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Abstract: In this report, the fundamental limits of simultaneous information and energy
transmission in the two-user Gaussian multiple access channel (G-MAC) with and without feedback
are fully characterized. All the achievable information and energy transmission rates (in bits per
channel use and energy-units per channel use, respectively) are identified. Thus, the information-
energy capacity region is defined in both cases. In the case without feedback, an achievability
scheme based on power-splitting and successive interference cancelation is shown to be optimal.
Alternatively, in the case with feedback (G-MAC-F), a simple yet optimal achievability scheme
based on power-splitting and Ozarow’s capacity achieving scheme is presented. Three of the most
important observations in this work are: (a) The information-energy capacity region of the G-MAC
without feedback is a proper subset of the information-energy capacity region of the G-MAC-F;
(b) Feedback can at most double the energy rate for a fixed information rate; and (c) Time-sharing
with power control is strictly suboptimal in terms of sum-rate in the G-MAC without feedback.

Key-words: Feedback, Gaussian multiple access channel, simultaneous information and energy
transmission, RF energy harvesting, information-energy capacity region.



L’utilisation de la voie de retour améliore la transmission
simultanée d’information et d’énergie dans les canaux sans

fils à accès multiple
Résumé : Dans le présent-rapport, les limites fondamentales de la transmission simultanée
d’information et d’énergie dans le canal Gaussien à accès multiple (G-MAC) avec et sans voie
de retour sont déterminées. L’ensemble des débits atteignables de transmission d’information et
d’énergie (en bits par utilisation canal et en unités d’énergie par utilisation canal respectivement)
est identifié. Ainsi, les régions de capacité d’information-énergie sont définies dans les deux cas.
Dans le cas sans voie de retour, on démontre qu’un schéma d’atteignabilité, basé sur la division
de puissance et sur l’annulation successive de l’interférence, est optimal. Alternativement, dans
le cas avec voie de retour (G-MAC-F), un schéma d’atteignabilité, simple mais optimal, basé
sur la division de puissance et sur le schéma d’Ozarow qui atteint la capacité, est présenté.
Trois parmi les observations les plus importantes dans ce travail sont: (a) la région de capacité
d’information-énergie du G-MAC sans voie de retour est un sous-ensemble propre de la région
de capacité d’information-énergie du G-MAC-F; (b) l’utilisation de la voie de retour peut au
plus multiplier par deux le débit d’énergie pour un débit d’information fixé; et (c) le partage du
temps avec contrôle de puissance est strictement sous-optimal en termes de débit-somme pour le
G-MAC sans voie de retour.

Mots-clés : Voie de retour, canal Gaussien à accès multiple (G-MAC), transmission simultanée
d’information et d’énergie, collecte d’énergie RF, région de capacité d’information-énergie.
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1 Introduction
For decades, a traditional engineering perspective was to use radio frequency (RF) signals exclu-
sively for information transmission. However, this approach has been shown to be suboptimal [2]
since an RF signal carries both energy and information. From this standpoint, a variety of
modern wireless systems question this conventional assumption and suggest that RF signals
can be simultaneously used for information and energy transmission [3]. Typical examples of
communications technologies already exploiting this principle are radio frequency identification
(RFID) devices and power line communications. Beyond the existing applications, simultaneous
transmission of both information and energy appears as a promising technology for a variety
of emerging applications including low-power short-range communication systems, sensor net-
works, machine-to-machine networks and body-area networks, among others [4]. Nevertheless,
information and energy transmission are often conflicting tasks and thus subject to a trade-off
between the information transmission rate (bits per channel use) and the energy transmission
rate (energy-units per channel use). This trade-off is evidenced in finite constellation schemes,
as highlighted in Popovski et al.’s [5]. Consider the noiseless transmission of a 4-PAM signal
over a point-to-point channel in the alphabet {−2,−1, 1, 2}. If there is no received energy rate
constraint, one can clearly convey 2 bits/ch.use by choosing all available symbols with equal
probability. However, if one requires the received energy rate to be for instance the maximum
possible, the maximum transferable information rate is 1 bit/ch.use (since one is forced to com-
municate only with the largest energy symbols). From this simple example, it is easy to see how
additional energy rate constraints may change the overall performance of the network.

Despite the vast existing literature on this subject, the fundamental limits of simultaneous
energy and information transmission (SEIT) are still unknown in most multi-user channels. The
pioneering works by Varshney in [2] and [6], as well as, Grover and Sahai in [7] provided the
fundamental limits on SEIT in point-to-point channels. More specifically, in [6] the case of a
the single point-to-point link was discussed and in [7] and [2] the case of parallel point-to-point
links was studied. In the context of multi-user channels, most of the existing studies of SEIT
follow a signal-processing or networking approach and focuse mainly on the feasibility aspects.
For instance, optimization of beamforming strategies over more involved network structures was
considered in [8, 9], and [10] for multi-antenna broadcast channels and in [11] for multi-antenna
interference channels. SEIT was also studied in the general realm of cellular systems in [12]
as well as in multi-hop relaying systems in [13, 14, 15, 16, 17], and [18]. Other studies in the
two-way channel are reported in [5] and in [19] in graphical unicast and multicast networks.

1.1 SEIT in Multiple Access Channels (MACs)
In the particular case of the discrete memoryless multiple access channel (DM-MAC), the trade-
off between information rate and energy rate has been studied in [14]. Therein, Fouladgar et al.
characterized the information-energy capacity region of the two-user discrete memoryless MAC
when a minimum energy rate is required at the input of the receiver. Such a constraint changes
the dynamic of the communication system in the sense that it requires additional transmitter
coordination to achieve the targeted energy rate. An extension of the work in [14] to the Gaus-
sian MAC (G-MAC) case is far from trivial due to the fact that the information-energy capacity
region involves an auxiliary random-variable which cannot be eliminated as in the case without
energy constraints, as independently suggested by Cover [20] and Wyner [21]. Other types of
energy rate constraints for the G-MAC have been also investigated. For instance, Gastpar [22]
considered the G-MAC under a maximum received energy rate constraint. Under this assump-
tion, channel-output feedback has been shown not to increase the capacity region. In the case

RR n° 8804
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studied by Fouladgar et al. in [14], the effect of feedback is not yet well understood from an
energy transmission perspective.

More generally, the use of feedback in the K-user G-MAC, even without energy rate con-
straints, has been shown to be of limited impact in terms of sum-rate improvement. This holds
even in the case of perfect feedback. More specifically, the use of feedback in the G-MAC in-
creases the sum-capacity by at most log2(K)

2 bits per channel use [23]. Hence, the use of feedback
is difficult to justify from the point of view of exclusive information transmission.

1.2 Contributions
This paper studies the fundamental limits of SEIT in the two-user G-MAC with and without
feedback. It shows that when the goal is to simultaneously transmit both information and
energy, feedback can significantly improve the global performance of the system in terms of both
information and energy transmission rates. One of the main contributions is the identification of
all the achievable information and energy transmission rates in bits per channel use and energy-
units per channel use, respectively. More specifically, the information-energy capacity region is
fully characterized in both cases. In the case without feedback, an achievability scheme based on
power-splitting and successive interference cancellation is shown to be optimal. Alternatively, in
the case with feedback (G-MAC-F), a simple yet optimal achievability scheme based on power-
splitting and Ozarow’s capacity achieving scheme is presented. Three of the most important
observations in this work are: (a) The information-energy capacity region of the G-MAC without
feedback is a proper subset of the information-energy capacity region of the G-MAC-F, that is,
the former is strictly contained in the latter; (b) Feedback can at most double the energy rate
for a fixed information rate; and (c) Time-sharing with power control is strictly suboptimal in
the G-MAC without feedback in terms of sum-rate.

1.3 Organization of the Report
The remainder of the report is structured as follows. Sec. 2 formulates the problem of simulta-
neous energy and information transmission in the two-user G-MAC-F. Sec. 3 and Sec. 4 show
the main results of this paper for the G-MAC without and with feedback, respectively. Namely,
for both settings the following fundamental limits are derived: (a) the information-energy ca-
pacity region ; and (b) the maximum individual information rates and sum information rates
that can be achieved given a targeted energy rate. In Sec. 4, the maximum energy rate improve-
ment that can be obtained by using feedback given a targeted information rate is also discussed.
Sec. 6 presents the proof of achievability and converse for the information-energy capacity region
of the G-MAC-F (Theorem 2). Sec. 7 presents the proof of the perfect feedback information
sum-capacity for a given energy rate constraint (Proposition 4).

2 Gaussian Multiple Access Channel with Feedback
Consider the two-user memoryless G-MAC with perfect channel-output-feedback (G-MAC-F) in
Fig. 1. At each channel use t ∈ N, X1,t and X2,t denote the real symbols sent by transmitters 1
and 2, respectively. Let n ∈ N denote the blocklength. The symbols Xi,1, . . . , Xi,n satisfy an
expected average input power constraint

1

n

n∑
t=1

E
[
X2
i,t

]
6 Pi, (1)

RR n° 8804
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Transmitter 1M1
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(M̂1, M̂2)Receiver

Energy
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Yt−1 YtDelay

⊗

⊗

⊕

⊕

Figure 1: Two-user memoryless Gaussian MAC with feedback and energy harvester.

where Pi denotes the average transmit power of transmitter i in energy-units per channel use for
i ∈ {1, 2}. The receiver observes the real channel output

Y1,t = h11X1,t + h12X2,t + Zt, (2)

and the energy harvester (EH) observes

Y2,t = h21X1,t + h22X2,t +Qt, (3)

where h1i and h2i are the corresponding constant non-negative channel coefficients from trans-
mitter i to the receiver and EH, respectively. The channel coefficients must satisfy the following
L2-norm condition:

∀j ∈ {1, 2}, ‖hj‖2 6 1, (4)

with hj , (hj1, hj2)T to ensure the principle of conservation of energy. .
The noise terms Zt and Qt are realizations of two identically distributed zero-mean unit-

variance real Gaussian random variables. In the following, there is no particular assumption on
the joint distribution of Qt and Zt.

A perfect feedback link from the receiver to transmitter i allows at the end of each channel
use t, the observation of the channel output Yt−d at transmitter i, with d ∈ N the delay of the
feedback channel. Without any loss of generality, the delay is assumed to be the same from the
receiver to both transmitters and equivalent to one channel use, i.e., d = 1.

The G-MAC-F above is fully described by the signal to noise ratios (SNRs): SNRji, with
∀(i, j) ∈ {1, 2}2 are defined as follows

SNRji , |hji|2Pi, (5)

given the normalization over the noise powers.
Within this context, two main tasks are to be simultaneously accomplished: information

transmission and energy transmission.

2.1 Information Transmission
The goal of the communication is to convey the independent messages M1 and M2 from trans-
mitters 1 and 2 to the common receiver. The messages M1 and M2 are independent of the noise
terms Z1, . . . , Zn, Q1, . . . , Qn and uniformly distributed over the sets M1 , {1, . . . , b2nR1c}
and M2 , {1, . . . , b2nR2c}, where R1 and R2 denote the transmission rates and n ∈ N the
blocklength.

