 6 B 6 1 + SNR21 + SNR22 + 2
√

SNR21SNR22. (13)

Hence, the probability of energy outage is defined as follows:

P
(n)
outage(B) , Pr

{
B(n) < B − ε

}
, (14)

for some ε > 0 arbitrarily small.
Note that b denotes the minimum tolerable energy rate, whereas B denotes the operating

energy rate.
In the sequel, for ease of notation, the acronyms G-MAC-F(b) and G-MAC(b) refer to the

G-MAC-F and the G-MAC with an EH depicted in Fig. 1 and Fig. 2, respectively, with fixed
SNRs: SNR11, SNR12, SNR21, and SNR22, and minimum energy rate constraint b at the input
of the EH.

2.3 Simultaneous Energy and Information Transmission (SEIT)
The G-MAC-F(b) (and G-MAC(b), respectively) is said to operate at the information-energy
rate triplet (R1, R2, B) ∈ [0,∞) × [0,∞) × [b,∞) when both transmitters and the receiver use
a transmit-receive configuration such that: (i) reliable communication at information rates R1

and R2 is ensured; and (ii) the empirical energy transmission rate in (12) at the input of the EH
during the entire blocklength is not lower than B. A formal definition is given below.

Definition 1 (Achievable Rates). The triplet (R1, R2, B) ∈ [0,∞)× [0,∞)× [b,∞) is achievable
in the G-MAC-F(b) (and G-MAC(b), resp.) if there exists a sequence of encoding and decoding
functions

{
{f (n)

1,t }nt=1, {f (n)
2,t }nt=1,Φ

(n)
}∞
n=1

(and
{
{g(n)

1,t }nt=1, {g(n)
2,t }nt=1,Φ

(n)
}∞
n=1

, resp.) such that
both the average error probability and the energy-outage probability tend to zero as the blocklength
n tends to infinity. That is,

lim sup
n→∞

P (n)
error(R1, R2)=0, (15)

lim sup
n→∞

P
(n)
outage(B) =0 for any ε > 0. (16)

Often, increasing the energy transmission rate implies decreasing the information transmission
rates and vice-versa. This trade-off is accurately captured by the notion of information-energy
capacity region.

Definition 2 (Information-Energy Capacity Region). The information-energy capacity region
of the G-MAC-F(b) (and G-MAC(b), resp.), denoted by EFB

b (SNR11, SNR12, SNR21, SNR22)
(Eb(SNR11, SNR12,SNR21, SNR22), resp.) is the closure of all achievable information-energy
rate triplets (R1, R2, B).
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3 Information-Energy Capacity Region
For any non-negative SNRs: SNR11, SNR12, SNR21, and SNR22, and for any minimum energy
rate constraint b satisfying (11), the main results presented in this report are provided in terms
of the information-energy capacity region (Def. 2). The results for the G-MAC(b) are a particu-
larization of the results for the G-MAC-F(b). The interest of presenting these results separately
stems from the need for comparing both cases.

3.1 Case With Feedback
The information-energy capacity region of the G-MAC-F(b) is fully characterized by the following
theorem.

Theorem 1 (Information-Energy Capacity Region of the G-MAC-F(b)). The information-energy
capacity region EFB

b (SNR11,SNR12, SNR21, SNR22) of the G-MAC-F(b) is the set of information-
energy rate triplets (R1, R2, B) that satisfy

06 R1 6
1

2
log2

(
1 + β1 SNR11

(
1− ρ2

))
, (17a)

06 R2 6
1

2
log2

(
1 + β2 SNR12

(
1− ρ2

))
, (17b)

06R1 +R26
1

2
log2

(
1 + β1 SNR11 + β2 SNR12 + 2ρ

√
β1SNR11β2SNR12

)
, (17c)

b6 B 61 + SNR21 + SNR22 + 2ρ
√
β1SNR21β2SNR22

+2
√

(1− β1)SNR21 (1− β2)SNR22, (17d)

with (ρ, β1, β2) ∈ [0, 1]
3.

Proof: The proof of Theorem 1 is presented in Appendix A.

3.2 Case Without Feedback
The information-energy capacity region of the G-MAC(b) is fully characterized by the following
theorem.

Theorem 2 (Information-Energy Capacity Region of the G-MAC(b)). The information-energy
capacity region Eb (SNR11,SNR12, SNR21, SNR22) of the G-MAC(b) is the set of all information-
energy rate triplets (R1, R2, B) that satisfy

06 R1 6
1

2
log2 (1 + β1 SNR11) , (18a)

06 R2 6
1

2
log2 (1 + β2 SNR12) , (18b)

06R1 +R26
1

2
log2

(
1 + β1 SNR11 + β2 SNR12

)
, (18c)

b6 B 61 + SNR21 + SNR22 + 2
√

(1− β1)SNR21(1− β2)SNR22, (18d)

with (β1, β2) ∈ [0, 1]
2.

Proof: The proof of Theorem 2 is presented in Appendix B.
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Remark 1. For any non-negative SNR11, SNR12, SNR21, and SNR22, and for any b satisfying
(11), the information-energy capacity region of the G-MAC(b) is included in the information-
energy capacity region of the G-MAC-F(b), i.e.,

Eb (SNR11,SNR12, SNR21, SNR22) ⊆ EFB
b (SNR11, SNR12,SNR21,SNR22) . (19)

Note that this inclusion can be strict. For instance, any rate triplet (R1, R2, B) that is achievable
in the G-MAC-F(b), for a given minimum energy constraint b, and for which R1 + R2 equals
the perfect feedback sum-capacity cannot be achieved in the G-MAC(b). Note also that if b =
1 + SNR21 + SNR22 + 2

√
SNR21SNR21, then both information-energy capacity regions are equal

as they only contain the point (0, 0, b).

The remainder of this section highlights some important observations on the achievability
and converse proofs of Theorem 1 and Theorem 2. The corresponding proofs are presented in
Appendix A and Appendix B, respectively.

3.3 Comments on the Achievability
The achievability scheme in the proof of Theorem 1 is based on power-splitting and Ozarow’s
capacity-achieving scheme [24]. From an achievability standpoint, the parameters β1 and β2 in
Theorem 1 might be interpreted as the fractions of average power that transmitters 1 and 2
allocate for information transmission. More specifically, transmitter i generates two signals: an
information-carrying (IC) signal with average power βiPi energy-units per channel use; and a
no-information-carrying (NIC) signal with power (1 − βi)Pi energy-units per channel use. The
IC signal is constructed using Ozarow’s scheme [24]. The role of the NIC signal is to exclusively
transmit energy from the transmitter to the EH. Conversely, the role of the IC signal is twofold:
information transmission from the transmitter to the receiver and energy transmission from the
transmitter to the EH.

The parameter ρ is the average Pearson correlation coefficient between the IC signals sent by
both transmitters. This parameter plays a fundamental role in both information transmission and
energy transmission. Note for instance that the upper-bounds on the information sum-rate (17c)
and on the energy harvested per unit-time (17d) monotonically increase with ρ, whereas the
upper-bounds on the individual rates (17a) and (17b) monotonically decrease with ρ. If β1 6= 0
and β2 6= 0, let ρ?(β1, β2) be the unique solution in (0, 1) to the following equation in ρ:

1 + β1 SNR11 + β2 SNR12 + 2ρ
√
β1SNR11β2SNR12

=
(
1 + β1 SNR11(1− ρ2)

) (
1 + β2 SNR12(1− ρ2)

)
, (20)

otherwise, let ρ?(β1, β2) = 0. When ρ = ρ?(β1, β2), the sum of (17a) and (17b) is equal to (17c)
giving the maximum information sum-rate which can be achieved when the transmitters are using
powers β1P1 and β2P2 for transmitting information, i.e., ρ?(β1, β2) is the information sum-rate
optimal correlation coefficient.

Existence and Uniqueness of ρ?(β1, β2): For a fixed power-splitting (β1, β2) ∈ (0, 1]2,
let the function ϕβ1,β2 : [0, 1] → R denote the difference between the right-hand-side and the
left-hand-side of (20), i.e.,

ϕβ1,β2
(ρ) ,1 + β1 SNR11 + β2 SNR12 + 2ρ

√
β1SNR11β2SNR12

−
(
1 + β1 SNR11(1− ρ2)

) (
1 + β2 SNR12(1− ρ2)

)
. (21)

The function ϕβ1,β2
(ρ) is continuous in ρ on the closed interval [0, 1] and is such that ϕβ1,β2

(0) < 0
and ϕβ1,β2

(1) > 0, and thus there exists at least one ρ0 ∈ (0, 1) such that ϕβ1,β2
(ρ0) = 0 [25,
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Bolzano’s Intermediate Value Theorem (Theorem 5.2.1)]. Furthermore, this solution ρ0 is unique
because ϕβ1,β2

(ρ) is strictly monotonic on [0, 1]. This unique solution is ρ?(β1, β2).
Note also that the Pearson correlation factor between the NIC signals of both transmitters

does not appear in Theorem 1. This is mainly because maximum energy transmission occurs using
NIC signals that are fully correlated, and thus the corresponding Pearson correlation coefficient
is one. Similarly, the Pearson correlation factor between the NIC signal of transmitter i and the
IC signal of transmitter j, with j ∈ {1, 2} and j 6= i, does not appear in Theorem 1 either. This
observation stems from the fact that, without loss of optimality, NIC signals can be chosen to
be independent of the message indices and the noise terms. NIC signals can also be assumed
to be known by both the receiver and the transmitters. Hence, the interference they create
at the receiver can easily be eliminated using successive decoding. Under this assumption, a
power-splitting (β1, β2) ∈ [0, 1]2 guarantees the achievability of non-negative rate pairs (R1, R2)
satisfying (17a)-(17c) by simply using Ozarow’s capacity achieving scheme. At the EH, both the
IC and NIC signals contribute to the total harvested energy (12). The IC signal is able to convey
at most β1SNR21+β2SNR22+2ρ

√
β1SNR21β2SNR22 energy-units per channel use, while the NIC

signal is able to convey at most (1−β1)SNR21+(1−β2)SNR22+2
√

(1− β1)SNR21(1− β2)SNR22

energy-units per channel use. The sum of these two contributions as well as the contribution of
the noise at the EH justifies the upper-bound on the energy transmission rate in (17d).

The information-energy capacity region without feedback described by Theorem 2 is identical
to the information-energy capacity region described by Theorem 1 in the case in which channel
inputs are chosen to be mutually independent, i.e., ρ = 0. To prove the achievability of the region
presented in Theorem 2, Ozarow’s scheme is replaced by the scheme proposed independently by
Cover [26] and Wyner [27], in which the channel inputs are independent Gaussian variables.

