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We introduce a novel numerical approach for the simulation of soft particles interacting via frictional co
This approach is based on an implicit formulation of the Material Point Method, allowing for large p
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bust due to implicit time integration of both bulk degrees of freedom and 
es representing the contact points. By construction, our algorithm is capable 
and deformations. We illustrate this approach by two simple 2D examples: a 
 an inclined plane. We also investigate the compaction of a packing of circular 
ove the jamming limit of hard particles. We find that, for the same level of 
 packing of frictional particles is above that of a packing of frictionless 
 shape change.
1. Introduction

Granular materials are of crucial importance in industrial transformation processes dealing with powders and grains as
well as in geological flows and applications involving geomaterials (soils, rocks and concrete) (Nedderman, 1992; Jaeger and
Nagel, 1996; Turner and Schuster, 1996). These materials present a complex pressure-dependent, density-dependent and
rate-dependent mechanical behavior, which has attracted extensive modeling effort in different communities (Wood, 1990;
Nedderman, 1992; Radjai et al., 2004; GDR-MiDi, 2004). Granular materials present also a broad range of characteristics
related to the shapes and size distributions of their constitutive particles (Herrmann et al., 2003; Donev et al., 2004; Antony
and Kuhn, 2004; Voivret et al., 2007; Azéma et al., 2009; Azéma and Radjai, 2010; CEGEO et al., 2012). Most recent fun-
damental research has focused on the scale-up of mechanical properties from the scale of particles and their interactions,
characterized by a disordered microstructure and highly inhomogeneous stress transmission (Radjai et al., 1998; Kruyt,
2003; Majmudar and Behringer, 2005; Agnolin and Roux, 2007a; Richefeu and El Youssoufi, 2009).

Granular materials have been mainly modeled as a collection of undeformable particles. The elastic deformations are
assumed to be concentrated at the contact points, and thus described as a function of the rigid-body degrees of freedom of
the particles (Cundall and Strack, 1979; Matuttis et al., 2000; Radjai and Richefeu, 2009). This hard-particle approximation is
S - Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France.
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the physical ground of the popular Discrete Element Method (DEM) for the simulation of granular materials composed of
model particles interacting via frictional contacts (Cundall and Strack, 1979). The numerical strategies based on DEM have
the advantage of being robust. They include (1) Molecular Dynamics (MD), with an explicit time-stepping scheme based on
force laws with strain variables derived from rigid-particle degrees of freedom (Cundall and Strack, 1979; Matuttis et al.,
2000), and (2) Contact Dynamics (CD), which employs an implicit-type time integration scheme based on contact laws
expressing the mutual exclusions of the particles and their Coulomb-like frictional behavior (Moreau, 1994; Jean, 1998;
Radjai and Dubois, 2011).

The material behavior of the particles may be accounted to some extent in DEM through the force laws. In particular, the
Hertz law and its generalization to frictional particles involve the elastic moduli and coefficient of friction of the particles
Agnolin and Roux (2007a,b). Moreover, to first order in contact deflection δ, the latter may be replaced by the overlap
between two undeformable spherical particles (Leroy, 1985). This approximation holds as far as the average stress p is small
compared to Young's modulus E of the particles. In many applications, however, this approximation is too crude, and the
particles may undergo large elastic or inelastic deformations. For example, metallic powders are mostly composed of soft
particles that may deform plastically without rupture (Rabinowicz, 1965). In the same way, many products in pharma-
ceutical and food industries are soft-particle materials. This broad class of materials may be further extended to colloidal
pastes, vesicles, microgels and many suspensions if particle sizes below 1 mμ are considered (Cruz et al., 2002; Cloitre et al.,
2003; Bonnecaze and Cloitre, 2010). All such materials may undergo volume change as a consequence of particle re-
arrangements, as in hard-particle materials. But what makes them different is their property of volume change by particle
shape and size change under moderate external loads. This leads to enhanced space filling compared to hard particles in
which the packing fraction cannot exceed the random close packing (RCP) limit (Berryman, 1986; Torquato et al., 2000). The
compaction, shear behavior and other rheological properties of soft-particle systems beyond this “jamming” limit have
remained largely unexplored.