RR n° 8804
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At each time t, the existence of feedback links allows the t-th symbol of transmitter i to be
dependent on all previous channel outputs Y1, . . . , Yt−1 as well as its message index Mi and a
randomly generated index Ω ∈ {1, . . . , b2nRrc}, with Rr > 0, that is independent of both M1

and M2 and assumed to be known by all transmitters and the receiver. More specifically,

Xi,1 = f
(n)
i,1 (Mi,Ω) and (6)

Xi,t = f
(n)
i,t (Mi,Ω, Y1, . . . , Yt−1), t ∈ {2, . . . , n}, (7)

for some encoding functions

f
(n)
i,1 : Mi ×N→ R and (8)

f
(n)
i,t : Mi ×N× Rt−1 → R. (9)

The receiver produces an estimate (M̂
(n)
1 , M̂

(n)
2 ) = Φ(n)(Y n) of the message-pair (M1,M2) via a

decoding function Φ(n) : Rn →M1 ×M2, and the average probability of error is

P (n)
error(R1, R2) , Pr

{
(M̂

(n)
1 , M̂

(n)
2 ) 6= (M1,M2)

}
. (10)

2.2 Energy Transmission
The expected energy transmission rate (in energy-units per channel use) at the EH is

B(n) ,
1

n

n∑
t=1

E
[
Y 2

2,t

]
. (11)

The goal of the energy transmission is to guarantee that the energy rate B(n) is not less than a
given constant B that must satisfy

0 < B 6 1 + SNR21 + SNR22 + 2
√

SNR21SNR22, (12)

for the problem to be feasible. Hence, the probability of energy outage is defined as follows:

P
(n)
outage(B) , Pr

{
B(n) < B − ε

}
, (13)

for some ε > 0 arbitrarily small.

2.3 Simultaneous Information and Energy Transmission
The G-MAC-F in Fig. 1 is said to operate at the information-energy rate triplet (R1, R2, B) ∈
R3

+ considered if both transmitters and the receiver use a transmit-receive configuration such
that: (a) reliable communication at information rates R1 and R2 is ensured; and (b) the energy
transmission rate during the whole block-length is not lower than B. Under these conditions,
the information-energy rate triplet (R1, R2, B) is said to be achievable.

Definition 1 (Achievable Rates). The triplet (R1, R2, B) ∈ R3
+ is achievable if there exists a

sequence of encoding and decoding functions
{
{f (n)

1,t }nt=1, {f
(n)
2,t }nt=1,Φ

(n)
}∞
n=1

such that both the
average error probability and the energy-outage probability tend to zero as the blocklength n tends
to infinity. That is,

lim sup
n→∞

P (n)
error(R1, R2)=0, (14)

lim sup
n→∞

P
(n)
outage(B) =0 for any ε > 0. (15)

RR n° 8804
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From Def. 1, it is clear that for any achievable triplet (R1, R2, B), whenever the targeted
energy rate B is smaller than the minimum energy rate required to guarantee reliable commu-
nications at the information rates R1 and R2, the energy rate constraint is vacuous. This is
mainly because the energy transmission rate is always satisfied and thus, the transmitter can
exclusively use the available power budget for increasing the information transmission rate. Al-
ternatively, when the energy rate B must be higher than what is strictly necessary to guarantee
reliable communication, the transmitters face a trade-off between information and energy rates.
Often, increasing the energy transmission rate implies decreasing the information transmission
rates and vice-versa. This trade-off is accurately modeled by the notion of information-energy
capacity region.

Definition 2 (Information-Energy Capacity Region). The information-energy capacity region of
the G-MAC with perfect channel-output feedback EFB(SNR11, SNR12, SNR21, SNR22) and without
feedback E(SNR11, SNR12, SNR21, SNR22) are the closure of all achievable information-energy
rate triplets (R1, R2, B) in the corresponding cases.

The main results for the G-MAC with and without feedback presented in this paper are
provided in terms of the information-energy capacity region (Def. 2) in the following two sections.

3 Main Results: Information-Energy Capacity Region with-
out Feedback

This section describes the fundamental limits of SEIT in the G-MAC for the case in which
feedback is not available. These results are particular cases of the results presented in Sec. 4 in
which feedback is considered. The interest of presenting these results separately stems from the
need for comparing both cases.

3.1 Information-Energy Capacity Region without Feedback
The information-energy capacity region of the G-MAC without feedback, denoted by
E(SNR11, SNR12,SNR21, SNR22), with parameters SNR11, SNR12, SNR21, and SNR22 is fully
characterized by the following theorem.

Theorem 1 (Information-Energy Capacity Region). The information-energy capacity region
E (SNR11, SNR12, SNR21, SNR22) of the G-MAC without feedback is the set of all non-negative
information-energy rate triplets (R1, R2, B) that satisfy

R1 6
1

2
log2 (1 + β1 SNR11) , (16a)

R2 6
1

2
log2 (1 + β2 SNR12) , (16b)

R1 +R26
1

2
log2

(
1 + β1 SNR11 + β2 SNR12

)
, (16c)

B 61 + SNR21 + SNR22 + 2
√

(1− β1)SNR21(1− β2)SNR22, (16d)

with (β1, β2) ∈ [0, 1]
2.

3.1.1 Comments on the Proof

To prove the achievability of the region presented in Theorem 1, consider that each transmitter
i, with i ∈ {1, 2}, uses a fraction βi ∈ [0, 1] of its available power to transmit information and
uses the remaining fraction of power (1− βi) to transmit energy.

RR n° 8804
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Figure 2: 3-D representation of the information-energy capacity region without feedback
E (10, 10, 10, 10) in the coordinate system (R1, R2, B). Left and right figures represent a
bi-dimensional view in the R1-R2 and B-R2 planes of E (10, 10, 10, 10), respectively. The
figure in the center is a 3-D representation of E (10, 10, 10, 10). Note that poins Q1, Q2

and Q3 are coplanar and satisfy that R1 = R2. In particular, Q1 = (0, 0, 1 + SNR21 +
SNR22 + 2

√
SNR21SNR22); and the points Q2 and Q3 are also collinear and R1 = R2 =

1
4 log2 (1 + SNR11 + SNR12). The points Q2, Q4 and Q5 are coplanar and they satisfy that
B = 1 + SNR21 + SNR22. In particular, Q4 = ( 1

2 log2 (1 + SNR11) , 0, 1 + SNR21 + SNR22) and

Q5 = ( 1
2 log2 (1 + SNR11) , 1

2 log2

(
1 + SNR11

1+SNR12

)
, 1 + SNR21 + SNR22).

Given a power-split (β1, β2) ∈ [0, 1]2, the achievability of information rate pairs satisfying
(16a)-(16c) follows the scheme described in [20] or [21]. Additionaly, in order to satisfy the
received energy constraint (16d), transmitters send common randomness that is known to both
transmitters and the receiver using all their remaining power. This common randomness does
not carry any information and does not produce any interference to the information-carrying
signals. More specifically, at each time t, transmitter i’s channel input can be written as:

Xi,t =
√

(1− βi)PiWt + Ui,t, i ∈ {1, 2}, (17)

for some independent zero-mean Gaussian information-carrying symbols U1,t and U2,t with vari-
ances β1P1 and β2P2, respectively, and independent thereof Wt is a zero-mean unit-variance
Gaussian energy-carrying symbol known non-causally to all terminals.

The receiver subtracts the common randomness and then performs successive decoding to
recover the messages M1 and M2. Note that this strategy achieves the corner points of the
information rate-region at a given energy rate. Time-sharing between the corner points and the
points on the axes is needed to achieve the remaining points.

The converse and the analysis of the average received energy rate follow the same lines as
in the case with feedback described in Section 6 when the IC channel input components are
assumed to be independent.

3.1.2 Example and Observations

Consider the information-energy capacity region of the G-MAC without feedback
E(SNR11, SNR12,SNR21, SNR22), with SNR11 = SNR12 = SNR21 = SNR22 = 10 depicted in
Fig. 2. Therein, left and right figures represent a bi-dimensional view in the R1-R2 and B-
R2 planes of E (10, 10, 10, 10), respectively. The figure in the center is a 3-D representation of
E (10, 10, 10, 10).

RR n° 8804
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Fig. 3 shows a general example of the intersection of the volume
E (SNR11, SNR12, SNR21, SNR22), in the Cartesian coordinates (R1, R2, B), with a plane
B = b, when SNR11 = SNR12 = SNR21 = SNR22.
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R
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B = b1
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Figure 3: Intersection of the planes B = b0 and B = b1 with the information-energy capacity re-
gion of the G-MAC without feedback E (SNR11, SNR12, SNR21,SNR22), with SNR11 = SNR12 =
SNR21 = SNR22, b0 ∈

[
0, 1 + SNR21 + SNR22

]
, b1 ∈

[
1 + SNR21 + SNR22, 1 + SNR21 + SNR22 +

2
√
SNR21SNR22

]
.

For any achievable triplet (R1, R2, B), whenever the required energy rate B is smaller than
the minimum energy rate required to guarantee reliable communication at rates R1 and R2, the
energy constraint is vacuous. Hence, transmitting information is always enough to satisfy the
energy constraint. See for instance the intersection the volume E (SNR11, SNR12, SNR21, SNR22)
with the plane B = b0 ∈ [0, 1 + SNR21 + SNR22] in Fig. 3. This intersection corresponds to the
set of triplets (R1, R2, B), in which the corresponding pairs (R1, R2) form a set that is identical
to the capacity region of the G-MAC without feedback, denoted by C(SNR11, SNR12). That
is, when the energy rate constraint is lower than the maximum energy rate achievable with
independent symbols, all information rates of the information capacity region C(SNR11, SNR12)
are achievable. (See for instance points Q2, Q3, Q4, and Q5 in Fig. 3.)

On the other hand, when the energy constraint consists of guaranteeing an energy rate of
B ∈ (1 + SNR21 + SNR22, 1 + SNR21 + SNR22 + 2

√
SNR21SNR22] energy-units per channel use,

that is, when the energy rate B at the input of the energy harvester is required to be higher
than what is strictly necessary to guarantee reliable communication at the information sum-rate,
the transmitters deal with a trade-off between information and energy transmission. This can
be interpreted in terms of power-splits, i.e., 0 6 βi < 1, for i ∈ {1, 2}. In this case, part of
the transmitter power budget is exclusively dedicated to the transmission of energy. Thus, for
all triplets (R1, R2, B), it follows that the corresponding information rate pairs (R1, R2) form a
proper set of the capacity region C(SNR11, SNR12); see for instance the intersection of the volume
E (SNR11, SNR12, SNR21, SNR22) with the plane B = b1 ∈ (1 + SNR21 + SNR22, 1 + SNR21 +
SNR22 + 2

√
SNR21SNR22] in Fig. 3.

Finally, requiring an energy transmission rate B ∈
(1 + SNR21 + SNR22 + 2

√
(1− β1)SNR21(1− β2)SNR22,∞) constrains the achievability of any

positive rate (see point Q1 in Fig. 3, which is achievable with (β1 = β2 = 0)). However, it is
important to highlight that the transmitters cannot guarantee an energy rate that is higher than
the energy rate achieved with full transmitter cooperation.
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3.2 Information-Energy Transmission without Feedback and with Min-
imum Energy Rate Constraint b

Let 0 6 b 6 1+SNR21 +SNR22 +2
√
SNR21SNR22 denote the minimum energy rate that must be

guaranteed at the input of the EH in the G-MAC without feedback and with parameters SNR11,
SNR12, SNR21, and SNR22.

In the following, for a fixed minimum energy rate constraint b, the maximum individual
information rates as well as the information sum-capacity are identified.