3.4 Comments on the Converse
The proof of the converse to Theorem 1 presented in Appendix A is in two steps. First, it is
shown that any information-energy rate triplet (R1, R2, B) ∈ EFB

b (SNR11, SNR12, SNR21, SNR22)
must satisfy

nR1 6
n∑
t=1

I(X1,t;Y1,t|X2,t) + ε
(n)
1 , (22a)

nR2 6
n∑
t=1

I(X2,t;Y1,t|X1,t) + ε
(n)
2 , (22b)

n(R1 +R2) 6
n∑
t=1

I(X1,tX2,t;Y1,t) + ε
(n)
12 , (22c)

B 6 E
[
B(n)

]
+ δ(n), (22d)

B > b, (22e)

where ε
(n)
1

n ,
ε
(n)
2

n , ε
(n)
1

n , and δ(n) tend to zero as n tends to infinity. Second, these bounds are
evaluated for a general choice of jointly distributed pair of inputs (X1,t, X2,t) such that E[Xi,t] =
µi,t, Var(Xi,t) = σ2

i,t, and Cov[X1,t, X2,t] = λt, ∀i ∈ {1, 2} and ∀t ∈ {1, . . . , n}.
The converse to Theorem 2 follows the same lines as in the case with feedback, with the

assumption that X1,t and X2,t are independent (i.e., ∀t ∈ {1, . . . , n}, λt = 0).
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3.5 Example
Fig. 3 shows the information-energy capacity region of the G-MAC-F(b) and the G-MAC(b),
respectively, with SNR11 = SNR12 = SNR21 = SNR22 = 10 and b = 0.

Therein, in each case, the figure in the center is a 3-D representation of the information-energy
capacity region, whereas left and right figures represent a bi-dimensional view in the R1-R2 and
B-R2 planes, respectively. The triplet Q1 with the highest energy transmission rate is Q1 =(
0, 0, 1 + SNR21 + SNR22 + 2

√
SNR21SNR22

)
. The triplets Q2, Q′2, Q4 and Q5 are coplanar and

they satisfy B = 1+SNR21 +SNR22. More specifically, Q4 =
(

1
2 log2 (1 + SNR11) , 0, 1+SNR21 +

SNR22

)
and Q5 =

(
1
2 log2 (1 + SNR11) , 1

2 log2

(
1 + SNR11

1+SNR12

)
, 1+SNR21+SNR22

)
are achievable

with and without feedback. In Fig. 3, the triplets Q2, Q3 and Q6 guarantee information transmis-
sion at the perfect feedback sum-capacity, i.e., R1 + R2 =
1
2 log2

(
1 + SNR11 + SNR12 + 2ρ?(1, 1)

√
SNR11SNR12

)
. In the G-MAC(0), the triplets Q2, Q3,

and Q5 guarantee information transmission at the sum-capacity without feedback, i.e., R1+R2 =
1
2 log2 (1 + SNR11 + SNR12).

A global comparison of the shape of these two regions is provided in Sec. 6. This comparison
is based on extreme information transmission points, i.e., maximum information individual and
sum rates, given a minimum energy rate. The exact values of these extreme points are derived
in Sec. 4 and Sec. 5.

4 Maximum Individual Rates Given a Minimum Energy
Rate Constraint

In this section, for any fixed non-negative SNRs: SNR11, SNR12, SNR21, and SNR22, and for
any energy rate constraint b at the input of the EH satisfying (11), the maximum individual
information rates of transmitters 1 and 2 in the G-MAC-F(b) and G-MAC(b) are identified.

Let ξ : R+ → [0, 1] be defined as follows:

ξ(b) ,
(b− (1 + SNR21 + SNR22))

+

2
√
SNR21SNR22

. (23)

Note that ξ(b) is the minimum correlation of the channel inputs that is required to achieve the
target energy rate b. That is, ξ(b) is the solution in [0, 1] to

b = 1 + SNR21 + SNR22 + 2x
√

SNR21SNR22. (24)

4.1 Case With Feedback
The maximum individual information rate of transmitter i, with i ∈ {1, 2}, denoted by RFB

i (b),
in the G-MAC-F(b) is the solution to an optimization problem of the form

RFB
i (b) = max

(R1,R2,B)∈EFB
b (SNR11,SNR12,SNR21,SNR22)

Ri. (25)

The solution to (25) is given by the following proposition.

Proposition 1 (Maximum Individual Information Rates of the G-MAC-F(b)). The maximum
individual information rate of transmitter i in a G-MAC-F(b) is given by

RFB
i (b)=

1

2
log2

(
1 +

(
1− ξ(b)2

)
SNR1i

)
, i ∈ {1, 2}, (26)

with ξ(b) ∈ [0, 1] defined in (23).
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Figure 3: 3-D representation of the information-energy capacity region of the G-MAC-
F(b) (top figures) and G-MAC(b) (bottom figures), EFB

0 (10, 10, 10, 10) and E0 (10, 10, 10, 10),
respectively, with b = 0, in the coordinate system (R1, R2, B). In each case, the
figure in the center is a 3-D representation of the information-energy capacity region,
whereas left and right figures represent a bi-dimensional view in the R1-R2 and B-
R2 planes, respectively. Note that Q1 =

(
0, 0, 1 + SNR21 + SNR22 + 2

√
SNR21SNR22

)
.

Points Q1, Q2, Q3, Q6, Q′2, and Q′3 are coplanar and satisfy R1 = R2. Points
Q′2 and Q′3 satisfy R1 = R2 = 1

4 log2 (1 + SNR11 + SNR12). Points Q2, Q3, and Q6

are collinear and satisfy R1 + R2 = 1
2 log2

(
1 + SNR11 + SNR12 + 2ρ?(1, 1)

√
SNR11SNR12

)
.

The points Q2, Q′2, Q4, and Q5 are coplanar and they satisfy B = 1 + SNR21 +
SNR22. In particular, Q4 =

(
1
2 log2 (1 + SNR11) , 0, 1 + SNR21 + SNR22

)
and Q5 =(

1
2 log2 (1 + SNR11) , 1

2 log2

(
1 + SNR11

1+SNR12

)
, 1 + SNR21 + SNR22

)
.
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Proof: The proof of Proposition 1 is provided in Appendix C.

4.2 Case Without Feedback
The maximum individual information rate of transmitter i in the G-MAC(b), with i ∈ {1, 2},
denoted by RNF

i (b), is the solution to an optimization problem of the form

RNF
i (b) = max

(R1,R2,B)∈Eb(SNR11,SNR12,SNR21,SNR22)
Ri. (27)

The solution to (27) is given by the following proposition.

Proposition 2 (Maximum Individual Information Rates of the G-MAC(b)). The maximum
individual information rate of transmitter i in a G-MAC(b) is given by

RNF
i (b)=RFB

i (b), i ∈ {1, 2}. (28)

Proof: The proof of Proposition 2 is presented in Appendix D.
That is, the maximum individual information rates in the G-MAC-F(b) and in the G-

MAC(b) coincide.

5 Maximum Information Sum-Rate Given a Minimum En-
ergy Rate Constraint

In this section, for any fixed non-negative SNR11, SNR12, SNR21, and SNR22, and for any
b satisfying (11), the information sum-capacity (i.e., the maximum information sum-rate) is
identified in the G-MAC-F(b) and in the G-MAC(b).

5.1 Case With Feedback
The perfect feedback information sum-capacity RFB

sum(b) of the G-MAC-F(b) is the solution to an
optimization problem of the form

RFB
sum(b) = max

(R1,R2,B)∈EFB
b (SNR11,SNR12,SNR21,SNR22)

R1 +R2. (29)

The solution to (29) is given by the following proposition.

Proposition 3 (Information Sum-Capacity of the G-MAC-F(b)). The information sum-capacity
of the
G-MAC-F(b) is

1. ∀b ∈
[
0,1+SNR21 +SNR22 +2ρ?(1,1)

√
SNR21SNR22

]
,

RFB
sum(b) =

1

2
log2(1+SNR11+SNR12+2ρ?(1, 1)

√
SNR11SNR12); (30)

2. ∀b ∈
(
1+SNR21+SNR22+2ρ?(1, 1)

√
SNR21SNR22, 1+SNR21+SNR22+2

√
SNR21SNR22

)
,

RFB
sum(b)=

1

2
log2(1 + (1− ξ(b)2)SNR11) +

1

2
log2(1 + (1− ξ(b)2)SNR12); (31)
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3. ∀b ∈
[
1 + SNR21 + SNR22 + 2

√
SNR21SNR22,∞],

RFB
sum(b) = 0, (32)

where ρ?(1, 1) denotes the unique solution in (0, 1) to (20) with β1 = β2 = 1 and the function
ξ(b) is defined in (23).

Proof: The proof of Proposition 3 is presented in Appendix E.

5.2 Case Without Feedback
The information sum-capacity RNF

sum(b) of the G-MAC(b) is the solution to an optimization prob-
lem of the form

RNF
sum(b) = max

(R1,R2,B)∈Eb(SNR11,SNR12,SNR21,SNR22)
R1 +R2. (33)

The solution to (33) is given by the following proposition.

Proposition 4 (Information Sum-Capacity of the G-MAC(b)). The information sum-capacity
of the G-MAC(b) is

1. ∀b ∈
[
0, 1 + SNR21 + SNR22 + 2

√
SNR21SNR22 min

{√
SNR12

SNR11
,
√

SNR11

SNR12

}]
RNF

sum(b) =
1

2
log2

(
1+SNR11 +SNR12−2ξ(b)

√
SNR11SNR12

)
, (34)

2. ∀b ∈
(

1+SNR21+SNR22+2
√
SNR21SNR22 min

{√
SNR12

SNR11
,
√

SNR11

SNR12

}
, 1+SNR21+SNR22+

2
√
SNR21SNR22

]
RNF

sum(b) =
1

2
log2

(
1 +

(
1− ξ(b)2

)
SNR1i

)
, (35)

with i = argmax
k∈{1,2}

SNR1k,

3. ∀b ∈
[
1 + SNR21 + SNR22 + 2

√
SNR21SNR22,∞

]
RNF

sum(b) = 0, (36)

with the function ξ(b) defined in (23).

Proof: The proof is presented in Appendix F.
From Propositions 3 and 4, it can be seen that in the case with feedback, both users might

transmit information and energy simultaneously as feedback creates signal correlation, which
allows the system to meet the minimum energy rate. That is, the correlation induced by the use
of the feedback is beneficial to both information transmission and energy transmission. Alterna-
tively, in the case without feedback, artificial correlation via common randomness is required to
meet the energy rate constraint. Such a correlation only benefits the energy transmission task
and comes at the expense of the information transmission task as the information sum-rate is
necessarily reduced. For instance, one way of achieving (35) is when the transmitter with the
lowest SNR uses common randomness at its maximum power (transmits only energy), while the
other transmitter transmits both energy and information.
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Remark 2. Optimally alternating transmission of energy and information does not always
achieve information sum-capacity of the G-MAC(b) for a given minimum received energy rate
constraint b.

To verify Remark 2, consider the sum-rate optimization problem proposed in [6] in which both
users alternate between information and energy transmission. Specifically, during a fraction of
time λ ∈ [0, 1], transmitter i sends an IC signal with power P ′i and during the remaining fraction
of time it sends an NIC signal with power P ′′i . Thus, the sum-rate optimal time-sharing parameter
λ and power control vector (P ′1, P

′
2, P

′′
1 , P

′′
2 ) are solutions to the optimization problem

max
(λ,P ′1,P

′′
1 ,P

′
2,P
′′
2 )∈[0,1]×R4

+

λ

2
log2

(
1 + h2

11P
′
1 + h2

12P
′
2

)
(37a)

subject to :

λP ′i + (1− λ)P ′′i 6 Pi, i ∈ {1, 2} (37b)
1+λ(h2

21P
′
1+h

2
22P

′
2)+(1− λ)(h21

√
P ′′1 +h22

√
P ′′2 )2> b, (37c)

where Pi is the total power budget of transmitter i.
For any feasible choice of (λ, P ′1, P

′′
1 , P

′
2, P

′′
2 ), by the concavity of the logarithm, it follows

that:
λ

2
log2(1+h2

11P
′
1 +h2

12P
′
2)6

1

2
log2

(
1+λ

(
h2

11P
′
1 +h2

12P
′
2

))
. (38)

Note that for λ 6= 1, the inequality in (38) is strict and the rate 1
2 log2

(
1 + λ

(
h2

11P
′
1 + h2

12P
′
2

))
is always achievable by a power-splitting scheme in which βi = λ

P ′i
Pi
, with i ∈ {1, 2}, for any

optimal tuple (λ, P ′1, P
′′
1 , P

′
2, P

′′
2 ) in (37). This shows that the maximum information sum-rate

achieved via alternating energy and information transmission is always bounded away from the
information sum-capacity (Proposition 4). When λ = 1, exclusively transmitting information
satisfies the energy rate constraint, i.e., b ∈ [0, 1 + SNR21 + SNR22].

