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C. Charreton, C. Béguin, A. Ross, S. Étienne, M.J. Pettigrew

Abstract
Two-phase flow induced-vibration is a major concern for the nuclear industry. This paper provides experi-
mental data on two-phase damping that is crucial to predict vibration effects in steam generators. An original
test section consisting of a tube subjected to internal two-phase flow was built. The tube is supported
by linear bearings and compression springs allowing it to slide in the direction transverse to the flow.
An excitation system provides external sinusoidal force. The frequency and magnitude of the force are
controlled through extension springs. Damping is extracted from the frequency response function of the
system. It is found that two-phase damping depends on flow pattern and is fairly proportional to volumetric
fraction for bubbly flow. Measurements are completed by the processing of high-speed videos which allow
to characterize the transverse relative motion of the gas phase with respect to the tube for bubbly flow.
It is shown that the bubble drag forces play a significant role in the dissipation mechanism of two-phase
damping.
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Canada H3C 3A7

Amortissement diphasique pour un
écoulement interne : mécanisme physique
et effet des paramètres d’excitation

C. Charreton, C. Béguin, A. Ross, S. Étienne, M.J. Pettigrew

Résumé
Les vibrations induites par les écoulements diphasiques sont une préoccupation majeure pour l’industrie
nucléaire. Cet article présente des expériences de mesure de l’amortissement diphasique. La connaissance
de l’amortissement diphasique est cruciale pour prédire les vibrations dans les générateurs de vapeur. Une
section d’essai composée d’un tube de section carré soumis à écoulement interne diphasique a été construite.
Le tube est soutenu par des roulements linéaires et des ressorts de compression lui permettant de se déplacer
dans la direction transversale à l’écoulement. Un système d’excitation fournit une force sinusoı̈dale externe.
La fréquence et l’amplitude de la force excitatrice forces sont contrôlées par des ressorts d’extension.
L’amortissement est extrait de la fonction de transfert du système. Il est constaté que l’amortissement
diphasique dépend du régime d’écoulement. Pour un écoulement à bulles, l’amortissement diphasique est
quasiment proportionnel à la qualité volumétrique. De plus un traitement des vidéos à haute vitesse ont
permis de caractériser le mouvement relatif transversale de la phase gazeuse par rapport au tube pour un
écoulement à bulles. Il est montré que la trainée de la bulle joue un rôle essentiel dans le mécanisme de
d’amortissement diphasique.
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1. Introduction

Two-phase flow induced vibration in steam generators is well documented in the literature ([1],
[2], [3]). Extensive experimentations have been carried out over the last forty years to get a better
hand on the several excitation mechanisms involved, such as quasi-periodic forces or fluidelastic
instability. Review and design guidelines for heat exchangers constructors have been proposed,
improving nuclear power plant safety and reliability. The duality of two-phase flows from a vibration
point-of-view lies in the fact that they bring about destructive phenomena while causing significant
damping on the structure. Damping is a crucial input parameter to predict vibration effects in steam
generators. However, the nature of the damping is not well understood. A better knowledge of
the physical mechanism involved would lead to improved modeling of vibration effects in the near
future.

The first experimental studies on two-phase damping were performed by [4] and [5]. For a
cylinder confined in axial two-phase flow, they found that total damping is strongly dependent on
void fraction. Moreover, the two-phase damping component is much higher than the damping due to
fluid viscosity for single-phase flow. It can reach up to 3%. [6] derived an analytical model for a
cylinder confined in axial-two-phase flow. They modeled the gas phase as columns having no mass
nor stiffness. Cylinder and gas motions were described by beam equations, coupled by the fluid
forces. Coupling coefficients were extracted from potential flow theory. The eigenvalue problem was
solved to find the damping coefficients which compared well with the experiments. However, this
approach does not provide a physical explanation for the mechanism. More recently, [7] proposed
a numerical simulation, also for a cylinder confined in two-phase flow, assuming a bubbly flow.
Damping values of the same order of magnitude as in [5] were observed. However, the damping ratio
goes down to zero for void fractions higher than 60%, which is not verified experimentally. This
fact raises questions about the applicability of numerical codes for high void fraction. Indeed, these
codes assume bubbly flow but usually do not take flow pattern transitions into account. Nevertheless,
[7] explains damping by “the phase lag of the drag force acting on the cylinder behind the cylinder
displacement”. This introduces a notion of relative displacement inherent to the two-phase mixture.

Two-phase damping has also been measured for cross-flow. It is undoubtedly the most important
flow configuration since most vibration mechanisms are critical in the U-bend region of the steam
generator. Semi-empirical relations for design purposes are given by [8]. They compiled a consider-
able amount of data to identify the most influent parameters. It was shown that flow velocity and
tube frequency have minor influence, contrary to confinement and surface tension. Therefore, several
phenomena are potential dissipative mechanisms that could be responsible for two-phase damping.
Mainly, flow structure, relative motion of gas phase and liquid phase and coalescence/breakup of
bubbles are suspected.