3.2.1 Maximum Individual Information Rates without Feedback and with Mini-
mum Energy Rate Constraint b

The maximum individual rate RNF
i (b), with i ∈ {1, 2} given an energy rate constraint of b energy-

units per channel use at the input of the EH is the solution to an optimization problem of the
form

RNF
i (b) = max

(ri,rj ,c)∈E(SNR11,SNR12,SNR21,SNR22):c>b
ri. (18)

The following proposition characterizes the solution to the optimization problem (18).

Proposition 1 (Maximum Individual Information Rates without Feedback with Minimum En-
ergy Rate Constraint b). For a fixed minimum energy rate b required at the input of the EH,
the maximum individual rates RNF

i (b) of the G-MAC without feedback, with parameters SNR11,
SNR12, SNR21, and SNR22, are given by

RNF
i (b)=

1

2
log2 (1 + β?(b)SNR1i) , (19)

with β?(b) ∈ [0, 1] defined as follows:

β?(b) = 1−

(
(b− (1 + SNR21 + SNR22))

+

2
√
SNR21SNR22

)2

. (20)

Proof:
From the assumptions of Proposition 1 it follows that an energy transmission rate of b energy-

units per channel use must be guaranteed at the input of the energy harvester. Then, the set of
power-splits (βi, βj) that satisfy this constraint must satisfy

g0(βi, βj) > b, (21)

with

g0(βi, βj) , 1 + SNR21 + SNR22

+2
√

(1− βi)SNR2i(1− βj)SNR2j . (22)

These power-splits are referred to as feasible power-splits.
Using a Fourier-Motzkin elimination in the constraints (16a)-(16c) to eliminate Rj , it can be

shown that transmitter i’s individual rate maximization problem in (18) can be written as

RNF
i (b) = max

(βi,βj)∈[0,1]2
fi(βi, βj), (23a)

subject to: g0(βi, βj) > b, (23b)
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with

fi(βi, βj) , min

{
1

2
log2 (1 + βiSNR1i)) ,

1

2
log2 (1 + βiSNR1i + βjSNR1j)

}
(24)

and g0(β1, β2) is defined in (22).
For any feasible power-split (βi, βj), it holds that

fi(βi, βj) =
1

2
log2 (1 + βiSNR1i) . (25)

The target function fi(βi, βj) is increasing in βi and is independent of βj . Since the constraint
function is monotonically decreasing in (βi, βj), in order to maximize transmitter i’s individual
rate, the optimal power-split should be a feasible power-split in which βi is maximized while βj
can be forced to 0. Thus, the maximization problem in (18) can be written as follows:

RNF
i (b) = max

βi∈[0,1]

1

2
log2(1 + βiSNR1i), (26a)

subject to: g0(βi, 0) > b. (26b)

Transmitter i’s achievable information rate is increasing in βi and the energy rate constraint
is decreasing in βi. Hence, transmitter i is able to achieve the maximum individual rate if
the energy transmission of transmitter i is made at the minimum rate to meet the energy rate
constraint, i.e., if there is equality in (21). In this configuration, transmitter i can use a power-
split in which the βi = β?(b) with β?(b) defined in (20) which yields the maximum individual
rate Ri(b) = 1

2 log2 (1 + β?(b)SNR1i).

3.2.2 Information Sum-Capacity with Minimum Received Energy Rate Constraint
b

The information sum-capacity RNF
sum(b) (i.e., the maximum information sum-rate) of the G-MAC

subject to a minimum energy rate constraint b is the solution to an optimization problem of the
form

RNF
sum(b) = max

(r1,r2,c)∈E(SNR11,SNR12,SNR21,SNR22):c>b
r1 + r2. (27)

The solution to this problem is given by the following theorem.

Proposition 2 (Information Sum-Capacity with Minimum Energy Rate Constraint b). For a
fixed minimum energy rate b required at the input of the EH, the information sum-capacity of the
G-MAC without feedback and with parameters SNR11, SNR12, SNR21, and SNR22 is

RNF
sum(b) =

1

2
log2

(
1 + β†(b)(SNR11 + SNR12)

)
(28)

with

β†(b)=min

{
1,

(
1+SNR21+SNR22+2

√
SNR21SNR22−b

)+
2
√
SNR21SNR22

}
. (29)

Proof: The sum-rate maximization problem in (27) can be written as follows:

RNF
sum(b) = max

(β1,β2)∈[0,1]2
f0(β1, β2) (30a)

subject to: g0(β1, β2) > b, (30b)
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where the functions f0 and g0 are defined as

f0(β1, β2) , min

{
1

2
log2(1 +β1SNR11 +β2SNR12),

1

2
log2(1 +β1SNR11) +

1

2
log2(1 +β2SNR12)

}
(31)

and g0(β1, β2) defined as in (22).
For any nonnegative β1 and β2 it can be shown that

f0(β1, β2) =
1

2
log2(1 + β1SNR11 + β2SNR12), (32)

and thus the function f0 is monotonically increasing in (β1, β2). The function g0 is motonically
decreasing in (β1, β2).

Note that for any (β1, β2) ∈ [0, 1]2, it follows that

g0(min(β1, β2),min(β1, β2)) > g0(β1, β2), (33)

and
f0(min(β1, β2),min(β1, β2)) 6 f0(β1, β2) 6 f0(max(β1, β2),max(β1, β2)) (34)

with equality in (33) and (34) only when β1 = β2. Consequently, the sum-rate maximization
problem (30) can also be written as

RNF
sum(b) = max

β∈[0,1]
f0(β, β) (35a)

subject to: g0(β, β) > b. (35b)

This implies that the optimal β†(b) is the highest feasible value,

β†(b)=min

{
1,

(
1+SNR21 +SNR22 +2

√
SNR21SNR22−b

2
√
SNR21SNR22

)+}
,

which implies (28) and completes the proof.
Note that, if 0 6 b 6 1 + SNR21 + SNR22, then

1 6
1 + SNR21 + SNR22 + 2

√
SNR21SNR22 − b

2
√
SNR21SNR22

. (36)

Hence, β†(b) = 1 and all the available power can be dedicated to the information transmission
task.

Alternatively, if 1 + SNR21 + SNR22 < b 6 1 + SNR21 + SNR22 + 2
√
SNR21SNR22, then

0 6
1 + SNR21 + SNR22 + 2

√
SNR21SNR22 − b

2
√
SNR21SNR22

< 1, (37)

and there is a strict trade-off between information and energy transmission.
Finally, if b > 1 + SNR21 + SNR22 + 2

√
SNR21SNR22, then

1 + SNR21 + SNR22 + 2
√
SNR21SNR22 − b

2
√
SNR21SNR22

< 0, (38)

and thus, β†(b) = 0. Note that any b > 1 + SNR21 + SNR22 + 2
√
SNR21SNR22 is not achievable

even if all the available power is used for energy transmission. In fact, the power budgets P1

and P2 at transmitters 1 and 2 limit inherently the energy rate at the input of the receiver to be
at maximum 1 + SNR21 + SNR22 + 2

√
SNR21SNR22, which is obtained when both transmitters

fully cooperate and use all their available power to transmit energy.
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Remark 1. Time-sharing with power-control suggested in Fouladgar et al.’s example [14] is
strictly suboptimal and does not achieve sum-capacity for a given minimum received energy con-
straint.

Consider the sum-rate optimization problem proposed in [14] in which both users use time-
sharing with power control. Specifically, a time-sharing parameter λ ∈ [0, 1] is chosen and each
transmitter i chooses powers P ′i (power dedicated to information transmission) and P ′′i (power
dedicated to energy transmission). The sum-rate maximization problem proposed in [14] can be
written as (using the original notation)

max
(λ,P ′

1,P
′′
1 ,P

′
2,P

′′
2 )∈[0,1]×R4

+

λ

2
log2

(
1 + h2

11P
′
1 + h2

12P
′
2

)
(39a)

subject to :

λP ′i + (1− λ)P ′′i 6 Pi, i ∈ {1, 2} (39b)
1 + λ(h2

21P
′
1 + h2

22P
′
2) + (1− λ)(h21

√
P ′′1 + h22

√
P ′′2 )2 > b, (39c)

where Pi is the total power budget of transmitter i.
For any feasible choice of (λ, P ′1, P

′′
1 , P

′
2, P

′′
2 ), by the concavity of the logarithm, it follows

that
λ

2
log2(1 + h2

11P
′
1 + h2

12P
′
2) 6

1

2
log2(1 + λ

(
h2

11P
′
1 + h2

12P
′
2

)
). (40)

Now, when λ = 1, then (40) holds with equality and the problem (39) can be written as

max
(P ′

1,P
′
2)∈R2

+

1

2
log2

(
1 + h2

11P
′
1 + h2

12P
′
2

)
(41a)

subject to : P ′i 6 Pi, i ∈ {1, 2}, (41b)
1 + h2

21P
′
1 + h2

22P
′
2 > b, (41c)

which is infeasible for any b > 1 + SNR21 + SNR22. When λ ∈ [0, 1), then (40) holds with strict
inequality and the rate 1

2 log2

(
1 + λ

(
h2

11P
′
1 + h2

12P
′
2

))
is always achievable by a power-splitting

scheme in which βi = λ
P ′

i

Pi
, with i ∈ {1, 2}, for any optimal tuple (λ, P ′1, P

′′
1 , P

′
2, P

′′
2 ) in (39).

This shows that the maximum-sum-rate achieved via time-sharing with power control is always
bounded away from the sum-capacity (Proposition 2), except when λ = 1. That is, time-sharing
with power control is optimal in terms of sum-rate only when the energy constraint is not active,
i.e., b ∈ [0, 1 + SNR21 + SNR22].

4 Main Results: Information-Energy Capacity Region with
Feedback

The information-energy capacity region of the G-MAC-F is fully characterized by the following
theorem.

Theorem 2 (Perfect Feedback Information-Energy Capacity Region). The perfect feedback
information-energy capacity region EFB (SNR11, SNR12, SNR21,SNR22) of the G-MAC-F is the
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set of non-negative information-energy rate triplets (R1, R2, B) that satisfy

R1 6
1

2
log2

(
1 + β1 SNR11

(
1− ρ2

))
(42a)

R2 6
1

2
log2

(
1 + β2 SNR12

(
1− ρ2

))
(42b)

R1 +R26
1

2
log2

(
1 + β1 SNR11 + β2 SNR12 + 2ρ

√
β1SNR11β2SNR12

)
(42c)

B 61+SNR21 +SNR22 +2ρ
√
β1SNR21 β2SNR22 +2

√
(1− β1)SNR21 (1− β2)SNR22, (42d)

with (ρ, β1, β2) ∈ [0, 1]
3.

Remark 2. The information-energy capacity region without feedback described by Theorem 1
is identical to the information-energy capacity region described by Theorem 2 in the case in
which channel inputs are chosen to be mutually independent, i.e., ρ = 0. This suggests that the
information-energy capacity region without feedback is strictly included in the information-energy
capacity region with feedback, and thus, for any non-zero SNR11, SNR12, SNR21, and SNR22, it
holds that

E (SNR11, SNR12,SNR21, SNR22) ⊂ EFB (SNR11, SNR12, SNR21,SNR22) . (43)

The proof of Theorem 2 is presented in Section 6. The remainder of this subsection highlights
some important observations about Theorem 2.