6 Comments on the Shape of the Information-Energy Ca-
pacity Region

In this section, observations on the shape of the volumes EFB
0 (SNR11, SNR12, SNR21,SNR22) and

E0 (SNR11, SNR12, SNR21, SNR22) are presented.
For a given k ∈ N, let B(bk) ⊂ R2

+ be a two-dimensional set of the form

B(bk) =
{

(R1, R2) ∈ R2
+ : Ri 6

1

2
log2

(
1 +

(
1− ξ(bk)2

)
SNR1i

)
, i ∈ {1, 2}

}
. (39)

6.1 Case With Feedback
Fig. 4 shows a general example of the intersection of the volume
EFB

0 (SNR11, SNR12, SNR21, SNR22), in the Cartesian coordinates (R1, R2, B), with the planes
B = bk, with k ∈ {0, 1, 2, 3}, such that b0 ∈

[
0, 1+SNR21 +SNR22

]
, b1 ∈

[
1+SNR21 +SNR22, 1+

SNR21 + SNR22 + 2ρ?(1, 1)
√
SNR21SNR22

]
, b2 = 1 + SNR21 + SNR22 + 2ρ?(1, 1)

√
SNR21SNR22,

and b3 ∈
[
1+SNR21 +SNR22 +2ρ?(1, 1)

√
SNR21SNR22, 1+SNR21 +SNR22 +2

√
SNR21SNR22

]
.

Case 1: b0 ∈ [0,1 + SNR21 + SNR22]. In this case, any intersection of the volume
EFB

0 (SNR11, SNR12, SNR21, SNR22), in the Cartesian coordinates (R1, R2, B), with a plane B =
b0 corresponds to the set of triplets (R1, R2, b0), in which the corresponding pairs (R1, R2) form
a set that is identical to the information capacity region of the G-MAC-F (without EH), denoted
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Figure 4: Intersection of the the information-energy capacity region of the
G-MAC-F(O), EFB

0 (SNR11, SNR12, SNR21, SNR22), with the planes B = b0,
B = b1, B = b2 and B = b3 where b0 ∈ [0, 1 + SNR21 + SNR22],
b1 ∈

[
1 + SNR21 + SNR22, 1 + SNR21 + SNR22 + 2ρ?(1, 1)

√
SNR21SNR22

]
,

b2 = 1 + SNR21 + SNR22 + 2ρ?(1, 1)
√
SNR21SNR22, and b3 ∈[

1 + SNR21 + SNR22 + 2ρ?(1, 1)
√
SNR21SNR22, 1 + SNR21 + SNR22 + 2

√
SNR21SNR22

]
.

by CFB(SNR11,SNR12). Note that this intersection is the base of the information-energy capacity
region EFB

b0
(SNR11, SNR12, SNR21,SNR22) of the G-MAC-F(b0). In this case, ξ(b0) = 0, and thus

from Proposition 1 and Proposition 3, the energy constraint does not add any additional bound
on the individual rates and sum-rate other than (17a), (17b), and (17c). That is, the minimum
energy transmission rate requirement can always be met by exclusively transmitting information.

Case 2: b1 ∈
(
1 + SNR21 + SNR22,1 + SNR21 + SNR22 +2ρ?(1,1)

√
SNR21SNR22

]
. In

this case, any intersection of the volume EFB
0 (SNR11, SNR12, SNR21, SNR22) with a plane B = b1

is a set of triplets (R1, R2, b1) for which the corresponding pairs (R1, R2) satisfy (R1, R2) ∈ B(b1)∩
CFB(SNR11, SNR12), which forms a strict subset of CFB(SNR11, SNR12). This intersection coin-
cides with the base of the information-energy capacity region EFB

b1
(SNR11, SNR12, SNR21, SNR22)

of the G-MAC-F(b1). Note that ξ(b1) > 0, and thus from Proposition 1, the energy constraint
limits the individual rates. That is, transmitter i’s individual information rate is bounded away
from 1

2 log2 (1 + SNR1i). Nevertheless, it is important to highlight that in this case, ξ(b1) 6

ρ?(1, 1), and thus the individual rates R1 = 1
2 log2

(
1 +

(
1− (ρ?(1, 1))

2
)
SNR11

)
and R2 =

1
2 log2

(
1 +

(
1− (ρ?(1, 1))

2
)
SNR12

)
are always achievable. Hence, this intersection always in-

cludes the triplet (R1, R2, b1), with R1+R2=1
2 log2

(
1+SNR11 +SNR12 +2ρ?(1, 1)

√
SNR11SNR12

)
= RFB

sum(b1) = RFB
sum(0). That is, the power-split β1 = β2 = 1 is always feasible. Note that

the intersection of the volume EFB
0 (SNR11, SNR12, SNR21, SNR22) with the plane B = b2 is a

particular case of this regime.
Case 3: b3 ∈

(
1 + SNR21 + SNR22 + 2ρ?(1,1)

√
SNR21SNR22,1 + SNR21 + SNR22+

2
√
SNR21SNR22

]
. In this case, any intersection of the volume EFB

0 (SNR11, SNR12, SNR21, SNR22)
with a plane B = b3 is a set of triplets (R1, R2, b3) for which the corresponding pairs (R1, R2) sat-
isfy (R1, R2) ∈ B(b3) = B(b3)∩CFB(SNR11, SNR12), which is a strict subset of CFB(SNR11, SNR12).
This intersection coincides with the base of the information-energy capacity region
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EFB
b3

(SNR11, SNR12, SNR21, SNR22) of the G-MAC-F(b3). Note that ρ?(1, 1) < ξ(b3) 6 1, and
thus from Proposition 1, the individual information rates are limited by
Ri 6 1

2 log2

(
1 +

(
1− ξ(b3)2

)
SNR1i

)
< 1

2 log2

(
1 +

(
1− (ρ?(1, 1))

2
)
SNR1i

)
. For any b3 > 1 +

SNR21 + SNR22 + 2ρ?(1, 1)
√
SNR21SNR22, the set B(b3) monotonically shrinks with b3. Con-

sequently, for these values of b3, there exists a loss of sum-rate and RFB
sum(0) is not achievable.

Nonetheless, note that RFB
sum(b3) is a continuous function in b3. When b3 = 1+SNR21 +SNR22 +

2(ρ?(1, 1) + ε)
√
SNR21SNR22, for some ε > 0, it holds that ξ(b3) = ρ?(1, 1)+ ε. Substituting this

into (31) and taking the limit when ε tends to 0, by the definition of ρ?(1, 1), the resulting value
is given by (30). Clearly, the maximum energy rate is achieved when β1 = β2 = 0, which implies
that no information is conveyed from the transmitters to the receiver.

6.2 Case Without Feedback

Q1

Q4 Q5

R1 [bits/ch.use] R2 [bits/ch.use]

B[energy units/ch.use]

R
2

[b
it

s/
ch

.u
se

]

R1 [bits/ch.use]

B = b0

B = b1

B = b0

B = b1

B = b2

B = b2

Q0
2

Q0
3

Figure 5: Intersection of the information-energy capacity region of the
G-MAC(0), E0 (SNR11, SNR12, SNR21,SNR22), with the planes B = b0,
B = b1, and B = b2, where b0 ∈ [0, 1 + SNR21 + SNR22], b1 ∈(

1 + SNR21 + SNR22, 1 + SNR21 + SNR22 + 2
√
SNR21SNR22 min

{√
SNR12

SNR11
,
√

SNR11

SNR12

}]
, and

b2 ∈
(

1 + SNR21 + SNR22 + 2
√
SNR21SNR22 min

{√
SNR12

SNR11
,
√

SNR11

SNR12

}
, 1 + SNR21 + SNR22 +

2
√
SNR21SNR22

]
.

Fig. 5 shows a general example of the intersection of the volume
E0 (SNR11, SNR12, SNR21, SNR22), in the Cartesian coordinates (R1, R2, B), with the planes
B = bk, with k ∈ {0, 1, 2}, such that b0 ∈ [0, 1 + SNR21 + SNR22], b1 ∈

(
1 + SNR21 + SNR22, 1 +

SNR21 + SNR22 + 2
√
SNR21SNR22 min

{√
SNR12

SNR11
,
√

SNR11

SNR12

}]
, and b2 ∈

(
1 + SNR21 + SNR22 +

2
√
SNR21SNR22 min

{√
SNR12

SNR11
,
√

SNR11

SNR12

}
, 1 + SNR21 + SNR22 + 2

√
SNR21SNR22

]
.

Case 1: b0 ∈ [0,1 + SNR21 + SNR22]. In this case, any intersection of the volume
E0 (SNR11, SNR12, SNR21, SNR22), in the Cartesian coordinates (R1, R2, B), with a plane B = b0
corresponds to the set of triplets (R1, R2, b0), in which the corresponding pairs (R1, R2) form a
set that is identical to the information capacity region of the G-MAC (without EH), denoted
by C(SNR11, SNR12). This intersection is the base of the information-energy capacity region
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Eb0 (SNR11, SNR12, SNR21, SNR22) of the G-MAC(b0). Note that ξ(b0) = 0, and thus from
Proposition 2 and Proposition 4, it holds that RNF

i (b0) = 1
2 log2 (1 + SNR1i), for i ∈ {1, 2}, and

RNF
sum(b0) = 1

2 log2 (1 + SNR11 + SNR12). Hence, exclusively transmitting information is enough
for satisfying the energy rate constraint b0.

Case 2: b1∈
(
1+SNR21+SNR22,1+SNR21+SNR22+2

√
SNR21SNR22min

{√
SNR12

SNR11
,
√

SNR11

SNR12

}]
.

In this case, any intersection of the volume E0 (SNR11,SNR12, SNR21, SNR22), in the Cartesian
coordinates (R1, R2, B), with a plane B = b1 corresponds to the set of triplets (R1, R2, b1) in
which the corresponding pairs (R1, R2) form a set that is equivalent to a strict subset of the
information capacity region of the G-MAC C(SNR11, SNR12). This intersection is the base of the
information-energy capacity region Eb1 (SNR11,SNR12,SNR21, SNR22) of the G-MAC(b1). Note
that ξ(b1) > 0, and thus from Proposition 2 and Proposition 4, RNF

i (b1) and RNF
sum(b1) decrease

with b1. This is mainly due to the fact that part of each transmitter’s power budget is ded-
icated to the transmission of energy. Furthermore, the information sum-rate optimal strategy
involves information transmission at both users since the sum-capacity is strictly larger than the
maximum individual rate of the user with the highest SNR.