Other studies were steered towards the influence of fluid properties on two-phase damping at
Ecole Polytechnique of Montreal. These were performed for internal axial flow on clamped-clamped
tubes. This configuration is less interesting from a practical point-of-view since in CANDU nuclear
plants, pressurized heavy water is supposed to be almost liquid inside steam generator tubes. Still,
it is interesting to notice that two-phase damping vs void fraction curves are oddly the same for
the three flow configurations reported : annular, internal axial and cross-flow (see [5], [9] and [8]
respectively). This suggests that the mechanism involved is the same for each case. From a design
point-of-view, internal axial flow configuration is the simplest. [9] reported damping measurements
in 20 mm tubes. The decrease of two-phase damping at the transition between bubbly and slug
flow is explained by the decrease of interface surface area when slugs appear. This is somehow
contradictory with Pettigrew’s observations: ζ was found to increase with surface tension σ. A
possible explanation given was that bigger bubbles are more prompt to dissipate energy. This work
was pursued by [10] who tested several air-liquid mixtures, in order to assess the effect of viscosity
and density on two-phase damping. [11] also performed two-phase damping experiments with rigid
spheres in sedimentation in stagnant liquids. It appeared that density difference between phases has
a major effect, contrary to the viscosity. Damping values with rigid spheres were somehow smaller
than in air-liquid mixtures by a factor 2, but proportionality with respect to interface surface area
was confirmed. For large number of spheres, interaction occurring between spheres (e.g. onset of
coalescence in case of a gas phase) seems to modify this trend. [11] also presented a 2D model of a
bubble in an oscillating tube filled with liquid, and solved the Navier-Stokes equations analytically.
They showed that viscous dissipation due to the presence of a bubble can be related to the relative
motion of the bubble with respect to the structure.

These conclusions motivated the design of a new test section which would not only allow
damping measurements but also let us observe the gas phase behavior. Also, damping values have
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only been extracted at the natural frequency of the considered system so far. Thus, the objective of
this project is to measure two-phase damping accurately, so as to relate it to the relative motion of
the gas phase that we also measured.

In the next section, a new test rig is presented. It allows to command excitation parameters, such
as frequency, on a structure subjected to internal two-phase flow. This leads to interesting information
on the nature of the two-phase flow energy dissipation. Then, the experimental parameters involved
in the system are described. In 4, the technique to extract the two-phase damping component of
the oscillating structure is presented. Results on damping and the relation with flow patterns are
described afterwards. Then, in 6, the motion of the gas phase is characterized with the processing of
high-speed videos. It is related to the two-phase values through an analytical model of the forces
exerting on the bubbles in 7.

2. Experimental setup
The experimental setup is comprised of several features that will be described separately for the sake
of clarity.

Sliding tube: The section itself is a stiff aluminum square tube. The hydraulic diameter Dh is
76.2 mm and the length L is 1 m. It is vertically mounted and supported by four linear bearings
installed on two parallel shafts. This feature allows the tube assembly to slide in the y-direction only,
transverse to the flow (cf. 1). The linear bearings are self-aligning to minimize friction in the system.
Three panels of the tube are transparent, and the square section prevents refraction effects, allowing
a good visualization of the flow.

Compression 
spring

Square tube

Excitation wheel

Extension 
spring

Two-phase flow 
inlet

Variable-speed
motor

z

x y

Cable pulley

Figure 1. Test section (pipe system not shown).

Compression system: Four compression springs of stiffness kc and concentric with the rods
retain the test section in the y-direction. One of their ends is in contact with the tube assembly
and the other with what we refer to as compression plates. These are bolted with the sturdy bench
structure via threaded rods (see 2). They can be displaced along those threaded rods to set an initial
compression to the springs. This is an important feature since it prevents the tube assembly from
impacting the two sets of springs when oscillating. The four springs are always working. However,
the maximum amplitude that the system can reach is equal to the length of the initial compression.
Beyond that point, the tube assembly would disconnect from a pair of springs. The compression
springs used in the present study have a free length of 152 mm and the initial compression is 45 mm.
The tube assembly behaves like a classic mass-spring system, from a structural point-of-view.

Excitation system: The “mass-spring system” is forced with a simulated sinusoidal excitation,
provided through extension springs of stiffness k0. A motor drives an excitation wheel (cf. 1) via
a pulley. A cable is attached to a shoulder-bearing system screwed eccentrically on the excitation
wheel. The rotary motion is converted via the cable-pulley system into a sinusoidal motion of the
extremity of extension springs (cf. 1). Since the extension springs are always stretched, the tube
undergoes a sinusoidal force. We can control its magnitude F0 by changing the eccentricity e on the
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Figure 2. Sliding system.

excitation wheel. The latter is drilled with multiple tapped holes at different positions. The excitation
frequency ω can be changed using the variable-frequency drive that pilots the motor.

Notice the symmetry of the system with respect to the yz-plane: it is excited through two springs.
Two additional extension springs are supporting the tube on the left side of the bench on 1, to
ensure symmetry with respect xz-plane. All the springs, including compression springs, were tested
on a traction-compression machine in order to verify their linearity over their range of operation.
Dynamic stiffnesses have not been tested but are neglected since the excitation frequencies are very
low (around 6Hz).

Hydraulic loop: In order to allow the transverse motion of the oscillating tube under internal
flow, we use two flexible hoses that are fitted on both ends of the tube, and to the rest of the rigid
pipe system on the other end. The flexible hoses are corrugated to ensure local pressure resistance
and global flexibility, so as to not affect the tube motion. Also, their lengths were chosen so as to
avoid an unbalancing mass effect at mid-section induced by water presence and make sure that they
“follow” the tube smoothly.

The hydraulic loop works as follows: a centrifugal pump takes water from a reservoir. Air is
injected just upstream the test section, as illustrated in 3. A mixer placed in the circular to square
expansion homogenizes the air-water mixture. The mixture flows upward through the test section
and then back to the tank at atmospheric pressure, where the phases separate.

Measurement system: The position of the tube is measured in time with laser sensors. They
yield a resolution lower than 12 µm. The acquisitions are performed at a sampling rate of 2048 Hz.

Water
Air injection

Flexible 
tube

Mixer

Figure 3. Air injection upstream to the test section.
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Key parameters of the system are highlighted in Tab. 1.

Table 1. Characteristics of the system.