For realistic modeling of soft-particle materials at large deformations, it is necessary to combine a continuum re-
presentation of the particles, allowing for their deformation according to a prescribed constitutive model, with appropriate
frictional contact conditions between particles. In this regard, a promising framework is provided by meshless models that
have already been applied to problems of solid mechanics involving large deformations. One of these numerical models is
nowmostly known as Material Point Method (MPM) (Guilkey and Weiss, 2003). The MPM is a mixed method combining the
Eulerian and Lagrangian descriptions of the material. The Lagrangian description consists in representing each body by a
collection of material points, and the Eulerian description is based on a background computational mesh. The information
carried by material points is projected onto the background mesh, where equations of motion are solved. The mesh solution
is then used to update the material points. The MPM brings together the advantages of Eulerian and Lagrangian methods by
avoiding the distortion of Lagrangian mesh and tracking the boundaries of bodies. This method has also been applied to
granular materials (Bardenhagen et al., 2000a; Cummins and Brackbill, 2002).

In particle systems, the kinematic constraints and stresses arising from unilateral contacts between particles and the bulk
deformations of the particles are strongly coupled. While the contacts play the role of boundary conditions for the re-
solution of continuum equations in each particle, the evolution of contacts is determined by particle deformations. In MPM,
the use of the same set of continuous shape functions in both mappings (the mapping from material points to mesh nodes
and vice versa) naturally results in sticking (no interpenetration and no slip) contact scheme and thus no interpenetration
occurs. With the use of a single-valued velocity to update the positions of material points, the sticking contact between two
different bodies can be handled automatically at no additional computational cost using the original MPM, and no contact
surface detection is required, but the contacting objects may not separate. For this reason, it is necessary to define different
body velocities at the nodes and to implement frictional contact laws independently from MPM.

This issue has been addressed by several authors. Bardenhagen et al. (2000a, 2001) extended the original MPM to
account for the unilateral nature of contact. In this algorithm, a contact occurs if the material points of different bodies are
projected onto the same nodes of the background mesh, and the contact force is associated with the difference between the
mass-center velocity of the particles and the node velocity, reflecting the constraints arising from contact. To release the no-
slip contact algorithm in MPM, (Hu and Chen, 2003) proposed a multi-mesh mapping scheme, i.e. material points of each
body lie in an individual background mesh rather than in the common one. In this procedure, the normal velocity of a
material points at the contact surface is calculated in the common background mesh while the tangential velocity is found
from the corresponding information in respective individual meshes. In their scheme, normal acceleration is set to be the
same if material points of different bodies are mapped on the same node. However, in this algorithm the friction between
different bodies is ignored because the tangential velocities of different bodies are assumed to be independent. Another
multi-mesh contact algorithm for MPM was proposed by Pan et al. (2008). In this approach, the contact condition is similar
to that of Bardenhagen et al. (2000a, 2001). It allows for fast contact search between bolides. However, contrary to the
previous contact algorithms, both normal and tangential velocities of each particle at the contact surface are calculated in
the respective individual meshes.

In this paper, an implicit MPM procedure is proposed for the simulation of deformable particles in association with the
CD method for the treatment of frictional contacts between particles. Our procedure is implemented in a manner that the
contact variables (velocity, force, etc.) are computed simultaneously with bulk variables (stresses, strains, etc.). We validate
our algorithm by considering simple single-particle problems involving one contact, namely Hertz contact between a
particle and a rigid platen and rolling of a particle on an inclined plane. We briefly present these examples, and compare the



simulation data with analytical predictions. We also present the uniaxial compaction of a small number of particles, and
briefly investigate the compaction law and effect of friction. As we shall see, particle shape change may give rise to
counterintuitive behaviors in granular materials.
2. MPM: a finite element method with moving integration points

In this section, we describe the basic formulation of the material point method. Indeed, MPM can be considered as a
finite element method (FEM) with moving integration points (material points). In MPM, a body is discretized by a set of
Lagrangian material points carrying all state variables such as stress and velocity field. The MPM algorithm uses an Eulerian
mesh for solving the momentum equations. The material points are assigned fixed masses during computation so that the
conservation of mass is satisfied implicitly. The momentum changes are interpolated from the grid to the material points, so
that the total momentum is conserved (Guilkey and Weiss, 2003).