Case 3: b2∈
(
1 + SNR21 + SNR22+ 2

√
SNR21SNR22 min

{√
SNR12

SNR11
,
√

SNR11

SNR12

}
,1+SNR21

+SNR22 + 2
√
SNR21SNR22

]
. In this case, any intersection of the volume

E0 (SNR11, SNR12, SNR21, SNR22), in the Cartesian coordinates (R1, R2, B), with a plane B =
b2 corresponds to the set of triplets (R1, R2, b2) in which the corresponding pairs (R1, R2)
form a set that is equivalent to a strict subset of the information capacity region of the G-
MAC, C(SNR11,SNR12). This intersection is the base of the information-energy capacity
Eb2 (SNR11, SNR12, SNR21,SNR22) region of the G-MAC(b2). The information sum-capacity
corresponds to the maximum individual rate (Proposition 2) of the transmitter with the highest
SNR. That is, in order to maximize the information sum-rate, it is optimal to have informa-
tion transmission exclusively at the stronger user with the highest SNR. The transmitter with
the weakest SNR uses all its power budget to exclusively transmit energy. Note that when the
receiver and the EH are co-located and when the channel is symmetric, this is not observed.

7 Energy Transmission Enhancement With Feedback
In this section, the enhancement on the energy transmission rate due to the use of feedback is
quantified when the information sum-rate is RNF

sum(0) (see the blue triangles and orange squares
in Fig. 6).

Denote by BNF = 1 + SNR21 + SNR22 the maximum energy rate that can be guaranteed
at the EH in the G-MAC(0) when the information sum-rate is RNF

sum(0). Denote also by BFB

the maximum energy rate that can be guaranteed at the EH in the G-MAC-F(0) when the
information sum-rate is RNF

sum(0). The exact value of BFB is the solution to an optimization
problem of the form

BFB = max B

subject to: RFB
sum(B) = RNF

sum(0). (40)

The solution to (40) is given by the following theorem.

Theorem 3. The maximum energy rate BFB that can be guaranteed at the EH in the G-MAC-
F(0) when the information sum-rate is RNF

sum(0) is

BFB = 1 + SNR21 + SNR22 + 2
√

(1− γ)SNR21SNR22, (41)
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Figure 6: Information sum-capacity of the symmetric two-user memoryless G-MAC-F(0) (thick
red line) and G-MAC(0) (thin blue line), with co-located receiver and EH, with SNR11 =
SNR12 = SNR21 = SNR22 = SNR, as a function of B. Red (big) circles represent the pairs
(B1, R

FB
sum(B1)) in which RFB

sum(B1) is the information sum-capacity with feedback when only
information transmission is performed and B1 , 1 + 2(1 + ρ?(1, 1))SNR represents the corre-
sponding maximum energy rate that can be guaranteed at the EH. Blue triangles represent the
pairs (BNF, R

NF
sum(BNF)) in which RNF

sum(BNF) is the information sum-capacity without feedback
and BNF , 1 + 2SNR is the corresponding maximum energy rate that can be guaranteed at the
EH without feedback. Orange squares represent the pairs (BFB, R

NF
sum(BF)) in which BFB is the

corresponding maximum energy rate that can be guaranteed at the EH with feedback. Black
(small) circles represent the pairs (Bmax, 0) in which Bmax , 1 + 4SNR is the maximum energy
rate at the EH.

with γ ∈ (0, 1) defined as follows:

γ,
SNR11 + SNR12

2SNR11SNR12

[√
1 +

4SNR11SNR12

SNR11 + SNR12
− 1

]
. (42)

Proof: The proof of Theorem 3 is presented in Appendix G.
To quantify the energy rate enhancement induced by feedback, it is of interest to consider

the ratio BFB

BNF
given by

BFB

BNF
= 1 +

2
√

(1− γ)SNR21SNR22

1 + SNR21 + SNR22
. (43)

Note that the impact of the SNRs in the information transmission branch (SNR11 and SNR12)
are captured by γ.

Let νi , SNR1i

SNR1j
∈ R+ and ηi ,

SNR2i

SNR2j
∈ R+, with (i, j) ∈ {1, 2}2 and i 6= j measure the

asymmetry in the channel from the transmitters to the receiver and to the EH, respectively.
Let also ψi , SNR2i

SNR1i
∈ R+ capture the strength ratio between the information and the energy

channels of transmitter i.
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With these parameters, γ in (42) can be rewritten as

γ =
1 + νi

2νiSNR1j

[√
1 +

4νiSNR1j

1 + νi
− 1

]
, (44)

with (i, j) ∈ {1, 2}2 and i 6= j.
Note that, for all (i, j) ∈ {1, 2}2 with i 6= j, when SNR1j → 0 while the ratio νi remains

constant, from (44), it follows that

lim
SNR1j→0

γ = 1. (45)

Thus, when the SNRs in the information branch (SNR11 and SNR12) are very low, the im-
provement on the energy transmission rate due to feedback is inexistent. This observation is
independent of the SNRs in the EH branch (SNR21 and SNR22).

Alternatively, when SNR1j →∞ while the ratio νi remains constant, it follows that

lim
SNR1j→∞

γ = 0. (46)

Thus, when the SNRs in the information branch (SNR11 and SNR12) are very high, the improve-
ment on the energy transmission rate due to feedback is given by

lim
SNR1j→∞

BFB

BNF
= 1 +

2
√
SNR21SNR22

1 + SNR21 + SNR22
. (47)

More generally, using the above parameters, the ratio BFB

BNF
in (43) can be written as

BFB

BNF
=1+

2ψjSNR1j

√
ηi

(
1−
(

1+νi
2νiSNR1j

(√
1+

4νiSNR1j

1+νi
−1

)))
1 + (1 + ηi)ψjSNR1j

. (48)

Based on (48), the following corollary evaluates the very low SNR asymptotic energy en-
hancement with feedback.

Corollary 1. For all (i, j) ∈ {1, 2}2 with i 6= j, when SNR1j → 0 while the ratios νi, ηi, and ψi
remain constant, it holds that

lim
SNR1j→0

BFB

BNF
= 1, (49)

and thus feedback does not enhance energy transmission at very low SNR.

In the very high SNR regime, the asymptotic energy enhancement with feedback is given by
the following corollary that is also based on (48).

Corollary 2. For all (i, j) ∈ {1, 2}2 with i 6= j, when SNR1j → ∞ while the ratios νi, ηi, and
ψi remain constant, the maximum energy rate improvement with feedback is given by

lim
SNR1j→∞

BFB

BNF
= 1 +

2
√
ηi

1 + ηi
. (50)

From Corollary 1 and Corollary 2, it holds that:
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Figure 7: The ratio BFB

BNF
and its high-SNR limit as a function of SNR when the receiver and the

EH are co-located and SNR11 = SNR21 = SNR1 and SNR12 = SNR22 = SNR2. The solid line
is the high-SNR limit in (50); the dash-dotted line, the dashed line and the dotted line are the
exact values of the ratio BFB

BNF
in (48) when SNR1 = SNR2 = SNR; SNR1

2 = SNR2 = SNR; and
SNR1

10 = SNR2 = SNR, respectively.

Corollary 3. Feedback can at most double the energy transmission rate:

1 6
BFB

BNF
6 2, (51)

where the upper-bound holds with equality when ηi = 1, i.e., SNR21 = SNR22.

Fig. 7 compares the exact value of the ratio BFB

BNF
in (48) to the high-SNR limit in (50) as

a function of the SNRs in the special case in which the receiver and the EH are co-located.
This implies that the channel coefficients between the transmitters and the receiver are identical
to those between the transmitters and the EH., i.e., SNR11 = SNR21 = SNR1 and SNR12 =
SNR22 = SNR2. Note that in the symmetric case, i.e., SNR1 = SNR2 = SNR, the upper-bound
in (50) is tight since the ratio BFB

BNF
becomes arbitrarily close to two as SNR tends to infinity. In

the non-symmetric cases SNR1 6= SNR2, this bound is loose.

8 Conclusion and Extensions
This report has characterized the information-energy capacity region of the two-user G-MAC with
an EH, with and without feedback, and has determined the energy transmission enhancement
induced by the use of feedback. An important conclusion of this work is that SEIT requires
additional transmitter cooperation/coordination. From this viewpoint, any technique that allows
transmitter cooperation (i.e., feedback, conferencing, etc.) is likely to provide performance gains
in SEIT in general multi-user networks. The results on the energy transmission enhancement
induced by feedback in the two-user G-MAC-F can be extended to the K-user G-MAC-F with
EH for arbitrary K > 3.

A Proof of Theorem 1
The proof is divided into two parts: achievability and converse parts.
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A.1 Proof of Achievability
The proof of achievability uses a very simple power-splitting technique in which a fraction βi ∈
[0, 1] of the power is used for information transmission and the remaining fraction (1 − βi) for
energy transmission. The information transmission is made following Ozarow’s perfect feedback
capacity-achieving scheme in [24]. The energy transmission is accomplished by random symbols
that are known at both transmitters and the receiver. Despite a great deal of similarity with the
scheme in [24], the complete proof is fully described hereunder for the sake of completeness.

Codebook generation: At the beginning of the transmission, each message Mi is mapped
into the real-valued message point

Θi(Mi) , −(Mi − 1)∆i +
√
Pi, (52)

where

∆i ,
2
√
Pi

b2nRic . (53)

Encoding: The first three channel uses are part of an initialization procedure during which
there is no energy transmission and the channel inputs are

t = −2 : X1,−2 = 0 and X2,−2 = Θ2(M2), (54a)
t = −1 : X1,−1 = Θ1(M1) and X2,−1 = 0, (54b)
t = 0 : X1,0 = 0 and X2,0 = 0. (54c)

Through the feedback links, transmitter 1 observes (Z−1, Z0) and transmitter 2 observes
(Z−2, Z0). After the initialization phase, each transmitter i ∈ {1, 2} can thus compute

Ξi ,
√

1− ρ?(β1, β2) · Z−i +
√
ρ?(β1, β2) · Z0, (55)

where ρ?(β1, β2) is the unique solution in (0, 1) to (20).
During the remaining channel uses 1, . . . , n, for i ∈ {1, 2}, instead of repeating the message-

point Θi(Mi), transmitter i simultaneously describes Ξi to the receiver and transmits energy
to the EH. Let βi, with i ∈ {1, 2} be the power-splitting coefficient of transmitter i. More
specifically, at each time t ∈ {1, . . . , n}, transmitter i sends

Xi,t = Ui,t +
√

(1− βi)PiWt, i ∈ {1, 2}. (56)

Here (W1, . . . ,Wn) is an independent and identically distributed (i.i.d.) sequence drawn accord-
ing to a zero-mean unit-variance Gaussian distribution. This sequence is known non-causally to
the transmitters and to the receiver and is independent of the messages and the noise sequences.
The symbol Ui,t is a zero-mean Gaussian random variable with variance βiPi and is chosen as
follows:

Ui,1 =
√
βiPi Ξi, (57a)

Ui,t = γi,t

(
Ξi − Ξ̂

(t−1)
i

)
, t ∈ {2, . . . , n}, (57b)

where the parameter γi,t is chosen to satisfy E
[
U2
i,t

]
= βiPi and Ξ̂

(t−1)
i is explained below.