Property Notation Value/Range
Hydraulic diameter Dh 76.2 mm

Tube area A Dh ×Dh (square tube)
Tube length L 1 m

Mass of tube assembly 2 ms 17 kg
Compression spring constant1 kc 6545 N/m

Extension spring constant1 k0 474 N/m
Natural frequency fn 6.45 Hz
Excitation force F0 23 - 69 N

1 Average of measured values over the four springs.
2 Calculated with 12 for the empty tube.

3. Experimental parameters

3.1 Two-phase flow parameters
Two-phase flow in a tube can be characterized either by the void fraction ε in a portion ∆L or by the
volumetric fraction β [[12]]. The void fraction represents the proportion of gas volume over the total
volume:

ε =
Vg

Vg + Vl
=

Ag∆L

Ag∆L+Al∆L
=

Ag
Ag +Al

(1)

where Ak is the area occupied by phase k in a given section of the tube. The void fraction would
require specific instrumentation such as capacitance or fiber optic probes to be accurately determined.
On the other hand, the volumetric fraction only requires the volume flow rates of each phase:

β =
Qg

Qg +Ql
=

Ag〈ug〉
Ag〈ug〉+Al〈ul〉

=
Ag

Ag +Al/s
(2)

The volume and area void fractions are equal for fully developed two-phase flows. where s is the
slip ratio between the average velocities of the phases: s = 〈 ug〉/〈 ul〉. Note that ε = β if s = 1,
which is the definition of a homogeneous flow.

We characterize the mixture velocity using the definition of superficial velocity:

j =
Qg +Ql

A
(3)

The experiments were performed at constant j, using the fact that jg = βj and jl = (1 − β)j.
Volumetric flow rates are both measured with appropriate flow meters.

3.2 Sources of damping
The presence of fluid around a structure will affect its damping. [5] identified several sources of
damping:

ζt = ζs + ζf + ζν + ζ2ϕ (4)

(i) ζs : Structural damping is caused by the energy losses inherent to the motion of a structure.
In our case, it is due to the friction in the linear bearings and inner losses in the springs. Its
value is obtained by determining the oscillating characteristics of the system while no fluid is
flowing through (j = 0).

(ii) ζf : When water is flowing through a slender pipe, the latter can warp and oscillate under fluid
force. This force causes a damping effect at the elbows: it is the fluid damping mechanism.
Since our structure is practically stiff, ζf can be neglected.
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(iii) ζν : Fluid friction on the sides of the test section induces viscous damping, which depends on
fluid properties, fluid velocity and channel geometry. As can be seen on 4, it is negligible at
100% void fraction, and is monotonic until 0% (water only). Even there, ζν is small compared
to ζ2ϕ. We determine ζν at ε = 0%. Then, it is assumed that ζν decreases linearly with ε and
is null at ε = 100% for a given superficial velocity of the mixture.

(iv) ζ2ϕ : The two-phase component is obtained by subtracting the aforementioned components
from the measured total damping ζt.

Figure 4. Components of total damping in two-phase axial flow and experimental apparatus. Total and structural
damping are measured, fluid and viscous damping modeled [4].

This formulation suggests that all the components are purely velocity dependent. This is not the case
for this system, as dry friction occurs in the linear bearings. 4 aims at describing how the two-phase
component is therefore extracted.

4. Experimental technique

4.1 Structural damping
Information on the nature of structural damping is determined by analyzing the free vibrations of the
system. The empty tube was initially displaced by 20 mm and then released. The result is shown on
5. The linear envelope is typical of Coulomb friction, occurring in the linear bearings. It is explained
by the fact that a constant amount of energy is extracted from the system at each cycle, meaning
that it is not velocity dependent. Since in this case, we know the weight of the tube assembly, we
can calculate a friction coefficient µ of 0.06 per bearing. This value is inside the expected range
[0.04, 0.07] for linear bearings [[13]], where friction is indubitably higher than in roller bearings. In
order to test the effect of mass and frequency, the tube assembly was ballasted with several masses
or stagnant water, and different springs were used. As a result, total mass m over structural mass ms

was varied within [1, 1.6] and natural frequency within [10, 30] rad/s. Coulomb friction coefficient
was found to vary within [0.04, 0.08].

In theory, pure Coulomb friction allows an infinite response at resonance for a mass-spring
system, for low values of µ such as in our case [[14]]. Therefore, a combination of Coulomb friction
and viscous damping is commonly used. A more elaborate friction model [[15]] did not prove to
be necessary, as the tube is constantly sliding (no stick-slip phenomena, for instance, are involved).
We then introduce ζs, the viscous component due to structural losses. The determination of µ and
ζs, along with the other sources of damping, requires an appropriate modeling of the system for
operating conditions.

4.2 System modeling
A top view of the test section is provided on Fig. 6(a). We can identify the four compression springs
and the two pairs of extension springs, clamped on the right hand side and excited on the left hand
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Figure 5. Free response of the empty tube after an initial displacement.
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(a) Excitation system and sliding structure
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(b) Full system model

𝐹𝑒 = 2𝑘0𝑒 cos(𝜔𝑡)

𝐹µ

mt

ys

(c) Equivalent system

Figure 6. System modeling.