4.0.1 Comments on the Achievability

The achievability scheme in the proof of Theorem 2 is based on power-splitting and Ozarow’s
capacity achieving scheme [24]. From an achievability standpoint, the parameters β1 and β2

in Theorem 2 might be interpreted as the fractions of average power that transmitters 1 and 2
allocate for information transmission. More specifically, transmitter i generates two signals: an
information-carrying (IC) signal with average power βiPi energy-units per channel use; and a no-
information-carrying (NIC) signal with power (1− βi)Pi energy-units per channel use. The role
of the NIC signal is exclusively energy transmission from the transmitter to the energy harvester.
Conversely, the role of the IC signal is twofold: information transmission from the transmitter
to the receiver and energy transmission from the transmitter to the energy harvester.

The parameter ρ is the average Pearson correlation coefficient between the IC signals sent by
both transmitters. This parameter plays a fundamental role in both information transmission
and energy transmission. Note for instance that the upper-bound on the energy harvested per
unit time (42d) monotonically increases with ρ, whereas the upper-bounds on the individual
rates (42a) and (42b) monotonically decrease with ρ. Note also that the Pearson correlation
factor between the NIC signals of both transmitters does not appear in Theorem 2. This is mainly
because maximum energy transmission occurs using NIC signals that are fully correlated and
thus, the corresponding Pearson correlation coefficient is one. Similarly, the Pearson correlation
factor between the NIC signal of transmitter i and the IC signal of transmitter j, with j ∈ {1, 2}
and j 6= i, does not appear in Theorem 2 either. This observation stems from the fact that,
without loss of optimality, NIC signals can be chosen to be independent of the messages M1

and M2 as well as the noise sequences, and known by both the receiver and the transmitters.
Hence, NIC signals can be independent of the IC signals and more importantly, the interference
they create at the receiver can be easily eliminated. Under this assumption, a power-splitting
(β1, β2) ∈ [0, 1]2 guarantees the achievability of non-negative rate pairs (R1, R2) satisfying (42a)-
(42c) by simply using Ozarow’s capacity achieving scheme. At the EH, both the IC and NIC
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Figure 4: 3-D representation of the perfect feedback information-energy capacity region of the G-
MAC EFB (10, 10, 10, 10) in the coordinate system (R1, R2, B). Left and right figures represent
a bi-dimensional view in the R1-R2 and B-R2 planes of EFB (10, 10, 10, 10), respectively. The
figure in the center is a 3-D representation of EFB (10, 10, 10, 10). Note that Q1 = (0, 0, 1 +
SNR21 + SNR22 + 2

√
SNR21SNR22); the points Q2, Q3 and Q6 are collinear and satisfy that

R1+R2 = 1
2 log2

(
1 + SNR11 + SNR12 + 2ρ?(1, 1)

√
SNR11SNR12

)
. The pointsQ2, Q4 andQ5 are

coplanar and they satisfy B = 1+SNR21+SNR22. In particular, Q4 = ( 1
2 log2 (1 + SNR11) , 0, 1+

SNR21 + SNR22) and Q5 = ( 1
2 log2 (1 + SNR11) , 1

2 log2

(
1 + SNR11

1+SNR12

)
, 1 + SNR21 + SNR22)).

signals contribute to the total harvested energy (11). The IC signal is able to convey at most
β1SNR21 +β2SNR22 + 2ρ

√
β1SNR21β2SNR22 energy-units per channel use, while the NIC signal

is able to convey at most (1 − β1)SNR21 + (1 − β2)SNR22 + 2
√

(1− β1)SNR21(1− β2)SNR22

energy-units per channel use. The sum of these two contributions as well as the contribution of
the noise at the EH justifies the upper-bound on the energy transmission rate in (42d).

If β1 6= 0 and β2 6= 0, let ρ?(β1, β2) be the unique solution in (0, 1) to the following equality:

1 + β1 SNR11 + β2 SNR12 + 2ρ
√
β1SNR11β2SNR12

=
(
1 + β1 SNR11(1− ρ2)

) (
1 + β2 SNR12(1− ρ2)

)
, (44)

otherwise, let ρ?(β1, β2) = 0.
Note that for any power-splitting (β1, β2) ∈ (0, 1]2, the left hand side of (44) is monotonically

increasing with ρ whereas the right hand side is monotonically decreasing with ρ. This implies
that ρ?(β1, β2) is a maximizer of the sum-rate. More specifically, at ρ = ρ?(β1, β2), the sum of
(42a) and (42b) is equal to (42c) and it corresponds to the sum-capacity of the G-MAC-F.

4.0.2 Example

Consider the information-energy capacity region EFB (SNR11, SNR12, SNR21, SNR22), with
SNR11 = SNR12 = SNR21 = SNR22 = 10 presented in Fig. 4. Therein, left and right figures
represent a bi-dimensional view in the R1-R2 and B-R2 planes of EFB (10, 10, 10, 10), respectively.
The figure in the center is a 3-D representation of EFB (10, 10, 10, 10). The triplet with the highest
energy transmission rate is denoted by Q1 = (0, 0, 1 + SNR21 + SNR22 + 2

√
SNR21SNR22). The

triplets Q2, Q3 and Q6 guarantee information transmission at the sum-capacity, i.e., R1 +R2 =
1
2 log2

(
1 + SNR11 + SNR12 + 2ρ?(1, 1)

√
SNR11SNR12

)
. The triplets Q2, Q4 and Q5 are coplanar

and they satisfy that B = 1 + SNR21 + SNR22. In particular, Q4 = ( 1
2 log2 (1 + SNR11) , 0, 1 +
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SNR21 +SNR22) and Q5 = ( 1
2 log2 (1 + SNR11) , 1

2 log2

(
1 + SNR11

1+SNR12

)
, 1 +SNR21 +SNR22)) are

achievable with and without feedback.

4.1 Information-Energy Transmission with Feedback and with Mini-
mum Energy Rate Constraint b

Let 0 6 b 6 1 + SNR21 + SNR22 + 2
√
SNR21SNR22 denote the minimum energy rate that must

be guaranteed at the input of the EH in the G-MAC-F with parameters SNR11, SNR12, SNR21,
and SNR22.

In the following, for a fixed minimum energy rate constraint b, the maximum individual
information rates as well as the information sum-capacity are identified. Hence, the set of all
information-energy rate triplets that are achievable given an energy rate constraint of b energy-
units per channel use at the input of the EH is fully characterized.

4.1.1 Individual Information Rates with Feedback and Minimum Energy Rate Con-
straint b

The maximum individual information rate RFB
i (b), with i ∈ {1, 2}, of the G-MAC-F, with

parameters SNR11, SNR12, SNR21, and SNR22, given an energy rate constraint of b energy-units
per channel use at the input of the EH is the solution to an optimization problem of the form

RFB
i (b) = max

(ri,rj ,c)∈EFB(SNR11,SNR12,SNR21,SNR22):c>b
ri. (45)

The solution to the optimization problem (45) is given by the following proposition.

Proposition 3 (Maximum Individual Information Rates with Feedback and Minimum Energy
Rate Constraint b). Consider a G-MAC-F with parameters SNR11, SNR12, SNR21, and SNR22.
For a given required minimum energy rate b, the maximum individual information rates with feed-
back coincide with the maximum individual information rates without feedback in Proposition 1.
That is,

RFB
i (b) = RNF

i (b). (46)

Proof: From the assumptions of Proposition 3 it follows that for a given energy transmis-
sion rate of b energy-units per channel use, a power-split (βi, βj) is feasible if there exists at least
one ρ ∈ [0, 1] that satisfies

gFB(βi, βj , ρ) > b, (47)

with

gFB(βi, βj , ρ) , 1 + SNR2i + SNR2j + 2
√

(1− βi)SNR2i (1− βj)SNR2j

+2ρ
√
βiSNR2i βjSNR2j . (48)

Using a Fourier-Motzkin elimination in the constraints (42a)-(42c) to eliminate Rj , it can be
shown that transmitter i’s individual rate maximization problem (45) is equivalent to

RFB
i (b) = max

(βi,βj ,ρ)∈[0,1]3
fFB
i (βi, βj , ρ), (49a)

subject to: gFB(βi, βj , ρ) > b, (49b)
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Figure 5: Intersection of the planes B = b1, B = b2 and B = b3 with the information-energy capa-
city region EFB (SNR11, SNR12, SNR21, SNR22), with SNR11 = SNR12 = SNR21 = SNR22, b0 ∈[
0, 1+SNR21 +SNR22

]
, b1 ∈

[
1+SNR21 +SNR22, 1+SNR21 +SNR22 +2ρ?(1, 1)

√
SNR21SNR22

]
,

b2 = 1 + SNR21 + SNR22 + 2ρ?(1, 1)
√
SNR21SNR22 and b3 ∈

[
1 + SNR21 + SNR22 +

2ρ?(1, 1)
√
SNR21SNR22, 1 + SNR21 + SNR22 + 2

√
SNR21SNR22,

]
.

with

fFB
i (βi, βj , ρ) , min{1

2
log2

(
1 + βi SNR1i

(
1− ρ2

))
,

1

2
log2

(
1 + βiSNR1i + βjSNR1j + 2ρ

√
βiSNR1iβjSNR1j

)
}. (50)

For a given triplet (βi, βj , ρ), there are two cases: either it satisfies

−ρ2βi SNR1i > βjSNR1j + 2ρ
√
βiSNR1iβjSNR1j , (51)

which implies that

fFB
i (βi, βj , ρ) =

1

2
log2

(
1 + βiSNR1i + βjSNR1j + 2ρ

√
βiSNR1iβjSNR1j

)
; (52)

or it satisfies

−ρ2βi SNR1i 6 βjSNR1j + 2ρ
√
βiSNR1iβjSNR1j , (53)

and in this case

fFB
i (βi, βj , ρ) =

1

2
log2

(
1 + βi SNR1i

(
1− ρ2

))
. (54)

In the first case, condition (51) does not hold true for all triplets (βi, βj , ρ) ∈ [0, 1]3 and thus,
this case should be excluded.

In the second case, the function fFB
i (βi, βj , ρ) is decreasing in ρ. Thus, it holds that

fFB
i (βi, βj , ρ) ≤ fFB

i (βi, βj , 0), (55)

and the triplet (βi, βj , 0) is feasible if and only if gFB(βi, βj , 0) > b. Note that fFB
i (βi, βj , 0) in

(54) is monotonically increasing in βi and does not depend on βj . Alternatively, gFB(βi, βj , 0)
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is monotonically decreasing in (βi, βj). These observations lead to the choice βj = 0, given
that it maximizes the energy transmission rate and lets βi be chosen to maximize the individual
information rate of transmitter i. Following this intuition, the optimization problem in (49)
reduces to the optimization problem in (26) in the proof of Proposition 1. This shows that the
individual rates with feedback are limited by Ri 6 1

2 log2 (1 + β?(b)SNR1i) where β?(b) is given
by (20).

The relevance of Proposition 3 stems from the insights it provides to the understanding
of the shape of the volume EFB (SNR11, SNR12, SNR21, SNR22) in comparison to the shape of
the volume E (SNR11, SNR12, SNR21, SNR22). Even if feedback does not increase the maximal
individual rates that can be achieved for a given received energy rate b, it will be shown in the
sequel that it increases the sum-rate that can be achieved (See Proposition 4).