For each t ∈ {1, . . . , n}, upon receiving the channel output Y1,t, the receiver subtracts the
signal induced by the common randomness to form the observation Y ′1,t as follows:

Y ′1,t , Y1,t −
(
h11

√
(1− β1)P1 + h12

√
(1− β2)P2

)
Wt. (58)

The receiver then calculates the minimum mean square error (MMSE) estimate
Ξ̂

(t−1)
i = E

[
Ξi|Y ′1,1, . . . , Y ′1,t−1

]
of Ξi given the prior observations Y ′1,1, . . . , Y ′1,t−1.
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Remark 3. Note that by the orthogonality principle of MMSE estimation [28], (U1,t, U2,t, Zt)
are independent of the observations Y ′1,1, . . . , Y ′1,t−1 and thus of Y1,1, . . . , Y1,t−1. Furthermore,
since (W1, . . . ,Wn) are i.i.d., it holds that, for any i ∈ {1, 2} and for any t ∈ {1, . . . , n}, Yi,t is
independent of Yi,1, . . . , Yi,t−1.

Remark 4. Let ρt denote the correlation coefficient between U1,t and U2,t, i.e., ρt,
E[U1,tU2,t]√
E[U2

1,t]E[U2
2,t]

.

In [29, Lemma 17.1], it is proved that for all t ∈ {1, . . . , n}, ρt = ρ?(β1, β2), and thus ρ?(β1, β2)
is the steady-state correlation coefficient.

After reception of the output symbols Y1,−2, . . . , Y1,n, the receiver forms
Ξ̂

(n)
i , E

[
Ξi|Y ′1,1, . . . , Y ′1,n

]
, for i ∈ {1, 2}. Then, it forms an estimate Θ̂

(n)
i of the message

point Θi(Mi) as follows:

Θ̂
(n)
i ,

1

h1i

(
Y1,−i+

√
ρ?(β1, β2)

1− ρ?(β1, β2)
Y1,0−

1√
1− ρ?(β1, β2)

Ξ̂
(n)
i

)
= Θi(Mi) +

1

h1i

√
1− ρ?(β1, β2)

(
Ξi − Ξ̂

(n)
i

)
. (59)

Finally, the message index estimate Mi is obtained using nearest-neighbor decoding based on
the value Θ̂

(n)
i , as follows:

M̂
(n)
i = argmin

mi∈{1,...,b2nRic}

∣∣Θi(mi)− Θ̂
(n)
i

∣∣. (60)

Analysis of the probability of error:
An error occurs whenever the receiver is not able to recover one of the messages, i.e.,

(M1,M2) 6= (M̂
(n)
1 , M̂

(n)
2 ) or if the received energy rate is below the desired minimum rate

B(n) < B.
First, consider the probability of a decoding error. Note that for i ∈ {1, 2}, M̂ (n)

i = Mi, if

|Ξi − Ξ̂
(n)
i | 6

h1i

√
1− ρ?(β1, β2)∆i

2
. (61)

Since the difference Ξi− Ξ̂
(n)
i is a centered Gaussian random variable, by the definition of ∆i

in (53), the error probability P (n)
e,i while decoding message index Mi can be bounded as

P
(n)
e,i 6 2Q

√SNR1i

√
1− ρ?(β1, β2)

b2nRic
√

(σ
(n)
i )2

 , (62)

where Q(x) = 1√
2π

∫∞
x

exp
(
−u2

2

)
du is the tail of the unit Gaussian distribution evaluated at x

and where

(σ
(n)
i )2 , E

[
|Ξi − Ξ̂

(n)
i |2

]
, i ∈ {1, 2}. (63)

Note that

I(Ξi;Y
′
1) = h(Ξi)− h(Ξi|Y′1)

(a)
= h(Ξi)− h(Ξi − Ξ̂

(n)
i |Y′1)

(b)
= h(Ξi)− h(Ξi − Ξ̂

(n)
i )

= −1

2
log2

(
(σ

(n)
i )2

)
, (64)
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where (a) holds because by the joint Gaussianity of Ξi and Y′1, the MMSE estimate Ξ̂
(n)
i is a

linear function of Y′1 (see, e.g., [30]); (b) follows because by the orthogonality principle, the error
Ξi − Ξ̂

(n)
i is independent of the observations Y′1.

Equation (64) can equivalently be rewritten as√
(σ

(n)
i )2 = 2−I(Ξi;Y

′
1). (65)

Combining (62) with (65) yields that the probability of error of message Mi tends to 0 as
n→∞, if the rate Ri satisfies

Ri 6 lim inf
n→∞

1

n
I(Ξi;Y

′
1), i ∈ {1, 2}. (66)

On the other hand, as proved in [29, Sec. 17.2.4],

I(Ξi;Y
′
1) =

n∑
t=1

I(Ui,t;Y
′
1,t) (67)

and irrespective of n and t ∈ {1, . . . , n}, it holds that

I(Ui,t;Y
′
1,t) =

1

2
log2

(
1 + βiSNR1i(1− (ρ?(β1, β2))2)

)
. (68)

Hence, for i ∈ {1, 2} it holds that

lim inf
n→∞

1

n
I(Ξi;Y

′
1) =

1

2
log2

(
1 + βiSNR1i(1− (ρ?(β1, β2))2)

)
. (69)

Combining (66) and (69) yields that when n→∞, this scheme can achieve all non-negative
rate-pairs (R1, R2) that satisfy

R1 6
1

2
log2

(
1 + β1SNR11(1− ρ?(β1, β2)

2
)
)
, (70a)

R2 6
1

2
log2

(
1 + β2SNR12(1− ρ?(β1, β2)

2
)
)
. (70b)

Hence, combined with (20), it automatically yields

R1 + R2 6
1

2
log2

(
1 + β1 SNR11 + β2 SNR12 + 2ρ?(β1, β2)

√
β1SNR11β2SNR12

)
. (70c)

Furthermore, the total consumed power at transmitter i for i ∈ {1, 2} over the n+ 3 channel
uses is upper bounded by (n+ 1)Pi, hence, this scheme satisfies the input-power constraints.

Average received energy rate:
The average received energy rate is given by B(n) , 1

n

∑n
t=1 Y

2
2,t.

By the memoryless property of the channel and by the choice of the inputs, the sequence
Y2,1, . . . , Y2,n is i.i.d. and each Y2,t follows a zero-mean Gaussian distribution with variance B̄
given by

B̄,E
[
Y 2

2,t

]
=1 + SNR21 + SNR22 + 2

√
β1SNR21β2SNR22ρ

?(β1, β2) + 2
√

(1− β1)SNR21(1− β2)SNR22,

(71)
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where the correlation among the IC components is in the steady state.
By the weak law of large numbers, it holds that ∀ε > 0,

lim
n→∞

Pr
(
|B(n) − B̄| > ε

)
= 0. (72)

Consequently,

lim
n→∞

Pr
(
B(n) > B̄ + ε

)
= 0, and (73a)

lim
n→∞

Pr
(
B(n) < B̄ − ε

)
= 0. (73b)

From (73b), it holds that for any energy rate B which satisfies 0 < B 6 B̄, it holds that

lim
n→∞

Pr
(
B(n) < B − ε

)
= 0. (74)

To sum up, any information-energy rate triplet (R1, R2, B) that satisfies

R1 6
1

2
log2

(
1 + β1SNR11(1− (ρ?(β1, β2))

2
)
)

(75a)

R2 6
1

2
log2

(
1 + β2SNR12(1− (ρ?(β1, β2))

2
)
)

(75b)

R1 +R2 6
1

2
log2

(
1 + β1SNR11 + β2SNR12 + 2ρ?(β1, β2)

√
β1 SNR11 · β2 SNR12

)
(75c)

B 6 1 + SNR21 + SNR22 + 2
(√

β1β2ρ
?(β1, β2) +

√
(1− β1)(1− β2)

)√
SNR21SNR22(75d)

is achievable.
To achieve other points in the information-energy capacity region, transmitter 1 can split its

messageM1 into two independent submessages (M1,0,M1,1) ∈ {1, . . . , b2nR1,0c}×{1, . . . , b2nR1,1c}
such that R1,0, R1,1 ≥ 0 and R1,0 + R1,1 = R1. It uses a power fraction α1 ∈ [0, 1] of its avail-
able information-dedicated power β1P1 to transmit M1,0 using a non-feedback Gaussian random
code and uses the remaining power (1− α1)β1P1 to send M1,1 using the sum-capacity-achieving
feedback scheme while treating M1,0 as noise. Transmitter 2 sends its message M2 using the
sum-capacity-achieving feedback scheme.

Transmitter 1’s IC-input is U1,t , U1,0,t + U1,1,t where U1,1,t is defined as in (57) but with
reduced power (1− α1)β1P1, and U1,0,t is an independent zero-mean Gaussian random variable
with variance α1β1P1. Transmitter 2’s IC-input is defined as in (57).

The receiver first subtracts the common randomness and then decodes (M1,1,M2) treating
the signal encoding M1,0 as noise. Successful decoding is possible if

R1,16
1

2
log2

(
1 +

(1− α1)β1SNR11(1− ρα1
(β1, β2)

2
)

1 + α1β1SNR11

)
(76a)

R26
1

2
log2

(
1 +

β2SNR12(1− ρα1
(β1, β2)

2
)

1 + α1β1SNR11

)
, (76b)

where ρα1(β1, β2) is defined as follows. When β1 6= 0, β2 6= 0, and α1 6= 1, ρα1(β1, β2) is the
unique solution in (0, 1) to the following equation in x:

1+
(1−α1)β1SNR11+β2SNR12+2x

√
β1β2(1−α1)SNR11SNR12

1 + α1β1SNR11

=

(
1+

(1−α1)β1SNR11

1+α1β1SNR11
(1− x2)

)(
1+

β2SNR12

1+α1β1SNR11
(1−x2)

)
, (77)
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In this case, the existence and the uniqueness of ρα1(β1, β2) follow a similar argument as the
existence and uniqueness of a solution to (20). When α1 = 1, ρα1

(β1, β2) = ρ?(β1, β2). When
either β1 = 0 or β2 = 0, regardless of the value of α1, ρα1

(β1, β2) = 0.
Then, using successive interference cancellation, the receiver recovers M1,0 successfully if

R1,0 6
1

2
log2 (1 + α1β1SNR11) . (78)

By substituting R1 = R1,0 + R1,1, it can be seen that successful decoding of (M1,M2) is
possible with arbitrarily small probability of error if the rates (R1, R2) satisfy

R1 6
1

2
log2

(
1 +

(1− α1)β1SNR11

(
1− (ρα1

(β1, β2))
2)

1 + α1β1SNR11

)
+

1

2
log2 (1 + α1β1SNR11) (79a)

R2 6
1

2
log2

(
1 +

β2SNR12

(
1− (ρα1

(β1, β2))
2)

1 + α1β1SNR11

)
. (79b)

Now, the average received energy rate of this scheme is analyzed. The sequence Y2,1, . . . , Y2,n

is i.i.d. and each Y2,t for t ∈ {1, . . . , n} follows a zero-mean Gaussian distribution with variance
B given by

B = E
[
Y 2

2,t

]
= 1 + SNR21 + SNR22 + 2

√
1− α1 ρα1

(β1, β2)
√
β1SNR21β2SNR22

+ 2
√

(1− β1)SNR21(1− β2)SNR22

)
. (80)