2.1. Governing equations

We consider a domain Ω in D, D being the domain dimension, with an external boundary Ω∂ , describing a continuum
body. Its conservation of mass is described by this continuity equation:
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where tx,ρ ( ) indicates the material density and tv x,( ) denotes the velocity field at position x and time t.
In the context of the infinitesimal strain theory, conservation of linear momentum is defined as follows:

t t t tx b x x a x, , , , in , 2σ ρ Ω∇· ( ) + ( ) = ( ) ( ) ( )

where tx,σ ( ) is the Cauchy stress tensor, tb x,( ) represents the body force and ta x,( ) denotes the acceleration field at
position x and time t.

This continuum body is subjected to prescribed displacements and forces on the disjoint complementary parts of the
boundary uΩ∂ (the Dirichlet boundaries) and fΩ∂ (the Neumann boundaries), respectively. The boundary conditions are then
defined by

⎪
⎪⎧⎨
⎩

t t

t t

u x u

x n f

, on ,

, on , 3

u

fσ
Ω
Ω

( ) = ^ ( ) ∂
( )· = ( ) ∂ ( )

where tu x,( ) and tû( ) are the displacement field and the prescribed displacement, respectively. In Eq. (3), n is the outward
unit normal vector to Ω∂ and tf( ) is a prescribed load.

The continuity equation (1) and the momentum equation (2) must be supplemented with a constitutive relationship
which is assumed here to be linear, homogeneous, isotropic and elastic:

t tx x, : , , 4σ ϵ( ) = ( ) ( )

where  refers to fourth-order elastic tensor and ϵ is the strain tensor ( u uT1
2

ϵ ∇ ∇= ( + ); superscript T denotes the transpose
of a matrix). It is worth noting that any other constitutive law (including inelastic behaviors such as plastic deformations)
can be used in this context; but here, to simplify the presentation, the above constitutive relationship is considered.

2.2. Variational and spatial discretized forms of the governing equations

In the framework of the finite element method, the body is divided into infinitesimal mass elements to which a constant
mass amount is allocated for all times; however, in MPM, these elements are represented by material points with fixed
mass. Hence, since the material point mass is considered to be fixed in the MPM, mass conservation relation (1) is auto-
matically satisfied. Then, the weak form associated with the momentum equation (2) and the boundary conditions (3) can
be written as follows:

Find u Ω∈ ( ), u 0δ Ω∀ ∈ ( ) and u u= ^ , on uΩ∂ such that
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where Ω( ) denotes the space of sufficiently regular displacements and u u, 0 on u0 Ω δ Ω δ Ω( ) = { ∈ ( ) = ∂ } is the corre-
sponding space of suitable variations with vanishing values on the Dirichlet boundary.

The MPM can be considered as a modification of the classical finite element method. The classic nodal force and mass
matrix integrals for the FEM grid are defined in a usual FEM manner. Hence, the weak form relation (5) can be rewritten as
follows:
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whereΩe represents the domain occupied by the eth element and Ne is the number of elements. In the context of the MPM,
the material points serve as the integration points to compute the FEM integrals. However, in standard FEM, the locations of
the integration points and their weights are chosen to optimize the integration accuracy for a given set of interpolation
functions. The MPM then discretizes these integrals through the use of a Dirac delta function by considering a fixed material
point mass. In this context, for example, the density can be then discretized for an element as follows:
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where ρp and tXp( ) refer to material point density and position respectively. δ is the Dirac delta function and Np
e is the

number of the material points for an element. Note that the material point density is equal to m V/p p pρ = with material point
mass mp and volume Vp.