Note that if b ∈ [0, 1 + SNR21 + SNR22], then β?(b) = 1 and thus, the energy constraint does
not add any additional bound on the individual rates other than (42a) and (42b). In general,
any intersection of the volume EFB (SNR11, SNR12, SNR21, SNR22), in the Cartesian coordinates
(R1, R2, B), with a plane B = b ∈ [0, 1 + SNR21 + SNR22] corresponds to the set of triplets
(R1, R2, b), in which the corresponding pairs (R1, R2) form a set that is identical to the capacity
region of the G-MAC with feedback and without EH, denoted by CFB(SNR11, SNR12). Fig. 5
shows a general example of this intersection when SNR11 = SNR12 = SNR21 = SNR22. In this
case, transmitting information using all the available power budget is always enough to satisfy
the energy constraint and thus, all information-transmission rate pairs of the capacity region
CFB (SNR11,SNR12) are achievable. In the particular case in which SNR11 = SNR12 = SNR21 =
SNR22 = 10 (Fig. 4), the sum-capacity points Q2 and Q3, as well as the corner points Q4 and
Q5 are achievable by using Ozarow’s scheme without any power-splitting, i.e., β1 = β2 = 1.

In the case in which b ∈ (1 +SNR21 +SNR22, 1 +SNR21 +SNR22 + 2ρ?(1, 1)
√
SNR21SNR22],

it follows that 1− (ρ?(1, 1))
2 6 β?(b) < 1 and thus, the energy constraint limits the individual

rates. That is, the individual rate is bounded away from 1
2 log2 (1 + SNR1i). The effect of these

bounds can be seen in Fig. 4. Let B(b) ⊂ R2
+ be a box of the form

B(b)=
{

(R1, R2) ∈ R2
+ : Ri 6

1

2
log2 (1 + β?(b)SNR1i) , i ∈ {1, 2}

}
. (56)

In general, any intersection of the volume EFB (SNR11, SNR12, SNR21,SNR22) with a plane B =
b ∈ (1 + SNR21 + SNR22, 1 + SNR21 + SNR22 + 2ρ?(1, 1)

√
SNR21SNR22] is a set of triplets

(R1, R2, B) for which the corresponding pairs (R1, R2) satisfy

(R1, R2) ∈ B(b) ∩ CFB(SNR11,SNR12), (57)

which form a proper subset of CFB(SNR11, SNR12). It is important to highlight that in this
case, the sum-capacity of CFB(SNR11, SNR12) can always be achievable. That is, the power-split
β1 = β2 = 1 is always feasible. Consider for instance the triplet Q6 in Fig. 4. The triplet Q6

is achievable by using Ozarow’s perfect feedback capacity-achieving scheme without any power-
splitting, since only information transmission satisfies the energy constraint. Fig. 5 shows the
intersection of EFB (SNR11, SNR12,SNR21, SNR22) and a plane B = b, with b ∈ (1 + SNR21 +
SNR22, 1+SNR21+SNR22+2ρ?(1, 1)

√
SNR21SNR22]. Note that this intersection always includes

the triplet (R1, R2, B), with R1 + R2 = 1
2 log2

(
1 + SNR11 + SNR12 + 2ρ?(1, 1)

√
SNR11SNR12

)
,

i.e., the information sum-capacity.
Finally, in the case in which b ∈ (1 + SNR21 + SNR22 + 2ρ?(1, 1)

√
SNR21SNR22, 1 + SNR21 +

SNR22 + 2
√
SNR21SNR22], it follows that 0 6 β?(b) < 1 − (ρ?(1, 1))

2, and thus, the individual
rates are limited by Ri <

1
2 log2

(
1 +

(
1− (ρ?(1, 1))

2
)
SNRi

)
. This immediately implies that

any intersection of the volume EFB (SNR11,SNR12, SNR21, SNR22) with a plane B = b ∈ (1 +
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SNR21 + SNR22 + 2ρ?(1, 1)
√
SNR21SNR22, 1 + SNR21 + SNR22 + 2

√
SNR21SNR22] is a set of

triplets (R1, R2, B) for which the corresponding pairs (R1, R2) satisfy

(R1, R2) ∈ B(b) = B(b) ∩ CFB(SNR11, SNR12). (58)

In this case, the set B(b) is a proper subset of CFB(SNR11, SNR12) and it does not contain the
sum-rate pair (R1, R2) ∈ CFB(SNR11, SNR12). This is clearly shown by Fig. 5. Indeed, for any
b > 1 + SNR21 + SNR22 + 2ρ?(1, 1)

√
SNR21SNR22, the set B(b) monotonically shrinks with b.

4.1.2 Information Sum-Capacity with Feedback and with Minimum Energy Con-
straint b

The perfect feedback information sum-capacity RFB
sum(b) of the G-MAC-F, with parameters

SNR11, SNR12, SNR21, and SNR22, given an energy rate constraint of b energy-units per channel
use at the input of the EH is the solution to

RFB
sum(b) = max

(r1,r2,c)∈EFB(SNR11,SNR12,SNR21,SNR22):c>b
r1 + r2. (59)

The solution to this problem is given by the following theorem.

Proposition 4 (Perfect Feedback Information Sum-Capacity with Minimum Energy Rate Con-
straint b). Let b be the minimum energy rate that must be guaranteed at the input of the EH.
Then, the perfect feedback information sum-capacity of the G-MAC-F, with parameters SNR11,
SNR12, SNR21, and SNR22 is

1. ∀b ∈
[
0,1+SNR21 +SNR22 +2ρ?(1,1)

√
SNR21SNR22

]
,

RFB
sum(b) =

1

2
log2(1+SNR11+SNR12+2ρ?(1, 1)

√
SNR11SNR12); (60)

2. ∀b ∈
(
1+SNR21+SNR22+2ρ?(1, 1)

√
SNR21SNR22, 1+SNR21+SNR22+2

√
SNR21SNR22

)
,

RFB
sum(b) =

1

2
log2(1 + β?(b)SNR11) +

1

2
log2(1 + β?(b)SNR12); (61)

3. ∀b ∈
[
1 + SNR21 + SNR22 + 2

√
SNR21SNR22,∞],

RFB
sum(b) = 0, (62)

with the function β?(b) defined in (20).

The proof of Proposition 4 is provided in Section 7. One of the key observations from
Proposition 4 is that if the minimum energy rate b required at the input of the EH is less than
what is needed for transmitting information using all the available power budget at the maximum
sum-rate, i.e., b 6 1+SNR21 +SNR22 +2ρ?(1, 1)

√
SNR21SNR22, the minimum energy constraint

does not have any impact on the sum-rate (see Fig. 6). That is, in this case the requirement of a
minimum energy transmission rate is automatically met by exclusively transmitting information
at the sum-capacity.

Nonetheless, when the energy rate required at the input of the receiver is b > 1 + SNR21 +
SNR22 + 2ρ?(1, 1)

√
SNR21SNR22, then there exists a loss of sum-rate induced by the fact that

at least one of the fractions β1 and β2 is smaller than one. More specifically, for these values of
b , Ri 6 1

2 log2

(
1 + (1− (ρ(1, 1)?)2)SNR1i

)
for at least one i ∈ {1, 2} and thus, the sum-rate is

strictly smaller than the sum capacity.
Clearly, the maximum energy rate is achieved when β1 = β2 = 0, which implies that no

information is conveyed from the transmitters to the receiver (see Fig. 6).
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Figure 6: Information sum-capacity of the symmetric two-user memoryless G-MAC with co-
located receiver and EH, with SNR11 = SNR12 = SNR21 = SNR22 = SNR, with feedback (thick
red line) and without feedback (thin blue line) as a function of B. Red (big) circles represent
the pairs (B1, R

FB
sum(B1)) in which RFB

sum(B1) is the information sum-capacity with feedback when
only information transmission is performed and B1 , 1 + 2(1 + ρ?(1, 1))SNR represents the cor-
responding maximum energy rate that can be guaranteed at the EH. Blue triangles represent the
pairs (BNF, R

NF
sum(BNF)) in which RNF

sum(BNF) is the information sum-capacity without feedback
and BNF , 1 + 2SNR is the corresponding maximum energy rate that can be guaranteed at the
EH without feedback. Orange squares represent the pairs (BF, R

NF
sum(BF)) in which BF is the

corresponding maximum energy rate that can be guaranteed at the EH with feedback. Black
(small) circles represent the pairs (Bmax, 0) in which Bmax , 1 + 4SNR is the maximum energy
rate that can be guaranteed at the EH.

5 Main Results: Energy Transmission Enhancement with
Feedback

In this section, the enhancement on the energy transmission rate due to the use of feedback is
quantized when the information sum-rate is the information sum-capacity without feedback (see
the blue triangles and orange squares in Fig. 6).

Denote by BNF = 1 + SNR21 + SNR22 the maximum energy rate that can be guaranteed at
the EH in the G-MAC without feedback when the information sum-rate is the corresponding
information sum-capacity without feedback. Denote also by BF the maximum energy rate that
can be guaranteed at the EH in the G-MAC with feedback when the information sum-rate is
the information sum-capacity without feedback. The exact value of BF is given by the following
lemma.

Lemma 1. The maximum energy rate BF that can be guaranteed at the EH in the G-MAC with
feedback when the information sum-rate is the information sum-capacity without feedback is

BF = 1 + SNR21 + SNR22 + 2
√

(1− γ)SNR21SNR22, (63)
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with γ ∈ (0, 1) defined as follows:

γ=−SNR11 + SNR12

2SNR11SNR12
+

√(
SNR11 + SNR12

2SNR11SNR12

)2

+ 2

(
SNR11 + SNR12

2SNR11SNR12

)
. (64)

Proof: The maximum energy transmission rate BF when the information sum-rate is the
information sum-capacity of the G-MAC without feedback satisfies

BF = max
(β1,β2,ρ)∈[0,1]3

1 + SNR21 + SNR22 + 2
(
ρ
√
β1β2 +

√
(1− β1)(1− β2)

)√
SNR21SNR22(65a)

subject to :

1 + SNR11 + SNR12 = min
{

1 + β1SNR11 + β2SNR12 + 2ρ
√
β1SNR11β2SNR12,(

1 + β1SNR11

(
1− ρ2

))(
1 + β2SNR12

(
1− ρ2

))}
. (65b)

The solution BF to the optimization problem in (65) satisfies that BF ∈ (1 + SNR21 + SNR22 +
2ρ?(1, 1)

√
SNR21SNR22, 1+SNR21+SNR22+2

√
SNR21SNR22]. Thus, from Theorem 3, it follows

that the information sum-rate is exclusively upper bounded byR1+R2 6 1
2 log2 (1 + β?(BF)SNR11)+

1
2 log2 (1 + β?(BF)SNR12), with the function β? : R+ → [0, 1] defined in (20). Note that β? is
monotonically decreasing with its argument. Thus, the optimization problem in (65) can be
rewritten as follows:

BF = max
b∈(b1,b2]

b (66a)

subject to :
1

2
log2 (1 + SNR11 + SNR12) =

1

2
log2 (1 + β?(b)SNR11) +

1

2
log2 (1 + β?(b)SNR12) . (66b)

where b1 = 1 + SNR21 + SNR22 + 2ρ?(1, 1)
√
SNR21SNR22 and b2 = 1 + SNR21 + SNR22 +

2
√
SNR21SNR22. The constraint of the problem (66b) induces a unique value for β?(b) within

[0, 1] for each b, and thus, the optimization is vacuous. This implies that the unique solution BF

satisfies

β?(BF) =−SNR11 + SNR12

2SNR11SNR12
+

√(
SNR11 + SNR12

2SNR11SNR12

)2

+2

(
SNR11 + SNR12

2SNR11SNR12

)
. (67)

Following the definition of β? in (20) and solving for BF in (67) yields (63). This completes the
proof of Lemma 1.