Here also the weak law of large numbers implies that

lim
n→∞

Pr
(
B(n) < b− ε

)
= 0 (81)

for any b ∈ [0, B].
Now if ρ replaces

√
1− α1 ρα1(β1, β2) with α1 ∈ [0, 1] in constraints (79) and (80), then any

non-negative information-energy rate triplet (R1, R2, B) satisfying

R1 6
1

2
log2

(
1+β1SNR11

(
1− ρ2

))
, (82a)

R2 6
1

2
log2

(
1+β1SNR11+β2SNR12+2ρ

√
β1SNR11β2SNR12

)
− 1

2
log2

(
1+β1SNR11

(
1− ρ2

))
,(82b)

B 6 1+SNR21+SNR22 + 2
(
ρ
√
β1β2+

√
(1− β1)(1− β2)

)√
SNR21SNR22, (82c)

where ρ ∈ [0, ρ?(β1, β2)] and ρ?(β1, β2) is the unique solution to (20), is achievable.
If the roles of transmitters 1 and 2 are reversed, it can be shown that any non-negative

information-energy rate triplet (R1, R2, B) such that

R16
1

2
log2

(
1+β1SNR11+β2SNR12+2ρ

√
β1SNR11β2SNR12

)
− 1

2
log2

(
1 + β2SNR12(1− ρ2)

)
, (83a)

R26
1

2
log2

(
1 + β2SNR12(1− ρ2)

)
, (83b)

B 61 + SNR21 + SNR22 + 2ρ
√
β1SNR21β2SNR22 + 2

√
(1− β1)SNR21(1− β2)SNR22, (83c)

for any ρ ∈ [0, ρ?(β1, β2)], is achievable.
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Time-sharing between all information-energy rate triplets in the union of the two regions
described by the constraints (82) and (83) concludes the proof of achievability of the region.
This yields

R1 6
1

2
log2

(
1 + β1SNR11

(
1− ρ2

))
, (84a)

R2 6
1

2
log2

(
1 + β2SNR12

(
1− ρ2

))
, (84b)

R1 +R26
1

2
log2

(
1 + β1SNR11 + β2SNR12 + 2ρ

√
β1SNR11 β2SNR12

)
, (84c)

B 61 + SNR21 + SNR22 + 2ρ
√
β1SNR21β2SNR22

+2
√

(1− β1)SNR21(1− β2)SNR22, (84d)

for any ρ ∈ [0, ρ?(β1, β2)].
Note that for any ρ > ρ?(β1, β2), the sum of (84a) and (84b) is strictly smaller than (84c).

The resulting information region is a rectangle that is strictly contained in the rectangle obtained
for ρ = ρ?(β1, β2). In other words, there is no gain in terms of information rates. In terms of
energy rates, for any ρ > ρ?(β1, β2), there always exists a pair (β′1, β

′
2) such that

ρ =
√
β′1β

′
2ρ
?(β′1, β

′
2) +

√
(1− β′1)(1− β′2).

This choice achieves any information rate pair (R1, R2) satisfying

Ri 6
1

2
log2

(
1 + β′iSNR1i(1− ρ?(β′1, β′2)2)

)
. (85)

In particular, it achieves

Ri 6
1

2
log2

(
1 + β′iSNR1i(1− ρ2)

)
, i ∈ {1, 2}, (86)

since ρ > ρ?(1, 1) = max
(β1,β2)∈[0,1]2

ρ?(β1, β2). This completes the proof of the achievability part of

Theorem 1.

A.2 Proof of Converse
Fix an information-energy rate triplet (R1, R2, B) ∈ EFB

b (SNR11, SNR12, SNR21, SNR22). For
this information-energy rate triplet and for each blocklength n, encoding and decoding functions
are chosen such that

lim sup
n→∞

P (n)
error =0, (87a)

lim sup
n→∞

P
(n)
outage=0 for any ε > 0, (87b)

B >b, (87c)

subject to the input power constraint (8).
Using assumption (87a), applying Fano’s inequality and following similar steps as in [24], it
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can be shown that the rate-pair (R1, R2) must satisfy

nR1 6
n∑
t=1

I (X1,t;Y1,t|X2,t) + ε
(n)
1 , (88a)

nR2 6
n∑
t=1

I (X2,t;Y1,t|X1,t) + ε
(n)
2 , (88b)

n(R1 +R2) 6
n∑
t=1

I (X1,tX2,t;Y1,t) + ε
(n)
12 , (88c)

where ε
(n)
1

n ,
ε
(n)
2

n , and ε
(n)
1

n tend to zero as n tends to infinity.
Using assumption (87b), for a given ε(n) > 0, for any η > 0 there exists n0(η) such that for

any n ≥ n0(η) it holds that
Pr
(
B(n) < B − ε(n)

)
< η. (89)

Equivalently,
Pr
(
B(n) > B − ε(n)

)
> 1− η (90)

Using Markov’s inequality [31], the probability in (90) can be upper-bounded as follows:

(B − ε(n)) Pr
(
B(n) > B − ε(n)

)
6 E

[
B(n)

]
. (91)

Combining (90) and (91) yields

(B − ε(n))(1− η) 6 E
[
B(n)

]
(92)

which can be written as
(B − δ(n)) 6 E

[
B(n)

]
(93)

for some δ(n) > ε(n) (for sufficiently large n). Hence, (88) and (93) are an upper-bound for any
(R1, R2, B) satisfying (87a) and (87b).

In the following, the bounds in (88), (93), and (87c) are evaluated for the G-MAC-F(b). For
this purpose, assume that X1,t and X2,t are arbitrary correlated random variables with

µi,t , E[Xi,t] , (94)
σ2
i,t , Var(Xi,t) , (95)

λt , Cov[X1,t, X2,t] , (96)

for t ∈ {1, . . . , n} and for i ∈ {1, 2}.
The input sequence must satisfy the input power constraint (8) which can be written, for

i ∈ {1, 2}, as
1

n

n∑
t=1

E
[
X2
i,t

]
=

(
1

n

n∑
t=1

σ2
i,t

)
+

(
1

n

n∑
t=1

µ2
i,t

)
6 Pi. (97)

Note that from (1), for each t ∈ {1, . . . , n}, it holds that

h(Y1,t|X1,t, X2,t) = h(Zt) =
1

2
log2 (2πe) , (98)
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from the assumption that Zt follows a zero-mean unit-variance Gaussian distribution. Note also
that for any random variable X with variance σ2

X , it holds that h(X) 6 1
2 log2

(
2πeσ2

X

)
, with

equality when X follows a Gaussian distribution [32]. Finally, it is useful to highlight that for
any a ∈ R, it holds that h(X + a) = h(X). Using these elements, the right-hand side terms in
(88) can be upper-bounded as follows:

I(X1,t, X2,t;Y1,t) = h(Y1,t)− h(Zt)

6
1

2
log2 (2πeVar(Y1,t))−

1

2
log2 (2πe)

=
1

2
log2

(
h2

11σ
2
1,t + h2

12σ
2
2,t + 2h11h12λt + 1

)
,

I(X1,t;Y1,t|X2,t) = h(Y1,t|X2,t)− h(Y1,t|X1,t, X2,t)

6
1

2
log2 (2πe(Var(Y1,t|X2,t)))−

1

2
log2 (2πe)

=
1

2
log2

(
1 + h2

11σ
2
1,t

(
1− λ2

t

σ2
1,tσ

2
2,t

))
,

I(X2,t;Y1,t|X1,t) =
1

2
log2

(
1 + h2

12σ
2
2,t

(
1− λ2

t

σ2
1,tσ

2
2,t

))
.

Finally, the bounds in (88) can be rewritten as follows:

nR1 6
n∑
t=1

1

2
log2

(
1+h2

11σ
2
1,t

(
1− λ2

t

σ2
1,tσ

2
2,t

))
+ε

(n)
1 , (99a)

nR2 6
n∑
t=1

1

2
log2

(
1+h2

12σ
2
2,t

(
1− λ2

t

σ2
1,tσ

2
2,t

))
+ε

(n)
2 , (99b)

n(R1 +R2)6
n∑
t=1

1

2
log2

(
1+h2

11σ
2
1,t+h

2
12σ

2
2,t+2h11h12λt

)
+ ε

(n)
12 . (99c)

The expectation of the average received energy rate is given by

E
[
B(n)

]
= E

[
1

n

n∑
t=1

Y 2
2,t

]

= 1 + h2
21

(
1

n

n∑
t=1

(σ2
1,t + µ2

1,t)

)
+ h2

22

(
1

n

n∑
t=1

(σ2
2,t + µ2

2,t)

)

+2h21h22

(
1

n

n∑
t=1

(λt + µ1,tµ2,t)

)
. (100)

Using the Cauchy-Schwarz inequality, the energy rate in (100) can be upper-bounded as follows:

E
[
B(n)

]
61+h2

21

(
1

n

n∑
t=1

(σ2
1,t + µ2

1,t)

)
+h2

22

(
1

n

n∑
t=1

(σ2
2,t+µ

2
2,t)

)

+2h21h22

∣∣∣∣∣1n
n∑
t=1

λt

∣∣∣∣∣+
(

1

n

n∑
t=1

µ2
1,t

)1/2(
1

n

n∑
t=1

µ2
2,t

)1/2. (101)
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Combining (93) and (101) yields the following upper-bound on the energy rate B:

B61+h2
21

(
1

n

n∑
t=1

(σ2
1,t + µ2

1,t)

)
+h2

22

(
1

n

n∑
t=1

(σ2
2,t + µ2

2,t)

)
+

2h21h22

∣∣∣∣∣ 1n
n∑
t=1

λt

∣∣∣∣∣+
(

1

n

n∑
t=1

µ2
1,t

)1/2(
1

n

n∑
t=1

µ2
2,t

)1/2+δ(n). (102)

In order to obtain a single-letterization of the upper-bound given by constraints (99) and
(102), define also

µ2
i ,

1

n

n∑
t=1

µ2
i,t, i ∈ {1, 2}, (103)

σ2
i ,

1

n

n∑
t=1

σ2
i,t, i ∈ {1, 2}, (104)

ρ ,

(
1

n

n∑
t=1

λt

)
(|σ1| |σ2|)−1

. (105)

With these notations, the input power constraint in (97) can be rewritten as

σ2
i + µ2

i 6 Pi, i ∈ {1, 2}. (106)

By the concavity of the logarithm, applying Jensen’s inequality [32] in the bounds (99) yields,
in the limit when n→∞,

R1 6
1

2
log2

(
1 + h2

11σ
2
1

(
1− ρ2

))
, (107a)

R2 6
1

2
log2

(
1 + h2

12σ
2
2

(
1− ρ2

))
, (107b)

R1 +R2 6
1

2
log2

(
1 + h2

11σ
2
1 + h2

12σ
2
2 + 2

√
h2

11σ
2
1h

2
12σ

2
2ρ

)
, (107c)

and the upper-bound on the energy rate (102) yields

B 6 1 + h2
21(σ2

1 + µ2
1) + h2

22(σ2
2 + µ2

2) + 2h21h22 (|ρ| |σ1||σ2|+ |µ1||µ2|) . (107d)

Let Rb(σ2
1 , σ

2
2 , µ1, µ2, ρ) denote the set of information-energy rate triplets (R1, R2, B) satis-

fying:

R1 6
1

2
log2

(
1 + h2

11σ
2
1(1− ρ2)

)
, (108a)