6(b) shows the full system model from a structural point-of-view. The mass of the tube assembly
is noted ms and its position ys. The springs are considered to be linear, based on the traction-
compression tests mentionned earlier in this paper. The excitation springs are subject to a sinusoidal
displacement. We isolate the forces (including the different sources of damping and friction) on the
free body diagram of the tube assembly. Remembering that because of the initial compression, all
the springs are always working, the equivalent variables of the system under operating conditions
(6(c)) are:

Force magnitude : F0 = 2k0e (5)
Stiffness : kt = 4k0 + 4kc (6)
Damping : ct = cs + cν + c2ϕ (7)

Mass : mt = ms +m2ϕ +ma (8)

The total damping coefficient ct is the sum of the three aforementioned components. m2ϕ is the
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mass of fluid vibrating with the structure and can be deduced from ε and tube geometry. ma is the
added mass, due to a relative motion between the liquid and the structure. The equation of motion of
the structure in direction y, for a given excitation frequency ω, is:

mtÿs + ctẏs + ktys = Fµ(ẏs) + Fe(t) (9)
= −µmtg sgn(ẏs) + 2k0e cos(ωt) (10)

It can be rewritten as:

ÿs + 2ζtωnẏs + ω2
nys = −µg sgn(ẏs) +

2k0eωn
kt

cos(ωt) (11)

with the damping ratio ζt and the natural frequency ωn defined as usual as:

ζt =
ct

2
√
ktmt

and ωn =

√
kt
mt

(12)

The total damping ratio is non-dimensionalized by the total mass, including the added mass. In this
case, the added mass is negligible compared to ms and m2ϕ. The relative error is estimated to be
lower than 3% on ζt.

11 is non-linear because of the friction force. Thus, finding an analytical expression for ζt is far
from straightforward. The next paragraph describes the method to retrieve variables of 12 from the
frequency response function of the system.

4.3 Protocol
The position of the tube is acquired with the laser sensors. The time domain samples have a duration
of 20 seconds. A typical tube response is shown on 7. The RMS amplitudes of tube Y rmss and
excitation frequencies ω are extracted from these samples.
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Figure 7. Measured position signal of the tube.

This operation is repeated by increasing ω with the variable frequency drive in order to cover the
resonance peak of the structure in the frequency spectrum. The frequency resolution that we get on
the tube (including power transmission ratios) is 0.03 Hz. This frequency sweep allows to construct
the frequency response function of the tube, as illustrated on Fig 8.

The black and gray curves calculated for a linear system (ζ = 2.2% and ζ = 6.0% respectively)
have been overlaid to illustrate the slight non-linearity of the system. Around resonance, the
experimental points are closer to the black curve whereas when excited farther away from the natural
frequency, they are closer to the grey curve.

The natural frequency of the system is extracted from a polynomial fit around the resonance
point. Then, we use the least-squares method to find values for µ and ζt of 11. Indeed, we do not
know the weight supported by the bearings when there is flow. The bottom flexible tube may pull
the tube assembly down whereas the flow going up might reduce the force on the bearings. Since
the peak of resonance is well defined (ζt is expected to be smaller than 6%), only a narrow range
of excitation frequency is required to accurately determine the damping. Therefore, we consider µ
to be constant over a frequency response function for given conditions. So, 11 is solved for all the
frequencies tested, the RMS amplitudes are calculated and compared with the experimental values. µ
and ζt are found to best fit the experimental data in the frequency domain. The result is summarized
by the dotted line on Fig 8.
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Figure 8. Frequency response function of the system (F0 = 23 N, j = 0.7 m/s, β = 30%).

Note on 10 that the model suggests that the total mass mt is supported by the bearings. Since
a smaller value for the mass is expected in reality (as explained in the previous paragraph), the
compensation is done directly on the friction coefficient. The values of µ for the conditions tested lie
within [0.025, 0.045], just below the range expected from the free vibration tests, where the total
mass of the system was supported by the bearings in this case. For the experiments with two-phase
flow, where the reaction supported by the bearings is unknown, the parameter µ should be interpreted
as the ratio of friction forces on the overestimated reaction = fµ/(mtg). In fact, the values of µ
vary depending on the flow conditions. For the case presented on Fig. 7, if we force µ rather than
fitting it, we obtain ζt = 1.6% underestimating the friction force with µ = 0.025 and ζt = 1%
overestimating the friction force with µ = 0.045 presented in doted and dashed line. The best fit
is ζt = 1.4% for µ = 0.033 closest to the experimental condition. We can therefore estimated the
absolute experimental error as ±0.3%

This confirms that the non-linearity of the system can be explained by Coulomb friction induced
by the bearings only. Furthermore, the good agreement between the model and experiments shows
that two-phase damping can be modeled as a velocity dependent damping.

5. Results

5.1 Influence of fluid velocity
Total damping results are shown on Fig. 9 as function of volumetric fraction β, for the three
superficial velocities of the mixture tested. Each point is the average over three measurements.
First-of-all, we can see for β = 0% that ζs + ζν is fairly small, of the order of 0.5 to 1%. Then,
damping seems proportional to volumetric fraction until a change in slope occurs (vertical dashed
line). This transition corresponds to the transition between bubbly and churn regimes, as will be
discussed in 5.2. The breakdown in damping values was related to the change in interface surface
area by [9]. As anticipated, the two-phase damping values are very high and reach 3%. However,
damping is expected to go down for high volumetric fraction, since the flow becomes air single-phase.
This behavior can be explained with 10.

10 shows the evolution of the natural frequency of the system. When β is increased, the mass
of the vibrating fluid decreases. Thus, the natural frequency of the total system increases. The
dotted line represents the expected natural frequency in the context of a perfectly homogeneous flow,
neglecting pressure and added mass effects. It can be observed that when the volumetric fraction is
increased in the experiments, the response gets farther away from the line. On the other hand, when
superficial velocity is increased, results get closer to the line. This proves that the higher the velocity,
the more homogeneous the flow (void fraction is closer to volumetric fraction). The relation between
volumetric fraction and void fraction can be summarized by this equation:

s

(
1

β
− 1

)
=

1

ε
− 1 (13)
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Figure 9. Influence of fluid velocity on total damping.