The following theorem provides an upper bound on the ratio BNF

BF
.

Theorem 3 (Maximum Energy Rate Improvement with Feedback). Feedback can at most double
the energy transmission rate. That is,

1 <
BF

BNF
< 2. (68)

Proof: The proof of Theorem 3 follows immediately from Lemma 1. The lower-bound
follows from the fact that 0 < γ < 1 with strict inequality (Lemma 1). Moreover, note that the
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Figure 7: The ratio BF

BNF
as a function of SNR when the receiver and the EH are co-located, i.e.,

SNR11 = SNR21 = SNR1 and SNR12 = SNR22 = SNR2. The thickest line is the upper bound in
(72); the dash-dotted line, the dashed line and the dotted line are the exact values of the ratio
BF

BNF
in (69) when SNR1 = SNR2 = SNR; SNR1

2 = SNR2 = SNR; and SNR1

10 = SNR2 = SNR,
respectively.

ratio BF

BNF
satisfies

BF

BNF
=

1 + SNR21 + SNR22 + 2
√

(1− γ)SNR21SNR22

1 + SNR21 + SNR22
(69)

(a)
< 1 +

2
√
SNR21SNR22

1 + SNR21 + SNR22
(70)

(b)

6 1 +
SNR21 + SNR22

1 + SNR21 + SNR22
(71)

< 2, (72)

where (a) follows from the fact that γ ∈ (0, 1) (Lemma 1); and (b) follows from the inequality(√
SNR21 −

√
SNR22

)2
> 0. This completes the proof of Theorem 3.

Fig. 7 compares the exact value of the ratio BF

BNF
in (69) to the upper-bound in (72) as a

function of the SNRs in the special case in which the receiver and the EH are co-located. This
implies that the channel coefficients between the transmitters and the receiver can be considered
identical to those between the transmitter and the EH., i.e., SNR11 = SNR21 = SNR1 and
SNR12 = SNR22 = SNR2. Note that in the symmetric case, i.e., SNR1 = SNR2 = SNR, the
upper-bound in (72) is tight as the ratio BF

BNF
becomes arbitrarily close to two as SNR tends to

infinity. In the non-symmetric cases SNR1 6= SNR2, this bound is loose.

6 Proof of Theorem 2
The proof is divided into two parts: achievability and converse parts.
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6.1 Proof of Achievability
The proof of achievability uses a very simple power-splitting technique in which a fraction βi ∈
[0, 1] of the power is used for information transmission and the remaining fraction (1 − βi) for
energy transmission. The information transmission is made following Ozarow’s perfect feedback
capacity-achieving scheme in [24]. The energy transmission is accomplished by random symbols
that are known at both transmitters and the receiver. Despite its simplicity and a great deal of
similarity with the scheme in [24], the complete proof is fully described hereunder for the sake
of completeness.

Codebook generation: At the beginning of transmission, each message Mi is mapped into
the real-valued message point

Θi(Mi) , −(Mi − 1)∆i +
√
Pi, (73)

where

∆i ,
2
√
Pi

b2nRic
. (74)

Encoding: The first three channel uses are part of an initialization procedure during which
there is no energy transmission and the channel inputs are

t = −2 : X1,−2 = 0 and X2,−2 = Θ2(M2), (75a)
t = −1 : X1,−1 = Θ1(M1) and X2,−1 = 0, (75b)
t = 0 : X1,0 = 0 and X2,0 = 0. (75c)

Through the feedback links, transmitter 1 observes (Z−1, Z0) and transmitter 2 observes
(Z−2, Z0). After the initialization phase, each transmitter i ∈ {1, 2} can thus compute

Ξi ,
√

1− ρ?(β1, β2) · Z−i +
√
ρ?(β1, β2) · Z0, (76)

where ρ?(β1, β2) is the unique solution in (0, 1) to (44).
During the remaining channel uses 1, . . . , n, for i ∈ {1, 2}, instead of repeating the message-

point Θi(Mi), transmitter i simultaneously describes Ξi to the receiver and transmits energy to
the energy harvester. Let βi, with i ∈ {1, 2} be the power-splitting coefficient of transmitter i.
More specifically, at each time t ∈ {1, . . . , n}, transmitter i sends

Xi,t = Ui,t +
√

(1− βi)PiWt, i ∈ {1, 2}. (77)

HereWt is a Gaussian zero-mean unit-variance random variable that is known non-causally to the
transmitters and to the receiver and is is independent of the messages and the noise sequences.
The symbol Ui,t is a zero-mean Gaussian random variable with variance βiPi and is chosen as
follows:

Ui,1 =
√
βiPi Ξi, (78a)

Ui,t = γi,t

(
Ξi − Ξ̂

(t−1)
i

)
, t ∈ {2, . . . , n}, (78b)

where the parameter γi,t is chosen to satisfy E
[
U2
i,t

]
= βiPi and Ξ̂

(t−1)
i is explained below.

For each t ∈ {1, . . . , n}, upon receiving the channel output Y1,t, the receiver subtracts the
signal induced by the commom randomness to form the observation Y ′1,t as follows:

Y ′1,t , Y1,t − (
√

(1− β1)P1 +
√

(1− β2)P2)Wt. (79)
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The receiver then calculates the minimum mean square error (MMSE) estimate
Ξ̂

(t−1)
i = E

[
Ξi|Y ′1,1, . . . , Y ′1,t−1

]
of Ξi given the prior observations Y ′1,1, . . . , Y ′1,t−1.

By the orthogonality principle of MMSE estimation, (U1,t, U2,t, Zt) are independent of the
observations Y ′1,1, . . . , Y ′1,t−1 and thus of Y1,1, . . . , Y1,t−1. Let ρt denote the correlation coef-
ficient between U1,t and U2,t, i.e., ρt , E[U1,tU2,t]√

E[U2
1,t]

√
E[U2

2,t]
. It can be shown [25] that for all

t ∈ {1, . . . , n}, ρt = ρ?(β1, β2).
After reception of the output symbols Y1,−2, . . . , Y1,n, the receiver forms

Ξ̂
(n)
i , E

[
Ξi|Y ′1,1, . . . , Y ′1,n

]
, for i ∈ {1, 2}. Then, it forms an estimate of the message point

Θi(Mi) as follows:

Θ̂i,
1

hi

(
Y1,−i+

√
ρ?(β1, β2)

1− ρ?(β1, β2)
Y1,0−

1√
1− ρ?(β1, β2)

Ξ̂
(n)
i

)
= Θi(Mi) +

1

hi
√

1− ρ?(β1, β2)

(
Ξi − Ξ̂

(n)
i

)
. (80)

Finally, the message index estimate Mi is obtained using nearest-neighbor decoding based on
the value Θ̂i, as follows:

M̂i = argmin
mi∈{1,...,b2nRic}

∣∣Θi(mi)− Θ̂i

∣∣. (81)

Analysis of the probability of error:
An error occurs whenever the receiver is not able to recover one of the messages, i.e.,

(M1,M2) 6= (M̂1, M̂2) or if the received energy rate is below the desired minimum rate B(n) < B.
First, consider the probability of a decoding error. Note that for i ∈ {1, 2}, M̂i = Mi, if

|Ξi − Ξ̂
(n)
i | 6

h1i

√
1− ρ?(β1, β2)∆i

2
. (82)

Since the difference Ξi− Ξ̂
(n)
i is a centered Gaussian random variable, by the definition of ∆i

in (74), the error probability Pe,i while decoding message index Mi can be bounded as

Pe,i 6 2Q

√SNR1i

√
1− ρ?(β1, β2)

b2nRic
√

(σ
(n)
i )2

 , (83)

where

(σ
(n)
i )2 , E

[
|Ξi − Ξ̂

(n)
i |

2
]
, i ∈ {1, 2}. (84)

By the joint Gaussianity of Ξi and Y′1, the MMSE estimate Ξ̂
(n)
i is a linear function of Y′1

(see, e.g., [26]). Moreover, by the orthogonality principle, the MMSE Ξi − Ξ̂
(n)
i is independent

of the observations Y′1. Hence, we have

I(Ξi;Y
′
1) = h(Ξi)− h(Ξi|Y′1)

(a)
= h(Ξi)− h(Ξi − Ξ̂

(n)
i |Y

′
1)

(b)
= h(Ξi)− h(Ξi − Ξ̂

(n)
i )

= −1

2
log2

(
(σ

(n)
i )2

)
, (85)
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where (a) holds because Ξ̂
(n)
i is a function of Y′1, and (b) follows because Ξi− Ξ̂

(n)
i is independent

of Y′1.
Equation (85) can equivalently be written as√

(σ
(n)
i )2 = 2−I(Ξi;Y

′
1). (86)

Combining (83) with (86) yields that the probability of error of message Mi tends to 0 as
n→∞, if the rate Ri satisfies

Ri 6 lim
n→∞

1

n
I(Ξi;Y

′
1), i ∈ {1, 2}. (87)

On the other hand, as proved in [25, Section 17.2.4],

I(Ξi;Y
′
1) =

n∑
t=1

I(Ui,t;Y
′
1,t) (88)

and irrespective of n and t ∈ {1, . . . , n}, it holds that

I(Ui,t;Y
′
1,t) =

1

2
log2

(
1 + βiSNR1i(1− (ρ?(β1, β2))2)

)
. (89)

Hence, for i ∈ {1, 2} it holds that

lim
n→∞

1

n
I(Ξi;Y

′
1) =

1

2
log2

(
1 + βiSNR1i(1− (ρ?(β1, β2))2)

)
, (90)

and the limit inferior is a proper limit.
Combining, (87) and (90) yields that when n→∞, this scheme can achieve all non-negative

rate-pairs (R1, R2) that satisfy

R1 6
1

2
log2

(
1 + β1 SNR11(1− ρ?(β1, β2)

2
)
)
, (91a)

R2 6
1

2
log2

(
1 + β2 SNR12(1− ρ?(β1, β2)

2
)
)
. (91b)

and by (44) it automatically yields

R1 +R2 6
1

2
log2

(
1 + β1 SNR11 + β2 SNR12 + 2ρ?(β1, β2)

√
β1 SNR11 · β2 SNR12

)
. (91c)

Furthermore, the total consumed power at transmitter i for i ∈ {1, 2} over the n+ 3 channel
uses is upper bounded by (n+ 1)Pi, hence, this scheme satisfies the input-power constraints.

Average received energy rate:
The average received energy rate is given by B(n) , 1

n

∑n
t=1 Y

2
2,t.