R2 6
1

2
log2

(
1 + h2

12σ
2
2(1− ρ2)

)
, (108b)

R1 +R26
1

2
log2

(
1+h2

11σ
2
1 +h2

12σ
2
2 +2

√
h2

11h
2
12σ

2
1σ

2
2ρ

)
, (108c)

B 61 + h2
21(σ2

1 + µ2
1) + h2

22(σ2
2 + µ2

2) + 2h21h22(|ρ| |σ1||σ2|+ |µ1||µ2|), (108d)
B > b, (108e)

for some σ2
1 , σ2

2 , µ1, µ2 such that (106) is true and for some ρ ∈ [−1, 1].
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To sum up, it has been shown so far that, in the limit when n tends to infinity, any information-
energy rate triplet (R1, R2, B) ∈ EFB

b (SNR11,SNR12,SNR21, SNR22) can be bounded by the
constraints in (108) for some σ2

1 , σ2
2 , µ1, µ2 satisfying (106) and for some ρ ∈ [−1, 1]. Thus, it

holds that

EFB
b (SNR11, SNR12, SNR21,SNR22) ⊆

⋃
06σ2

1+µ2
16P1

06σ2
2+µ2

26P2

−16ρ61

Rb(σ2
1 , σ

2
2 , µ1, µ2, ρ). (109)

In this union, it suffices to consider 0 6 ρ 6 1 because for any −1 6 ρ 6 1,
Rb(σ2

1 , σ
2
2 , µ

2
1, µ

2
2, ρ) ⊆ Rb(σ2

1 , σ
2
2 , µ

2
1, µ

2
2, |ρ|). Furthermore, for 0 6 ρ 6 1, it suffices to consider

µ1 > 0, µ2 > 0, and σ2
1 , σ2

2 , µ2
1, and µ2

2 that saturate the input power constraint (i.e., (106) holds
with equality). Thus,

EFB
b (SNR11, SNR12,SNR21, SNR22)

⊆
⋃

06σ2
1+µ2

16P1

06σ2
2+µ2

26P2

−16ρ61

Rb(σ2
1 , σ

2
2 , µ1, µ2, ρ) ⊆

⋃
σ2
1+µ2

1=P1

σ2
2+µ2

2=P2

06ρ61

Rb(σ2
1 , σ

2
2 , µ1, µ2, ρ). (110)

Let βi ∈ [0, 1] be defined as follows:

βi ,
σ2
i

Pi
=
Pi − µ2

i

Pi
, i ∈ {1, 2}. (111)

With this notation, any region Rb(σ2
1 , σ

2
2 , µ1, µ2, ρ) in the union over σ2

1 +µ2
1 = P1, σ2

2 +µ2
2 = P2

and 0 6 ρ 6 1, can be rewritten as follows:

R1 6
1

2
log2

(
1 + h2

11β1P1

(
1− ρ2

))
, (112a)

R2 6
1

2
log2

(
1 + h2

12β2P2

(
1− ρ2

))
, (112b)

R1 +R26
1

2
log2

(
1+h2

11β1P1 +h2
12β2P2 +2

√
h2

11h
2
12β1P1β2P2ρ

)
, (112c)

B 61 + h2
21P1 + h2

22P2 + 2h21h22(ρ
√
β1P1β2P2 +

√
(1− β1)P1(1− β2)P2), (112d)

B > b, (112e)

for some (β1, β2) ∈ [0, 1]2 and ρ ∈ [0, 1]. Hence, using (9), such a region contains all information-
energy rate triplets (R1, R2, B) satisfying constraints (17) which completes the proof of the
converse.

B Proof of Theorem 2
Consider that each transmitter i, with i ∈ {1, 2}, uses a fraction βi ∈ [0, 1] of its available power
to transmit information and uses the remaining fraction of power (1 − βi) to transmit energy.
Given a power-split (β1, β2) ∈ [0, 1]2, the achievability of information rate pairs satisfying (18a)-
(18c) follows by the coding scheme proposed independently by Cover [26] and Wyner [27] with
powers β1P1 and β2P2. Additionally, in order to satisfy the received energy constraint (18d),
transmitters send common randomness that is known to both transmitters and the receiver using
all their remaining power. This common randomness does not carry any information and does
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not produce any interference to the IC signals. More specifically, at each time t, transmitter i’s
channel input can be written as:

Xi,t =
√

(1− βi)PiWt + Ui,t, i ∈ {1, 2}, (113)

for some independent zero-mean Gaussian IC symbols U1,t and U2,t with variances β1P1 and β2P2,
respectively, and independent thereof Wt is a zero-mean unit-variance Gaussian NIC symbol
known non-causally to all terminals.

The receiver subtracts the common randomness and then performs successive decoding to
recover the messages M1 and M2. Note that this strategy achieves the corner points of the
information rate-region at a given energy rate. Time-sharing between the corner points and the
points on the axes is needed to achieve the remaining points.

The converse and the analysis of the average received energy rate follow along the lines of the
case with feedback described in Appendix A when the IC channel input components are assumed
to be independent.

C Proof of Proposition 1
For a given energy transmission rate of b energy-units per channel use, a power-split (β1, β2) is
feasible if there exists at least one ρ ∈ [0, 1] that satisfies

gFB(βi, βj , ρ) > b, (114)

with

gFB(βi, βj , ρ) , 1 + SNR2i + SNR2j + 2
√

(1− βi)SNR2i(1− βj)SNR2j

+2ρ
√
βiSNR2i βjSNR2j . (115)

Using a Fourier-Motzkin elimination in the constraints (17a)-(17c) to eliminate Rj , it can be
shown that transmitter i’s individual rate maximization problem (25) is equivalent to

RFB
i (b) = max

(βi,βj ,ρ)∈[0,1]3
fFB
i (βi, βj , ρ), (116a)

subject to: gFB(βi, βj , ρ) > b, (116b)

with

fFB
i (βi, βj , ρ) , min

{
1

2
log2

(
1 + βi SNR1i

(
1− ρ2

))
,

1

2
log2

(
1 + βiSNR1i + βjSNR1j + 2ρ

√
βiSNR1iβjSNR1j

)}
. (117)

For a given triplet (βi, βj , ρ), there are two cases: either it satisfies

−ρ2βi SNR1i > βjSNR1j + 2ρ
√
βiSNR1iβjSNR1j , (118)

which implies that

fFB
i (βi, βj , ρ) =

1

2
log2

(
1 + βiSNR1i + βjSNR1j + 2ρ

√
βiSNR1iβjSNR1j

)
; (119)
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or it satisfies

−ρ2βi SNR1i 6 βjSNR1j + 2ρ
√
βiSNR1iβjSNR1j , (120)

and in this case

fFB
i (βi, βj , ρ) =

1

2
log2

(
1 + βi SNR1i

(
1− ρ2

))
. (121)

In the first case, condition (118) cannot be true for any triplet (βi, βj , ρ) ∈ [0, 1]3 and this
case should be excluded.

In the second case, the function fFB
i (βi, βj , ρ) is decreasing in ρ and does not depend on βj ,

thus, it holds that
fFB
i (βi, βj , ρ) ≤ fFB

i (βi, 0, 0), (122)

and the triplet (βi, 0, 0) is feasible if and only if gFB(βi, 0, 0) > b. Under these assumptions,
transmitter i is able to achieve its maximum individual rate if it uses a power-split in which the
fraction βi is maximized and its energy transmission is made at the minimum rate to meet the
energy rate constraint. In this case, the maximization problem (116) reduces to the maximization
problem in (128) in the proof of Proposition 2. Thus, it can be shown that the individual rates
with feedback are limited by Ri 6 1

2 log2

(
1 + (1− ξ(b)2)SNR1i

)
where ξ(b) is given by (23).

D Proof of Proposition 2
From the assumptions of Proposition 2 it follows that an energy transmission rate of b energy-
units per channel use must be guaranteed at the input of the EH. Then, the set of power-splits
(βi, βj) that satisfy this constraint must satisfy

g0(βi, βj) > b, (123)

with

g0(βi, βj) , 1 + SNR21 + SNR22 + 2
√

(1− βi)SNR2i(1− βj)SNR2j . (124)

These power-splits are referred to as feasible power-splits.
Using a Fourier-Motzkin elimination in the constraints (18a)-(18c) to eliminate Rj , it can be

shown that transmitter i’s individual rate maximization problem in (27) can be written as

RNF
i (b) = max

(βi,βj)∈[0,1]2
fi(βi, βj), (125a)

subject to: g0(βi, βj) > b, (125b)

with

fi(βi, βj),min

{
1

2
log2 (1 + βiSNR1i)) ,

1

2
log2 (1 + βiSNR1i + βjSNR1j)

}
(126)

and g0(β1, β2) is defined in (124).
For any feasible power-split (βi, βj), it holds that

fi(βi, βj) =
1

2
log2 (1 + βiSNR1i) . (127)
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The target function fi(βi, βj) is increasing in βi and is independent of βj . Since the constraint
function is monotonically decreasing in (βi, βj), in order to maximize transmitter i’s individual
rate, the optimal power-split should be a feasible power-split in which βi is maximized while βj
is forced to 0. Thus, the maximization problem in (27) can be written as follows:

RNF
i (b) = max

βi∈[0,1]

1

2
log2(1 + βiSNR1i), (128a)

subject to: g0(βi, 0) > b. (128b)

Transmitter i’s achievable information rate is increasing in βi and the energy rate constraint
is decreasing in βi. Hence, transmitter i is able to achieve the maximum individual rate if
the energy transmission of transmitter i is made at the minimum rate to meet the energy rate
constraint, i.e., if there is equality in (123). In this configuration, transmitter i can use a power-
split in which βi = 1− ξ(b)2, with ξ(b) defined in (23) which yields the maximum individual rate
Ri(b) = 1

2 log2

(
1 +

(
1− ξ(b)2

)
SNR1i

)
.

E Proof of Proposition 3
For fixed SNR11, SNR12, SNR21, and SNR22 and fixed minimum received energy rate b > 0
satisfying (11), the information sum-rate maximization problem in (29) can be written as

RFB
sum(b) = max

(β1,β2,ρ)∈[0,1]3
f(β1, β2, ρ) (129a)

subject to: g(β1, β2, ρ) > b, (129b)

where the functions f and g are defined as follows

f(β1, β2, ρ) , min

{
1

2
log2

(
1 + β1SNR11 + β2SNR12 + 2ρ

√
β1SNR11β2SNR12

)
,

1

2
log2

( (
1 + β1SNR11(1− ρ2)

) (
1 + β2SNR12(1− ρ2)

))}
, (130)

and

g(β1, β2, ρ) , 1 + SNR21 + SNR22 + 2
(√

β1β2ρ+
√

(1− β1)(1− β2)
)√

SNR21 SNR22. (131)

Let also

ρmin(β1, β2) , min

(
1,

(
b−
(
1+SNR21+SNR22+2

√
(1−β1)SNR21(1−β2)SNR22

))+
2
√
β1SNR21β2SNR22

)
(132)

be the value of ρ ∈ [0, 1] for which g(β1, β2, ρ) = b, with β1 6= 0 and β2 6= 0. Note that ρ?(β1, β2),
initially defined in (20), can be alternatively defined as

ρ?(β1, β2) , argmax
ρ∈[0,1]

f(β1, β2, ρ). (133)

when β1 6= 0 and β2 6= 0. When either β1 = 0 or β2 = 0 then ρ?(β1, β2) = 0.
Using this notation, the proof of Proposition 3 is based on the following two lemmas.