When s tends to 1, β becomes closer to ε. Physically, in vertical co-current upward flow, gas is faster
than liquid due to drag-buoyancy equilibrium. This equilibrium creates a velocity difference that is
not much affected by liquid velocity. Therefore, as the liquid velocity gets higher, s tends to 1. For
higher void fractions, flow is intermittent because there is no definite continuous phase. The large
diameter of our tube amplifies this effect. Stagnant volumes of water are observed and are subject to
sloshing which causes an increase in slip ratio. A superficial velocity of 0.7 m/s is the maximum
velocity that can be reached with the current pump.

In the meantime, ωn is a good qualitative indicator of the actual void fraction in the test section,
as described in 5.3. The flow conditions at β = 90% are estimated to correspond approximately to
ε = 60%.

5.2 Flow patterns

Videos of the flow were taken with a high-speed camera. Selected photographs of each volumetric
fraction are shown on 11 for a superficial velocity of 0.7 m/s. Bubbly flow can clearly be observed
up to β = 40%. The breakdown in damping values occurs during the transition to churn regime.
Perturbation due to larger bubbles can be made out for β = 50%− 60%.

We note that no slug flow regime is observed. That is because the length to diameter ratio is
L/Dh = 13, whereas it should be higher than 20 for slugs to “develop”. This had been observed
by [16] who performed void fraction measurements on a very large circular tube of 200 mm inner
diameter, and flow conditions comparable to ours. It was also concluded that churn flow was
dominant in large pipes for conditions where slug flow exists in smaller pipes. They also reported
a phenomenon that can be clearly observed at 80% volumetric fraction. Large Taylor bubbles
intermittently perturb a liquid film still filled with many small bubbles. [17] note that those large
bubbles can however freely move and deform in three dimensions in the large tube and are thus far
from ideal Taylor bubbles.

As reviewed by [18], flow patterns in large circular tubes have been experimented over the years,
mostly for horizontal ducts. Flow patterns maps [[19]] were derived and compared reasonably well
with theoretical ones [[20]]. Rectangular microchannels and minichannels have also been studied
and reviewed thoroughly by [21]. Unfortunately, very little information exists on large rectangular
channels. Aspect ratio, surface tension, hydraulic diameter and pressure have an effect on transitions
in small (around 5 mm) to micro channels. However, these conclusions may not be verified for large
vertical square ducts.

An extensive study of flow pattern transition determination would require additional instrumenta-
tion. It is beyond the scope of this study. Our observations of the flow are meant to support damping
results and give away the lack of studies in this range of diameter for vertical rectangular ducts.
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Figure 10. Natural frequency of the system for the flow conditions tested. The dotted line represents the expected
natural frequency with the homogeneous model, obtained with 14 (fn = ωn/2π).

5.3 Influence of excitation force
The magnitude of excitation force was doubled for j = 0.7 m/s. In order to ensure repeatability with
respect to volumetric fraction, natural frequency is used to compare the results. Indeed, if we neglect
added mass, ωn is related to hydrodynamic mass m2ϕ which depends directly on void fraction ε: ωn =

√
kt

ms +m2ϕ

m2ϕ = (AL+ Vcorr)(ερg + (1− ε)ρl)

(14)

where Vcorr is a correction volume that corresponds to the additional volume of vibrating fluid within
the flexible tubing. It was determined for ε = 0%. ρg depends on average pressure in the tube. The
pressure upstream was found to be below 1.6 bar for all flow conditions. Given the high pressure loss
due to the mixer on 3 and the short horizontal length of tubing downstream, the average pressure is
close to atmospheric conditions in the oscillating tube. Therefore, ρg was determined at atmospheric
conditions, for 23◦C. The results are shown on 12.

Clearly, the excitation force has an effect on transition since the two curves separate after the
transition. The higher the force, the higher the confinement which is likely to affect flow pattern
and the damping values for moderately high void fraction. However, it is interesting to notice that
the curves match perfectly before transition, for bubbly flow conditions. This independence of
ζ2ϕ with respect to F0 suggests that the damping mechanism can be modeled as a purely velocity
dependent mechanism for bubbly flow. In other words, ζ2ϕ is independent of excitation amplitude
and frequency for bubbly flow. Furthermore, we have depicted the direct dependence of two-phase
damping with interface surface area, so we did not expect ζ2ϕ to depend on force magnitude. This
motivated us to steer the study towards the modeling of two-phase damping mechanism for bubbly
flow in 7.

6. Gas phase behavior

6.1 Video processing
The direct relation between interface surface area and two-phase damping is not sufficient to explain
the two-phase damping mechanism. We suspect that relative motion between the phases induces
dissipation, through the work of the forces exerting on the bubbles.

We used a high-speed camera at 1000 fps to characterize the gas phase motion for bubbly flow
within the oscillating structure. The objective is to correlate the gas phase motion to the damping
values measured. To do so, β should be sufficiently high (for lower volumetric fraction, two-phase
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Figure 11. Flow patterns.

damping would be too small to be measured accurately). Unfortunately, the higher the void fraction,
the harder the characterization. For instance, [22] presented an accurate measurement of the flow
field with bubbles using a combined PIV/shadowgraphy technique. However, the local void fraction
around the cluster of bubbles does not exceed 2.5%. The challenge in our case is that many inter-
bubble motions were observed, including overlapping. For this reason, individual tracking of the
bubbles with image segmentation techniques is laborious.