The displacement up and the strain pϵ at material point Xp are expressed in function of the displacements at one ele-
ment's nodes ue

node called elementary nodal displacements. up and ue
node are related through Np called interpolation matrix

or shape function matrix at Xp (u N up p
e
node= ). In this context, Gp which links the stain pϵ to the nodal displacements ue

node

can be easily defined ( G up p
e
nodeϵ = ). Indeed, Gp is the gradient of the shape function Np. The virtual displacement upδ and

strain pϵδ can be also defined in the same way ( u N up p
e
nodeδ δ= and G up p

e
nodeϵδ δ= ). Therefore, the problem (6) in the dis-

cretized form can be written as follows by considering the contact interactions between several bodies:
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Finally, since there are generally more material points than grid nodes, a weighted squares approach is used to determine
nodal velocities vnode from the material point velocities vp. So, the nodal velocities are obtained by solving the relation:
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where Pnode is the nodal momentum.
3. MPM: an implicit-type formalism

We propose a MPM approach with an implicit time integration based on Guilkey and Weiss (2003) in this section. In the
context of the implicit resolution, to advance the solution of (8) from t to t t+ Δ , we consider that t tFext( + Δ ) is known.
Moreover, the trapezoidal rule is used to advance the grid kinematics:
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Note that since t tunode( + Δ ) is in fact the grid displacement from t to t t+ Δ , tu 0node( ) = . From Eqs. (10) and (11), the nodal
acceleration at time t t+ Δ can be obtained as
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To evaluate the material point volume Vp change from t to t t+ Δ , by considering the mass conservation equation (1), the



trapezoidal rule and the fact that the material point mass (mp) is fixed, we get
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In the framework of an incremental-iterative resolution algorithm, a new estimation of unode at iteration k, t tuk
node( + Δ ),

is obtained by adding uk
nodeΔ , the incremental displacement, to the previous estimated displacement:
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node node

1
node( + Δ ) = ( + Δ ) + Δ ( )−

To obtain uk
nodeΔ , at iteration k we solve:
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where K is the stiffness matrix and R refers to the residual term. This equation is the incremental form of relation (8). The
terms K and R are defined in Appendix A.

The objective of this incremental algorithm is to find a nodal displacement t tunode( + Δ ) that minimizes the residual
term, R. So, as in Guilkey and Weiss (2003), we introduce two convergence criteria:
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where ϵ1 and ϵ2 are tolerance parameters on velocities and energy, respectively, ∥·∥ is the norm operator, unode
max∥ Δ ∥ denotes

the maximum value of the norm of the incremental displacement and u Rnode
1 1∥ Δ ∥ indicates initial value of the inner product

of the incremental displacement and the residual term.
In principal, a single criterion is sufficient for the convergence of all fields. Nevertheless, the use of two criteria allows for

a better control of convergence as all fields do not converge with the same rate. One example is shown in Fig. 1, for the case
of the uniaxial compaction of a packing of soft particles, discussed in detail in Section 5.3. The number of iterations for
convergence is determined for a fixed value 101

1ϵ = − as ϵ2 is varied from 10�3 down to 10�6 (dashed line) and for a fixed
value 102

3ϵ = − as ϵ1 is varied from 10�1 down to 10�3 (full line). In both cases, the number of iterations increases almost
logarithmically as the convergence criterion declines. We see that the convergence criterion C1 is more sensitive than C2.
However, the computation time per time step depends on the number of iterations, number of material points (or back-
ground mesh nodes for a given number of material points per mesh) and number of contacts. On a standard workstation
(CPU speed of about 2 GHz), the computation time for uniaxial compaction presented in Section 5.3 with 9150 material
points is about 2.5 10 s5× − per time step and per degree of freedom for 101

1ϵ = − , which requires about 7 iterations per time
step and corresponds to 102

3ϵ = − .
4. MPM: contact dynamics

In dealing with contacts between deformable bodies, the contact forces FC need to be calculated by means of a contact
algorithm accounting for the condition of non-interpenetration of matter, i.e. unilateral contact constraint, as well as the
Coulomb friction law. In a discretized scheme, two bodies will interact at several contact points depending on their degree
Fig. 1. Number of iterations as a function of tolerance parameters ϵ1 and ϵ2; see text.