Lemma 1. Let (β1, β2, ρ) ∈ [0, 1]3 be a solution to (129). Then,

ρ = max
{
ρmin(β1, β2), ρ?(β1, β2)

}
. (134)
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Proof:
Let (β1, β2) ∈ (0, 1]2 be fixed. A necessary condition for (β1, β2, ρ) to be feasible, i.e,

g(β1, β2, ρ) > b, is ρ ∈ [ρmin(β1, β2), 1], with ρmin(β1, β2) defined in (132).
Let ρ̄(β1, β2) be the solution to the following optimization problem:

max
ρ∈[ρmin(β1,β2),1]

f(β1, β2, ρ). (135)

Assume that
ρmin(β1, β2) 6 ρ?(β1, β2). (136)

In this case, it follows that (β1, β2, ρ
?(β1, β2)) is feasible.

From (133), it holds that ∀ρ ∈ [ρmin(β1, β2), 1],

f(β1, β2, ρ) 6 f(β1, β2, ρ
?(β1, β2)). (137)

Hence, under condition (136), ρ̄(β1, β2) = ρ?(β1, β2).
Assume now that

ρmin(β1, β2) > ρ?(β1, β2). (138)

In this case, for any ρ ∈ [ρmin(β1, β2), 1], it holds that

f(β1, β2, ρ)=
1

2
log2

(
1 + β1SNR11(1− ρ2)

)
+

1

2
log2

(
1 + β2SNR12(1− ρ2)

)
. (139)

Hence, f is monotonically decreasing in ρ, and thus ρ̄(β1, β2) = ρmin(β1, β2).
Given that the statements above hold for any pair (β1, β2), then for any solution (β1, β2, ρ)

to (129), it follows that ρ = ρ̄(β1, β2). This completes the proof.

Lemma 2. The unique solution to (129) in [0, 1]3 is (1, 1, ρ̄) with

ρ̄ , max
{
ρmin(1, 1), ρ?(1, 1)

}
. (140)

Proof: Assume that there exists another solution (β′1, β
′
2, ρ
′) to (129) different from

(1, 1, ρ̄). Thus, for any (β1, β2, ρ) ∈ [0, 1]3 it holds that

f(β1, β2, ρ) 6 f(β′1, β
′
2, ρ
′). (141)

Note that for a fixed ρ′ ∈ [0, 1], f(β1, β2, ρ
′) is strictly increasing in (β1, β2). Hence, for any

(β1, β2) ∈ [0, 1)2,

f(β1, β2, ρ
′) < f(1, 1, ρ′) (142)
6 f(1, 1, ρ̄), (143)

where the second inequality follows by Lemma 1. Moreover, since ρ̄ > ρmin(1, 1), the following
inequality also holds:

g(1, 1, ρ̄) > b. (144)

In particular, if (β1, β2) = (β′1, β
′
2) in (142), it follows that

f(β′1, β
′
2, ρ
′) < f(1, 1, ρ̄), (145)

which contradicts the initial assumption that there exists a solution other than (1, 1, ρ̄). This
establishes a proof of Lemma 2.
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Finally, the proof of Proposition 3 follows from the following equality:

RFB
sum(b) = f(1, 1, ρ̄). (146)

Note that when b ∈ [0, 1 + SNR21 + SNR22 + 2ρ?(1, 1)
√
SNR21SNR22], ρ̄ = ρ?(1, 1) and

RFB
sum(b) =

1

2
log2

(
1+SNR11+SNR12+2ρ?(1, 1)

√
SNR11SNR12

)
. (147)

When b ∈ [1+SNR21 +SNR22 +2ρ?(1, 1)
√
SNR21SNR22, 1+SNR21 +SNR22 +2

√
SNR21SNR22],

ρ̄ = ρmin(1, 1) and

RFB
sum(b)=

1

2
log2(1 + (1− ξ(b)2)SNR11) +

1

2
log2(1 + (1− ξ(b)2)SNR12), (148)

and this completes the proof.

F Proof of Proposition 4
The sum-rate maximization problem in (33) can be written as follows:

RNF
sum(b) = max

(β1,β2)∈[0,1]2
f0(β1, β2) (149a)

subject to: g0(β1, β2) > b, (149b)

where the functions f0 and g0 are defined as

f0(β1, β2) ,min

{
1

2
log2(1 + β1SNR11 + β2SNR12),

1

2
log2(1 + β1SNR11) +

1

2
log2(1 + β2SNR12)

}
(150)

and g0(β1, β2) defined as in (124).
For any nonnegative β1 and β2 it can be shown that

f0(β1, β2) =
1

2
log2(1 + β1SNR11 + β2SNR12), (151)

and thus the function f0 is monotonically increasing in (β1, β2). The function g0 is monotonically
decreasing in (β1, β2).

Lemma 3. A necessary condition for (β∗1 , β
∗
2) to be a solution to the optimization problem in

(149) is to satisfy
g0(β∗1 , β

∗
2) = b, (152)

when 1 + SNR21 + SNR22 < b 6 1 + SNR21 + SNR22 + 2
√
SNR21SNR22, and

β∗1 = β∗2 = 1 (153)

when 0 6 b 6 1 + SNR21 + SNR22.

Proof: Let (β∗1 , β
∗
2) be a solution to the optimization problem in (149).

Assume that 1+SNR21+SNR22 < b 6 1+SNR21+SNR22+2
√
SNR21SNR22 and g0(β∗1 , β

∗
2) >

b. Without loss of generality, consider transmitter 1. Since g0 is monotonically decreasing
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in β1 whereas f0 is monotonically increasing in β1, there always exists a β1 > β∗1 such that
g0(β1, β

∗
2) = b and f0(β1, β

∗
2) > f0(β∗1 , β

∗
2), which contradicts the assumption of the lemma.

Assume 0 6 b 6 1 + SNR21 + SNR22 and assume without loss of generality that transmitter
1 uses a power-split β∗1 < 1. From the initial assumption, the pair (1, β∗2) satisfies g0(1, β∗2) ≥ b
and f0(1, β∗2) > f0(β∗1 , β

∗
2) which contradicts the assumption of the lemma and completes the

proof.
From Lemma 3, the optimization problem in (149) is equivalent to

RNF
sum(b) = max

(β1,β2)∈[0,1]2
f0(β1, β2) (154a)

subject to: g0(β1, β2) = b, (154b)

Assume that 0 6 b 6 1 + SNR21 + SNR22. Then, from Lemma 3, it follows that the solution
to the optimization problem in (149) is β∗1 = β∗2 = 1.

Assume now that

1 + SNR21 + SNR22 < b 6 1 + SNR21 + SNR22 + 2
√

SNR21SNR22 min

{√
SNR12

SNR11
,

√
SNR11

SNR12

}
.

(155)

Note that for any energy rate constraint b satisfying (155), it holds that

0 < ξ(b) 6 min

{√
SNR11

SNR12
,

√
SNR12

SNR11

}
. (156)

Let (β∗1 , β
∗
2) be a feasible pair, i.e., g0(β∗1 , β

∗
2) = b. This can be rewritten in terms of ξ(b) as

follows:
(1− β∗1)(1− β∗2) = ξ(b)2, (157)

with ξ(b) defined in (23).
Note also that any solution to (157), must satisfy that β1 6 1 − ξ(b)2 and β2 6 1 − ξ(b)2.

Hence, to obtain the solution of the optimization problem in (149), it suffices to perform the
maximization over all (β1, β2) ∈ [0, 1− ξ(b)2].

Let β∗2 ∈ [0, 1− ξ(b)2] be fixed. Then, there is a unique feasible choice of β∗1 to satisfy (157),
given by

β∗1 = 1− ξ(b)2

1− β∗2
. (158)

The corresponding sum-rate is given by

κ(β∗2),f0(β∗1 , β
∗
2) =

1

2
log2

(
1+

(
1− ξ(b)2

1− β∗2

)
SNR11+β

∗
2SNR12

)
, (159)

which is a concave function of β∗2 . Hence, given a fixed β∗1 , the unique optimal β∗2 must be a
solution to dκ(β∗2 )

dβ∗2
= 0. That is,

(1− β∗2)2 = ξ(b)2 SNR11

SNR12
. (160)

The equality in (160) admits a solution in [0, 1 − ξ(b)2] if and only if (156) is satisfied. This
unique solution is given by

β̄∗2 = 1− ξ(b)
√

SNR11

SNR12
(161)
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and the corresponding β̄∗1 is given by

β̄∗1 = 1− ξ(b)
√

SNR12

SNR11
. (162)

In this case, the sum-rate is

R̄s=f0(β̄∗1 , β̄
∗
2) =

1

2
log2

(
1+SNR11 +SNR12−2ξ(b)

√
SNR11SNR12

)
. (163)

Assume now that

1+SNR21 +SNR22 +2
√
SNR21SNR22min

{√
SNR12

SNR11
,

√
SNR11

SNR12

}
< b 6 1 + SNR21 + SNR22 + 2

√
SNR21SNR22. (164)

This is equivalent to

min

{√
SNR12

SNR11
,

√
SNR11

SNR12

}
6 ξ(b) 6 1. (165)

Under this condition, the only feasible pairs, i.e., solutions to g0(β1, β2) = b, are (0, 1 − ξ(b)2)
and (1− ξ(b)2, 0). Hence, for all i ∈ {1, 2} satisfying i = argmax

k∈{1,2}
SNR1,k and j ∈ {1, 2} \ {i}, it

follows that the solution to (149) is given by β∗i = 1− ξ(b)2 and β∗j = 0 and this completes the
proof.

G Proof of Theorem 3
From Proposition 3, for any B ∈ [0, 1 + SNR21 + SNR22 + 2ρ?(1, 1)

√
SNR21SNR22], RFB

sum(B) >
RNF

sum(0), and thus any B ∈ [0, 1+SNR21 +SNR22 +2ρ?(1, 1)
√
SNR21SNR22] cannot be a solution

to the optimization problem in (40). Hence, a necessary condition for B to be a solution to the
optimization problem in (40) is to satisfy B ∈ (1+SNR21 +SNR22 +2ρ?(1, 1)

√
SNR21SNR22, 1+

SNR21 +SNR22 + 2
√
SNR21SNR22]. Thus, from Proposition 3, the optimization problem in (40)

can be rewritten as follows:

BFB = max
B∈(b1,b2]

B

subject to :
1

2
log2(1+SNR11 +SNR12)=

1

2
log2

(
1+
(
1−ξ(B)2

)
SNR11

)
+

1

2
log2

(
1+
(
1− ξ(B)2

)
SNR12

)
. (166)

where b1 = 1 + SNR21 + SNR22 + 2ρ?(1, 1)
√
SNR21SNR22 and b2 = 1 + SNR21 + SNR22 +

2
√
SNR21SNR22. The constraint of the problem (166) induces a unique value for

(
1− ξ(B)2

)
within [0, 1] for each B, and thus, the optimization is vacuous. This implies that the unique
solution BFB satisfies

(
1− ξ(BFB)2

)
=
SNR11+SNR12

2SNR11SNR12

[√
1+

4SNR11SNR12

SNR11 + SNR12
−1

]
. (167)

Following the definition of ξ in (23) and solving for BFB in (167) yields (41). This completes the
proof of Theorem 3.
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