Therefore, we resorted to a global tracking of the gas phase motion. The method consists in
selecting a thumbnail of an image at instant t, and looking for the same thumbnail in the next image
at time t+ ∆t. We note f(t) the full image matrices taken with the high speed camera, of constant
size (M, N) at instant t. The indices of the thumbnail position are noted (i(t), j(t)). The new
coordinates indices (i(t+ ∆t), j(t+ ∆t)) are calculated in order to minimize the Mean Square
Error (MSE), expressed as:

MSE =
∑

M/2<I≤M/2
−N/2<J≤N/2

[f (i(t) + I, j(t) + J)− f (i(t+ ∆t) + I, j(t+ ∆t) + J)]
2 (15)

The high frame rate was set so that the minimization could be performed in a region of pixels close
to the original thumbnail. The thumbnail should of course be initialized in the middle of the gas
phase. At each time step, the new thumbnail is used to look for the next one. This evolution of
f (i(t), j(t)) tends to average the inter-bubble motion and gives a good representation of the bulk
gas phase motion.

The resolution is around 1 pixel = 0.2 mm. While very simple and robust, the drawback of this
technique is that its accuracy can only be appreciated qualitatively.

On 13, one can directly observe the gas phase relative motion with respect to the structure. The
images are shown in the tube reference frame. On the first image, the test section is accelerating
towards the left, and the gas column is already compressed on the left wall of the tube. This suggests
that bubbles are in phase lead with respect to the structure. On the second frame, the tube reaches
a zero velocity point, so the gas phase is uniformly dispersed, before being compressed on the
right. Notice the white rectangle, standing for the tracked thumbnail. It has moved not only in the
transverse direction but also upward. Indeed, upward co-current air-water mixtures are studied.

6.2 Characterization of gas phase motion
Experiments for three volumetric fractions β = 5, 10 and 15%, at constant superficial velocity
j = 0.6 m/s. Since the shape of the thumbnail does not change, only one point of its coordinates
(i(t), j(t)) is required to track the bulk gas phase motion with respect to time. i(t) and j(t) correspond
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Figure 13. Relative motion of the gas phase.

respectively to the vertical and transverse motions. Vertical relative velocity with respect to the liquid
ugz − ulz , ranges from 0.22 to 0.28 m/s. This is around the expected value of 0.25 m/s (given by
the difference between buoyancy and drag force on the bubbles). Those values give a slip ratio s of
approximately 1.5. The three corresponding void fractions ε are thus roughly 3, 7 and 11%.

A typical graph of transverse relative motion of the bubbles is shown on 14. The signal is the
combination of a sine wave and a linear deviation, meaning the tracking rectangle is oscillating while
drifting towards one side of the tube. Note that only bubbles close to the front window are observed.
We attribute the drift behavior to a swirling motion of the bubbles. When the structure is oscillating,
a radial instability is onset (the swirling motion was not observed for the tube at rest). When bubbles
come into contact with the side walls, they tend to slide in a preferential direction instead of simply
bouncing back and most likely coalesce with other bubbles. This is attested by the photographs in
13 where structural oscillations do not seem to prematurely onset the formation of larger bubbles.
A similar behavior had been reported by [11]. When their clamped-clamped tube was released to
measure the free vibrations, they observed elliptical motion instead of oscillations in a plane. This
phenomenon was attributed to the cylindrical shape of the tube causing swirling. Our observations
suggest that swirling is generated by tube oscillations only, and not by tube geometry. The swirling
velocities on the side wall were around 0.05 m/s (slope of the dashed line on 14), which is negligible
compared to up to 1 m/s for structure peak velocity. Thus, the swirling motion is not dissipative.
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Figure 14. Typical unfiltered transverse position of the tracking rectangle in time. It represents the gas phase
motion on the front tube wall. The linear deviation is attributed to a global swirling motion of the bubbles.

However, it prevents coalescence of the bubbles, keeping a constant interface surface area. It could
explain why tube oscillations do not seem to affect flow pattern transitions.

Therefore, only the harmonic motion of the gas phase is extracted. The tube amplitude is noted
Ys and the relative amplitude of motion of the gas phase with respect to the tube is Yb|s. The
corresponding time-dependent motions are noted ys and yb|s. Fig. 15 shows the different movements
of the system involved. Note that the gas phase is in phase lead with respect to the structure.
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Figure 15. Different movements of the system involved. Light dashed lines are the the raw signals extracted
from the videos, and solid lines are the corresponding sinusoidal fits.

6.3 Amplitude of motion of the gas phase
The relative amplitude Yb|s was extracted for several excitation amplitudes. Ys was varied by
changing the frequency close to the natural frequency of the system for a given void fraction. Since
the peak of resonance is very well defined, the excitation frequency can be considered constant
at 33.75 ± 1.5 rad/s (6 ± 0.23 Hz) over all our experiments. Results are shown on 16. Yb|s/Ys
represents the gain of the gas in terms of amplitude. For a constant excitation amplitude, the gain of
the gas tends to decrease when void fraction increases. This is in accordance with the drag relations
that take into account the effect of void fraction [e.g. [23], [24]]. Indeed, it is well-established that
CD increases dramatically with ε through confinement, therefore limiting the transverse amplitude.
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For high Ys, the gain seems to reach an asymptote. As explicitly shown in 7.1, important shape
deformation for high excitation amplitudes cause an increase of the drag force on the bubbles. Also,
it is well established that wall proximity causes a similar effect on the drag force [25]. In this case,
the tube walls are moving and thus represent a physical barrier that cannot be crossed by the bubbles,
leading to an important confinement effect. All these effects contribute to the existence of the limit
cycle.

The relative motion can not be related to two-phase damping values without the forces on the
bubbles. Therefore, a simple model has to be analytically derived.

7. Analytical model
We propose a simple model of a bubble in an oscillating structure subjected to internal two-phase
flow. This sections aims at testing existing correlations and implement them in the model under
certain hypotheses, to assess the extent to which the two-phase damping can be reproduced. Based
on our observations, the transverse relative motion of the gas phase will be the main output of the
calculations to explain damping, through the work of the forces exerting on the bubbles.