By the choice of the random variables, the sequence Y2,1, . . . , Y2,n is independently and iden-
tically distributed (i.i.d.) and each Y2,t follows a zero-mean Gaussian distribution with variance
B̄ given by

B̄ , E
[
Y 2

2,t

]
= 1 + SNR21 + SNR22 + 2

√
β1SNR21β2SNR22 ρ

?(β1, β2)

+
√

(1− β1)SNR21(1− β2)SNR22. (92)
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By the weak law of large numbers, it holds that ∀ε > 0

lim
n→∞

Pr
(
|B(n) − B̄| > ε

)
= 0. (93)

Consequently,

lim
n→∞

Pr
(
B(n) > B̄ + ε

)
= 0, and (94a)

lim
n→∞

Pr
(
B(n) < B̄ − ε

)
= 0. (94b)

From (94b), it holds that for any energy rate B which satisfies 0 < B 6 B̄, it holds that

lim
n→∞

Pr
(
B(n) < B − ε

)
= 0. (95)

To sum up, any information-energy rate triplet (R1, R2, B) that satisfies

R1 6
1

2
log2

(
1 + β1 SNR11(1− (ρ?(β1, β2))

2
)
)

(96a)

R2 6
1

2
log2

(
1 + β2 SNR12(1− (ρ?(β1, β2))

2
)
)

(96b)

R1 +R2 6
1

2
log2

(
1 + β1 SNR11 + β2 SNR12 + 2ρ?(β1, β2)

√
β1 SNR11 · β2 SNR12

)
(96c)

B 6 1 + SNR21 + SNR22 + 2
(√

β1β2 ρ
?(β1, β2) +

√
(1− β1)(1− β2)

)√
SNR21SNR22(96d)

is achievable.
To achieve other points in the information-energy capacity region, transmitter 1 can split its

message M1 into two independent submessages (M1,0,M1,1) ∈ {1, . . . , 2nR1,0} × {1, . . . , 2nR1,1}
such that R1,0, R1,1 ≥ 0 and R1,0 + R1,1 = R1. It uses a power fraction α1 ∈ [0, 1] of its
available information-dedicated power β1P1 to transmit M1,0 using a non-feedback Gaussian
random code and uses the remaining power (1− α1)β1P1 to send M1,1 using the sum-capacity-
achieving feedback scheme while treating M1,0 as noise. Transmitter 2 sends its message M2

using the sum-capacity-achieving feedback scheme.
Transmitter 1’s IC-input is U1,t , U1,0,t + U1,1,t where U1,1,t is defined as in (78) but with

reduced power (1− α1)β1P1, and U1,0,t is an independent zero-mean Gaussian random variable
with variance α1β1P1. Transmitter 2’s IC-input is defined as in (78).

The receiver first subtracts the common randomness and then decodes (M1,1,M2) treating
the signal encoding M1,0 as noise. Successful decoding is possible if

R1,16
1

2
log2

(
1 +

(1− α1)β1SNR11(1− ρα1
(β1, β2)

2
)

1 + α1β1SNR11

)
(97a)

R26
1

2
log2

(
1 +

β2SNR12(1− ρα1
(β1, β2)

2
)

1 + α1β1SNR11

)
(97b)

where ρα1
(β1, β2) is the unique solution in (0, 1) to

1+
(1− α1)β1SNR11+β2SNR12+2x

√
β1β2(1− α1)SNR11SNR12

1 + α1β1SNR11

=

(
1+

(1−α1)β1SNR11

1+α1β1SNR11
(1− x2)

)(
1+

β2SNR12

1 + α1β1SNR11
(1−x2)

)
. (98)
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Then, using successive cancellation, the receiver recovers M1,0 successfully if

R1,0 6
1

2
log2 (1 + α1β1SNR11) . (99)

By substituting R1 = R1,0 + R1,1, it can be seen that successful decoding of (M1,M2) is
possible with arbitrarily small probability of error if the rates (R1, R2) satisfy

R1 6
1

2
log2

(
1 +

(1− α1)β1SNR11

(
1− (ρα1

(β1, β2))
2)

1 + α1β1SNR11

)
+

1

2
log2 (1 + α1β1SNR11)(100a)

R2 6
1

2
log2

(
1 +

β2SNR12

(
1− (ρα1

(β1, β2))
2)

1 + α1β1SNR11

)
. (100b)

Now, the average received energy rate of this scheme is analyzed. The sequence Y2,1, . . . , Y2,n

is i.i.d. and each Y2,t for t ∈ {1, . . . , n} follows a zero-mean Gaussian distribution with variance
B given by

B = E
[
Y 2

2,t

]
= 1 + SNR21 + SNR22 + 2

√
1− α1 ρα1

(β1, β2)
√
β1SNR21β2SNR22

+ 2
√

(1− β1)SNR21(1− β2)SNR22

)
. (101)

Here also weak law of large numbers implies that

lim
n→∞

Pr
(
B(n) < b− ε

)
= 0 (102)

for any b ∈ [0, B].
Now if ρ replaces

√
1− α1 ρα1

(β1, β2) with α1 ∈ [0, 1] in constraints (100) and (101), then
any non-negative information-energy rate triplet (R1, R2, B) satisfying

R1 6
1

2
log2

(
1 + β1SNR11(1− ρ2)

)
, (103a)

R2 6
1

2
log2

(
1+β1SNR11+β2SNR12+2ρ

√
β1SNR11β2SNR12

)
−1

2
log2

(
1 + β1SNR11(1− ρ2)

)
, (103b)

B 6 1 + SNR21 + SNR22 + 2
(
ρ
√
β1β2 +

√
(1− β1)(1− β2)

)√
SNR21 SNR22, (103c)

where ρ ∈ [0, ρ?(β1, β2)] and ρ?(β1, β2) uniquely satisfies equation (44), is achievable.
If the roles of transmitters 1 and 2 are reversed, it can be shown that any non-negative

information-energy rate triplet (R1, R2, B) such that

R16
1

2
log2

(
1+β1SNR11+β2SNR12+2ρ

√
β1SNR11β2SNR12

)
− 1

2
log2

(
1 + β2SNR12(1− ρ2)

)
, (104a)

R26
1

2
log2

(
1 + β2SNR12(1− ρ2)

)
, (104b)

B 61 + SNR21 + SNR22 + 2ρ
√
β1SNR21β2SNR22 + 2

√
(1− β1)SNR21 (1− β2)SNR22, (104c)

for any ρ ∈ [0, ρ?(β1, β2)], is achievable.
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Time-sharing between all information-energy rate triplets in the union of the two regions
described by the constraints (103) and (104) concludes the proof of achievability of the region

R1 6
1

2
log2

(
1 + β1SNR11

(
1− ρ2

))
, (105a)

R2 6
1

2
log2

(
1 + β2SNR12

(
1− ρ2

))
, (105b)

R1 +R26
1

2
log2

(
1 + β1SNR11 + β2SNR12 + 2ρ

√
β1SNR11 β2SNR12

)
, (105c)

B 61 + SNR21 + SNR22 + 2ρ
√
β1SNR21β2SNR22 + 2

√
(1− β1)SNR21 (1− β2)SNR22, (105d)

for any ρ ∈ [0, ρ?(β1, β2)].
Note that for any ρ > ρ?(β1, β2), the sum of (105a) and (105b) is strictly smaller than (105c).

The resulting information region is a rectangle that is strictly contained in the rectangle obtained
for ρ = ρ?(β1, β2). In other words, there is no gain in terms of information rates. In terms of
energy rates, for any ρ > ρ?(β1, β2), there always exist (β′1, β

′
2) such that

ρ =
√
β′1β

′
2ρ
?(β′1, β

′
2) +

√
(1− β′1)(1− β′2).

This choice achieves any information rate pair (R1, R2) satisfying

Ri 6
1

2
log2

(
1 + β′iSNR1i(1− ρ?(β′1, β′2)2)

)
. (106)

In particular, it achieves

Ri 6
1

2
log2

(
1 + β′iSNR1i(1− ρ2)

)
, i ∈ {1, 2}, (107)

since ρ > ρ?(1, 1) = max
(β1,β2)∈[0,1]2

ρ?(β1, β2). This completes the proof of the achievability part of

Theorem 2.

6.2 Proof of Converse
Fix an information-energy rate triplet (R1, R2, B) ∈ EFB(SNR11,SNR12, SNR21, SNR22). For
this information-energy rate triplet and for each blocklength n encoding and decoding functions
are chosen such that

lim sup
n→∞

P (n)
error =0, (108a)

lim sup
n→∞

P
(n)
outage=0 for any ε > 0, (108b)

and such that the input power constraint (1) is satisfied.
Using assumption (108a), applying Fano’s inequality and following similar steps as in [24], it

can be shown that the rates (R1, R2) must satisfy

nR1 6
n∑
t=1

I(X1,t;Y1,t|X2,t,Ω) + ε
(n)
1 , (109a)

nR2 6
n∑
t=1

I(X2,t;Y1,t|X1,t,Ω) + ε
(n)
2 , (109b)

n(R1 +R2) 6
n∑
t=1

I(X1,tX2,t;Y1,t|Ω) + ε
(n)
12 , (109c)
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where ε
(n)
1

n ,
ε
(n)
2

n , and ε
(n)
1

n tend to zero as n tends to infinity.
Using assumption (108b), for a given εn > 0, for any η > 0 there exists n0(η) such that for

any n ≥ n0(η) it holds that
Pr(B(n) < B − εn) < η. (110)

Equivalently,
Pr(B(n) > B − εn) > 1− η (111)

From Markov’s inequality [27], the following holds:

(B − εn) Pr
(
B(n) > B − εn

)
6 E

[
B(n)

]
. (112)

Combining (111) and (112) yields

(B − εn)(1− η) 6 E
[
B(n)

]
(113)

which can be written as
(B − δn) 6 E

[
B(n)

]
(114)

for some δn > εn (for sufficiently large n).
In the following, the bounds in (109) and (114) are evaluated for the G-MAC-F. Assume that

at each time t the channel input is Xi,t = Ui,t+αi,tWt, with Ui,t a zero-mean IC component that
depends only on the message Mi, and independent thereof Wt a zero-mean unit-variance NIC
component that depends only on Ω and that is known to all terminals. The coefficients αi,t ∈ R
are deterministic and known to all terminals.

For this purpose, for t ∈ {1, . . . , n} define

σ2
i,t , Var(Ui,t) , i ∈ {1, 2}, (115)

λt , Cov[U1,t, U2,t] . (116)

Define also

α2
i ,

1

n

n∑
t=1

α2
i,t, i ∈ {1, 2}, (117)

σ2
i ,

1

n

n∑
t=1

σ2
i,t, i ∈ {1, 2}, (118)

ρ ,

(
1

n

n∑
t=1

λt

)
/σ1σ2. (119)

The input sequence must satisfy the input power constraint (1) which can be written , for
i ∈ {1, 2}, as

1

n

n∑
t=1

E
[
X2
i,t

]
=

1

n

n∑
t=1

(
σ2
i,t + α2

i,t

)
= σ2

i + α2
i 6 Pi. (120)

For each t ∈ {1, . . . , n}, regardless of the distribution of (X1,t, X2,t), since Zt follows a zero-
mean unit-variance Gaussian distribution it holds that

h(Y1,t|X1,t, X2,t,Ω) = h(Zt) =
1

2
log2 (2πe) . (121)
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Recall that by the properties of the differential entropy [28], it holds that for any random
variable X of variance σ2

X , the differential entropy h(X) satisfies h(X) 6 1
2 log2

(
2πeσ2

X

)
, where

the right-hand-side corresponds to the differential entropy of a Gaussian distribution with the
same variance.