7.1 Equation of motion
We consider a deformable bubble of equivalent diameter a. It is immersed in an oscillating structure
filled with water, as illustrated by 17. The bubble has the properties of a confined bubble in two-phase
flow, of given volumetric fraction and superficial velocity. Thus, its movement is representative of
the gas phase motion.

We note #„ub the relative velocity of the bubble with respect to the fluid:

#„u b = #„u g − #„u l (16)

We assume that bubbles do not have influence on the liquid. Thus, the liquid undergoes a solid body
motion with the structure. Therefore:

#„u l = (−Ysω sin(ωt), ulz) (17)

where ulz is a function of j and ε, the void fraction still being calculated based on volumetric fraction
and slip ratio of the bubble.

The 2D equation of motion of the bubble takes the form:

m
d #„u b
dt

=
#„

FB +
#„

FD +
#„

FM +
#„

F I (18)
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Figure 17. Schematic of the bubble model in an oscillating structure subjected to two-phase flow.

where
#„

FB is the buoyancy force:

#„

FB =
4

3
πa3∆ρg #„z (19)

#„

FD is the drag force, based on bubble relative velocity:

#„

FD = −1

2
πa2ρlCDub

#„u b (20)

We calculate the drag coefficient using a relation by [26]. It is valid for up to Re = 300, and takes
the effect of void fraction into account:

CD =
16

Re

1 +

2

(
2 + 3µ∗

2 + 2µ∗

)2

1 +
Rec
Re

 1− ε
(1− ε1/3)3

[
P1 + µ∗P2

P3 + µ∗P4

]
G(χ)

with :
P1 = 4 + 6ε5/3

P2 = 6− 6ε5/3

P3 = 4 + 6ε1/3 + 6ε2/3 + ε
P4 = 4 + 3ε1/3 − 3ε2/3 − 4ε
Rec = 33 + 8600ε2/3

G(χ) = 1
3χ

4/3(χ2 − 1)3/2
√
χ2 − 1− (2− χ2)sec−1χ

(χ2sec−1χ−
√
χ2 − 1)2

(21)

The oblateness χ of the bubble is calculated with a terminal velocity correlation by [27] (first-order
term only):

χ = 1 +
9

64
We (22)

where the Weber number We is defined as:

We =
2aρlu

2
b

σ
(23)

The relation of 22 is valid for a single bubble rising in stagnant liquid, so its application is questionable
in our case. For instance, oblateness tends to increase with void fraction ([28], [29]). However, our
observations show that bubbles change shape depending on structure position, and so that velocity is
the major parameter controlling the bubble deformations.
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#„

FM is the added mass force:

#„

FM = −4

3
πa3ρlCM

d #„u b
dt

(24)

where CM is the added mass coefficient. A few studies propose the effect of void fraction on the
added mass of a bubble. See for instance the works by [30] or [31]. However, added mass could
increase or decrease with ε depending on certain hypotheses. A more recent study by [32] proposes
a new semi-empirical correlation based on potential flow theory for random clouds of bubbles. It
appears that CM weakly increases with ε. Therefore, we will simply use the added mass coefficient
CM = 0.5 of an isolated sphere as a first approximation.

Finally, the bubble undergoes an inertia force
#„

F I because of the pressure gradient caused by the
accelerating tube on the water, in the transverse direction. This force can be expressed as:

#„

F I =
4

3
πa3ρl

#̈„y s (25)

To sum up, the only input parameters for the model are a, j and β. The motion of the bubble is
governed by its added mass and fluid viscosity. Thus, it has no mass nor rigidity, as modeled by [6].

7.2 Transverse amplitude
A few images of the oscillating structure at different instants were segmented in order to have an
estimate of the bubble sizes and shapes, for Ys/Dh = 0.22. The bubble radii a were found to range
within [1.2, 2] mm and oblateness χ within [1.2, 1.9], assuming a revolution ellipsoid. For the same
conditions and a = 1.4, the model predicts χ up to 2.3, which seems reasonable considering the fact
that the correlation we use do not take the effect of acceleration into account.

The predicted bubble relative amplitude Yb|s is presented on 18(a). The model tends to over-
predict the amplitude by a factor 2. Thus, some effects have obviously been overlooked. Still, the
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Figure 18. Analytical model results solving eq. (18-25)

trend seems very well respected. The limit cycle reached is mostly due to the oblateness of the
bubbles, as attested by 18(b).

7.3 Dissipated energy
It is also useful to compare the model directly to the damping values measured for bubbly flow. We
decided to compare the energy dissipated by the two-phase damping force F2ϕ over one cycle of
oscillation:

E2ϕ =

∫ 2π/ω

0

F2ϕ
dys
dt

dt =

∫ 2π/ω

0

c2ϕẏs
2dt = πc2ϕωY

2
s (26)

This energy has to be compared with that dissipated by the work of the forces applied on the bubbles.
We are only interested in the projection in the y direction of these forces since we try to explain
two-phase damping with transverse motion of bubbles. The buoyancy force is vertical and as such is
not accounted for. Added mass and inertia forces are purely inertial, hence they do not work over one
cycle. Only the work of the drag force projected on the y-axis is contributing, and can be written as:

WD = Nb

∫ 2π/ω

0

#   „

FD · #„y
dyb|s

dt
dt (27)
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Nb stands for the number of bubbles in the test section. It is calculated based on the void fraction:

Nb =
εAL
4
3πa

3
(28)

This equation is valid only for bubbly flow (up to β ≈ 50% experimentally), so no effect of
coalescence is considered. The void fraction depends on volumetric fraction and slip ratio (previously
defined in the z direction). Comparison between the model and experiments is shown on 19.
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Figure 19. Energy dissipated over one oscillation cycle. – : by two-phase damping using 26; - - : calculated with
analytical model using 27. Only the power of bubble drag forces is significant in the model. Calculations are
presented for structure amplitude Ys = 18.8 mm, superficial velocity j = 0.6 m/s and bubble radius a = 1.4
mm.