All terminals have access to the values of the NIC sequence {Wt}nt=1 as well as the coefficients
{α1,t}nt=1 and {α2,t}nt=1 as side information. Let Y ′1,t = h1U1,t + h2U2,t + Zt. Since at each time
Wt is independent of (U1,t, U2,t, Zt), the bounds in (109) on the information transmission rates
can be written as

nR1 6
n∑
t=1

I(U1,t;Y
′
1,t|U2,t) + ε

(n)
1 , (122a)

nR2 6
n∑
t=1

I(U2,t;Y
′
1,t|U1,t) + ε

(n)
2 , (122b)

n(R1 +R2) 6
n∑
t=1

I(U1,tU2,t;Y
′
1,t) + ε

(n)
12 . (122c)

For the considered (U1,t, U2,t) it holds that

I(U1,t, U2,t;Y
′
1,t) = h(Y ′1,t)− h(Zt)

6
1

2
log2

(
2πeVar

(
Y ′1,t
))
− 1

2
log2 (2πe)

=
1

2
log2

(
h2

11σ
2
1,t + h2

12σ
2
2,t + 2h11h12λt + 1

)
,

I(U1,t;Y
′
1,t|U2,t) = h(Y ′1,t|U2,t)− h(Y ′1,t|U1,t, U2,t)

6
1

2
log2

(
2πe(Var

(
Y ′1,t|U2,t

)
)
)
−1

2
log2 (2πe)

=
1

2
log2

(
1 + h2

11σ
2
1,t

(
1− λ2

t

σ2
1,tσ

2
2,t

))
,

I(U1,t;Y
′
1,t|U2,t) =

1

2
log2

(
1 + h2

12σ
2
2,t

(
1− λ2

t

σ2
1,tσ

2
2,t

))
.

The bounds in (109) can be written as

nR1 6
n∑
t=1

1

2
log2

(
1 + h2

11σ
2
1,t

(
1− λ2

t

σ2
1,tσ

2
2,t

))
+ ε

(n)
1 , (123a)

nR2 6
n∑
t=1

1

2
log2

(
1 + h2

12σ
2
2,t

(
1− λ2

t

σ2
1,tσ

2
2,t

))
+ ε

(n)
2 , (123b)

n(R1 +R2) 6
n∑
t=1

1

2
log2(1 + h2

11σ
2
1,t + h2

12σ
2
2,t + 2h11h12λt) + ε

(n)
12 , (123c)

By the concavity of the mutual information, applying Jensen’s inequality [28] in the bounds (123)
yields in the limit when n→∞,

R1 6
1

2
log2(1 + h2

11σ
2
1(1− ρ2)),

R2 6
1

2
log2(1 + h2

12σ
2
2(1− ρ2)),

R1 +R2 6
1

2
log2

(
1 + h2

11σ
2
1 + h2

12σ
2
2 + 2

√
h2

11σ
2
1h

2
12σ

2
2 |ρ|
)
.
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The average received energy is given by

E
[
B(n)

]
= E

[
1

n

n∑
t=1

Y 2
2,t

]

= 1 + h2
21

( 1

n

n∑
t=1

(σ2
1,t + α2

1,t)
)

+ h2
22

( 1

n

n∑
t=1

(σ2
2,t + α2

2,t)
)

+2h21h22

( 1

n

n∑
t=1

(λt + α1,tα2,t)
)

(a)

≤ 1 + h2
21

( 1

n

n∑
t=1

(σ2
1,t + α2

1,t)
)

+ h2
22

( 1

n

n∑
t=1

(σ2
2,t + α2

2,t)
)

+2h21h22

(( 1

n

n∑
t=1

λt
)
+
( 1

n

n∑
t=1

α2
1,t

)1/2( 1

n

n∑
t=1

α2
2,t

)1/2)
= 1 + h2

21(σ2
1 + α2

1) + h2
22(σ2

2 + α2
2) + 2h21h22(ρ |σ1||σ2|+ |α1||α2|)

where (a) follows from the Cauchy-Schwarz inequality.
To sum up, in the limit when n tends to infinity, any information-energy rate triplet satisfying

R1 6
1

2
log2(1 + h2

11σ
2
1(1− ρ2)), (124a)

R2 6
1

2
log2(1 + h2

12σ
2
2(1− ρ2)), (124b)

R1 +R26
1

2
log2

(
1+h2

11σ
2
1 +h2

12σ
2
2 +2

√
h2

11h
2
12σ

2
1σ

2
2ρ
)
, (124c)

B 61 + h2
21(σ2

1 + α2
1) + h2

22(σ2
2 + α2

2) + 2h21h22(ρ |σ1||σ2|+ |α1||α2|) (124d)

for some σ2
1 , σ2

2 , α2
1, α2

2 such that (120) is true and for some ρ ∈ [−1, 1] is achievable. Let
R0(σ2

1 , σ
2
2 , α

2
1, α

2
2, ρ) denote this region. The information-energy capacity region is contained

within the union of all R0(σ2
1 , σ

2
2 , α

2
1, α

2
2, ρ) over all 0 6 σ2

1 + α2
1 6 P1 and 0 6 σ2

2 +α2
2 6 P2 and

−1 6 ρ 6 1.
In this union, it suffices to consider 0 6 ρ 6 1 because for any −1 6 ρ 6 1,

R0(σ2
1 , σ

2
2 , α

2
1, α

2
2, ρ) ⊆ R0(σ2

1 , σ
2
2 , α

2
1, α

2
2, |ρ|). Furthermore, for 0 6 ρ 6 1, it suffices to con-

sider α1 > 0, α2 > 0, and σ2
1 , σ2

2 , α2
1, and α2

2 that saturate the input power constraint (i.e., (120)
holds with equality). If βi ,

σ2
i

Pi
∈ [0, 1], i ∈ {1, 2}, such a region contains all information-energy

rate triplets (R1, R2, B) satisfying constraints (42) which completes the converse of the proof.

7 Proof of Proposition 4
For fixed SNR11, SNR12, SNR21, and SNR22 and fixed minimum received energy rate b > 0, the
information sum-rate maximization problem in (59) can be written as

RFB
sum(b) = max

(β1,β2,ρ)∈[0,1]3
f(β1, β2, ρ) (125a)

subject to: g(β1, β2, ρ) > b, (125b)
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where the functions f and g are defined as follows

f(β1, β2, ρ) , min

{
1

2
log2

(
1 + β1SNR11 + β2SNR12 + 2ρ

√
β1SNR11β2SNR12

)
,

1

2
log2

( (
1 + β1SNR11(1− ρ2)

) (
1 + β2SNR12(1− ρ2)

))}
, (126)

and

g(β1, β2, ρ) , 1 + SNR21 + SNR22 + 2
(√

β1β2ρ+
√

(1− β1)(1− β2)
)√

SNR21 SNR22.(127)

Let also

ρmin(β1, β2) , min

(
1,
b−(1+SNR21+SNR22+2

√
(1−β1)SNR21(1−β2)SNR22)

2
√
β1SNR21β2SNR22

)
(128)

be the value of ρ ∈ [0, 1] for which g(β1, β2, ρ) = b. Note that ρ?(β1, β2) can be alternatively
defined as

ρ?(β1, β2) , argmax
ρ∈[0,1]

f(β1, β2, ρ). (129)

The proof of Proposition 4 is based on the following two lemmas.

Lemma 2. Let (β1, β2, ρ) ∈ [0, 1]3 be a solution to (125). Then, it holds that
(β1, β2,max

{
ρmin(β1, β2), ρ?(β1, β2)

}
) is also a solution to (125).

Proof: Let (β′1, β
′
2, ρ
′) ∈ [0, 1]3 be a solution to (125). Hence, ∀(β1, β2, ρ) ∈ [0, 1]3, it

follows that

f(β′1, β
′
2, ρ
′) > f(β1, β2, ρ), and (130)

g(β′1, β
′
2, ρ
′) > b. (131)

Assume that ρmin(β′1, β
′
2) 6 ρ?(β′1, β

′
2). Then ρ?(β′1, β′2) is admissible, i.e.,

g(β′1, β
′
2, ρ

?(β′1, β
′
2)) > b, (132)

and from (129), it follows that

f(β′1, β
′
2, ρ
′) 6 f(β′1, β

′
2, ρ

?(β′1, β
′
2)). (133)

From (130), (132), and (133) it follows that ∀(β1, β2, ρ) ∈ [0, 1]3

f(β′1, β
′
2, ρ

?(β′1, β
′
2)) > f(β1, β2, ρ), and (134a)

g(β′1, β
′
2, ρ

?(β′1, β
′
2)) > b, (134b)

which suggests that (β′1, β
′
2, ρ

?(β′1, β
′
2)) is also a solution to (125) under the assumption that

ρmin(β′1, β
′
2) 6 ρ?(β′1, β

′
2). Now, assume that ρmin(β′1, β

′
2) > ρ?(β′1, β

′
2). Then, ρ′ ∈ [ρmin(β′1, β

′
2), 1]

and from (128) it follows that

g(β′1, β
′
2, ρmin(β′1, β

′
2)) = b, (135)

and thus, ρmin(β′1, β
′
2) is also admissible given β′1 and β′2. Note that the function f(β′1, β

′
2, ρ) is

monotonically decreasing in ρ in the interval [ρ?(β′1, β
′
2), 1]. Thus, the following inequality holds:

f(β′1, β
′
2, ρ
′) 6 f(β′1, β

′
2, ρmin(β′1, β

′
2)). (136)
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From (130), (135), and (136) it follows that ∀(β1, β2, ρ) ∈ [0, 1]3

f(β′1, β
′
2, ρmin(β′1, β

′
2)) > f(β1, β2, ρ), and (137a)

g(β′1, β
′
2, ρmin(β′1, β

′
2)) = b, (137b)

which suggests that (β′1, β
′
2, ρmin(β′1, β

′
2)) is also a solution to (125) under the assumption that

ρmin(β′1, β
′
2) > ρ?(β′1, β

′
2).

Finally, from (134) and (137), it follows that if (β′1, β
′
2, ρ
′) is a solution to (125), then, the

triplet (β′1, β
′
2,max

{
ρmin(β′1, β

′
2), ρ?(β′1, β

′
2)
}

) is also a solution, which completes the proof of
Lemma 2.

Lemma 3. The unique solution to (125) in [0, 1]3 is (1, 1, ρ̄) with

ρ̄ , max
{
ρmin(1, 1), ρ?(1, 1)

}
. (138)

Proof: Assume that there exists another solution (β′1, β
′
2, ρ
′) to (125) different from

(1, 1, ρ̄). Thus, for any (β1, β2, ρ) ∈ [0, 1]3 it holds that

f(β1, β2, ρ) 6 f(β′1, β
′
2, ρ
′). (139)

Note that for a fixed ρ′ ∈ [0, 1], f(β1, β2, ρ
′) is strictly increasing in (β1, β2). Hence, for any

(β1, β2) ∈ [0, 1]2,

f(β1, β2, ρ
′) < f(1, 1, ρ′) (140)
6 f(1, 1, ρ̄), (141)

where the second inequality follows by Lemma 2. Moreover, since ρ̄ > ρmin(1, 1), the following
inequality also holds:

g(1, 1, ρ̄) > b. (142)

In particular, if (β1, β2) = (β′1, β
′
2) in (140), it follows that

f(β′1, β
′
2, ρ
′) < f(1, 1, ρ̄), (143)

which contradicts the initial assumption that there exists a solution other than (1, 1, ρ̄). This
establishes a proof by contradiction that the unique solution to (125) is (1, 1, ρ̄).

Finally, the proof of Proposition 4 follows from the following equality:

RFB
sum(b) = f(1, 1, ρ̄), (144)

and this completes the proof.
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