The model compares fairly well with two-phase damping in terms of dissipated energy. It is
odd to have a good agreement for the energy, and a poor one for relative amplitude of the bubbles
as reported in 7.2. Assuming that the drag relation is correct, we believe this is due to the fact that
we measured relative amplitude of the gas phase with respect to the structure, and not the liquid, as
underlined in the next section.

7.4 Model calibration with glycerin experiments
Changing the Reynolds number is a good way to test the validity of the model for other flow
conditions. Other videos were taken with a stagnant glycerin solution (j = 0). Glycerin density is
1.21. Its viscosity was tested with a rheometer and was found to be of 0.163 Pa.s at 22◦C. Single
bubbles were injected with a needle. The Reynolds numbers based on bubble relative velocities were
below 3. Using segmentation imaging techniques, we were able to measure bubble radii, transverse
amplitude and vertical terminal velocity (cf. 20(a) and 20(b)).

The scatter in the data is explained by the fact that we do not control the bubble radius. This is
why the points were gathered in several radius categories, thus collapsing the data. The structural
transverse amplitude does not have a strong effect on Yb|s. Given the low Weber numbers of the
experiments, the bubbles hardly deform (χ ≈ 1). Hence, no additional drag is induced. Also note
that the graphs are basically identical on their respective scale. Experimentally, the bubbles would
rise in glycerin in a straight line due to the very low Reynolds number (two path instabilities occur
at higher Re, as reported extensively in the literature, e.g. [33] and [34]). Hence, at this range
of Re, transverse migration is only due to tube motion and depends directly on bubble radius, as
attested by 21. The figure summarizes the twenty-five experiments in stagnant glycerin. Since all the
points collapse on a straight line, the relative amplitude of the bubble is only a function of its radius.
However, two bubbles with different radii have different terminal velocities in the z direction, as
attested by Fig. 19(b). This confirms that no coupling exists between the y and z directions in this
case.

Contrary to 7.2, the agreement between the model and experiments on 20 is very good, for both
Ut and Yb|s. This suggests that considering the relative amplitude with respect to the structure or the
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Figure 20. Comparison between model and experiments with single bubbles rising in stagnant glycerin.
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liquid is the same. Hence, assuming solid body motion for the liquid is correct in this case. The poor
agreement reported before for air-water mixture experiments may be caused by a recirculation of
water around bubbles or a wrong drag coefficient given the bubbles’ high Reynolds number. Indeed,
the higher the void fraction, the more important the recirculation to fill the space between the moving
bubbles. This interstitial flow would affect both drag on bubbles and relative velocity.

Furthermore, we stated in 6.2 that structural oscillation did not seem to onset bubble coalescence.
The nature of the liquid film between bubbles would control their coalescence/break-up conditions
[[35]]. The local gas-liquid interaction due to the relative bubble motion is given by pseudo-
turbulence theory but is beyond the scope of this study. Bubble-induced liquid agitation was modeled
[e.g. [36] and [26]] and characterized experimentally at moderate void fractions [[37] and [38]].
Information on local interstitial velocity in an oscillating structure with gas bubbles would allow to
model turbulence forces on bubbles as well as lift forces (through information on local vorticity)
which were neglected in the present model. This effect is important even for two-phase flow in tubes
at rest for void fractions larger than 2% [[29]]. Thus, it is likely that structural oscillations cause
additional pseudo-turbulence when inducing the relative motion of the gas phase. Characterizing this
phenomenon might help to understand the two-phase damping mechanism more thoroughly.

8. Conclusion
In this paper, a new test section offering control over the excitation parameters in order to determine
two-phase damping experimentally was presented. Observations as well as processing of high-speed
videos gave novel information on the gas phase motion, especially on its relative motion with
respect to the structure. A simple analytical model fed with correlations was derived. Although not
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entirely complete, the model gives useful information on the physical dissipative mechanism. It
also underlines the missing information to catch the full nature of the phenomenon. We suspect that
the latter lies in the complexity of the liquid phase motion. So far, the following conclusions and
perspectives can be brought out:

(i) Two-phase damping can reach 3% in this square 76.2 mm tube. It is fairly proportional to void
fraction, until a change in slope at transition between bubbly and churn flow regime occurs.

(ii) The frequency response function of the tube subjected to internal two-phase flow confirms that
two-phase damping is a viscous damping (velocity dependent) mechanism. This is supported
by the fact that ζ2ϕ seems independent of the excitation force magnitude F0 for bubbly flow.
For higher void fraction, the mechanism is different. We suspect that energy is extracted by
sloshed liquid phase within the continuous gas phase. Damping is affected by the stochastic
nature of the flow at this regime, causing an increase of standard deviation in the results.

(iii) There is definite relative motion of the gas phase with respect to the liquid for bubbly flow.
The bubbles have a bulk body motion due to the tube oscillations, and are in phase lead with
respect to the structure. The oscillations seem combined with a swirling motion. It is not very
dissipative but helps to prevent a premature coalescence of the bubbles, keeping a maximum
interface surface area prompt to transfer energy between the phases and the structure.

(iv) For bubbly flow, the power dissipated by two-phase damping is equivalent to that dissipated
by the drag forces on the bubbles. However, the discrepancy between bubble amplitudes
predicted by the model and those measured suggests a complex interstitial liquid flow between
the bubbles under tube oscillations, affecting both drag and relative velocity. It seems like
even though two-phase damping is observed on a large scale, small scale effects cannot be
overlooked for ζ2ϕ to be accurately modeled.
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