Fig. 2. Geometry of contact between two soft particles discretized in multi-mesh MPM algorithm; see text.
of deformation and spatial resolution used, and the resolution method in MPM does not allow for overlaps and slipping
between bodies. Indeed, the use of the same set of continuous shape functions in both mappings (the mapping from
material points to mesh nodes and vice versa) results naturally in a no-overlap no-slip contact scheme when the contacts
are treated on common nodes between the two bodies (Bardenhagen et al. 2000a,b, 2001). However, a multi-mesh mapping
can be used to implement not only the condition of no-overlap but also contact laws such as the friction Coulomb law or
adhesion laws at the contact points (Hu and Chen, 2003). Several authors have extended the original MPM to account for
frictional contacts between deformable solid bodies by introducing a multi-mesh environment (Hu and Chen, 2003; Pan
et al., 2008). In these models, the contact variables are computed simultaneously with bulk stresses and strains. But the
contacts are treated on the basis of a regularized scheme with an explicit time-stepping scheme.

The Contact Dynamics (CD) method is a general approach for the treatment of frictional contacts without regularization.
This method was pioneered by a mathematical formulation of nonsmooth mechanics by Moreau (1988) and then ex-
tensively used for the simulation of granular materials with rigid grains (Radjai et al., 1996; Unger et al., 2002). Detailed
descriptions of the foundations and algorithmic aspects of CD can be found in the literature (Moreau, 1994; Jean, 1995;
Radjai and Richefeu, 2009). This method is based on an implicit time-stepping scheme and formulated in terms of grain
velocities, which may undergo jumps as a result of collisions and the non-smooth feature of the Coulomb friction law. The
use of the implicit MPM scheme in this paper was thus motivated by the implicit nature of the time-stepping procedure in
the CD method. However, the CD method is generally associated with perfectly rigid grains, and thus the resolution method
should be adapted to the grains discretized by material points.

Let us consider two deformable bodies denoted α and β; see Fig. 2. In the context of multi-mesh algorithm, each body
maps in its proper background mesh. A contact point at the interface between the two bodies may be treated by introducing
a common background mesh with the same type of grids for the transfer of nodal quantities from proper meshes to the
common mesh. The contact points between the bodies α and β are treated at the neighboring nodes belonging to the
common background mesh. Their nodal values involve contributions from the two bodies. At a potential contact node i, a
normal unit vector ni, oriented from body β to body α is defined by the gradient of the nodal mass in the individual body
(Bardenhagen et al., 2001; Huang et al., 2011):
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where mp
α and mp

β represent the mass of material point p in bodies α and β, respectively. Moreover, a tangential unit vector ti
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As long as the relative normal velocity vn remains positive,



a b

Fig. 3. Contact conditions: (a) Velocity-Signorini complementarity condition as a graph relating the normal relative velocity vn and normal force fn;
(b) Coulomb friction law as a graph relating the tangential velocity vt and friction force ft; μ is the coefficient of friction. The dashed lines represent linear
relations representing the equations of dynamics.
v v v n 0, 20n i i i= ( − )· > ( )α β

the normal force fn is identically zero. But when vn¼0, a non-negative (repulsive) normal force fn is mobilized at the contact
node. These conditions define the velocity-Signorini complementarity condition as shown in Fig. 3(a) (Jean, 1995; Brogliato,
1999).

In order to solve the equations of motion together with the velocity-Signorini condition at all potential contact nodes, it
is necessary to express the equations of motion in the contact variables fn and vn. Such a relation can be obtained by
combining the equations of motion at the common node:

m a f f f f ,
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γβ are contact forces of other bodies at this common node. From the above equations, it is easy to get
a linear relation between fn ( f f nn i i

C,= ·αβ ) and vn:
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where kn is an offset force which depends on other contact forces exerted by the neighboring bodies of α and β.
As shown in Fig. 3(a), Eq. (23) intersects the Signorini graph at a single point due to the positivity of the mass. Since the

point of intersection depends on the offset kn and thus other contact nodal forces, the determination of nodal forces and
velocities requires an iteration process between the values of kn and fn or vn.

In a similar vein, the Coulomb law of dry friction is a complementarity relation between the friction force ft and the
relative tangential velocity vt (v v v tt i i i= ( − )·α β ) at the contact node; Fig. 3(b). Like the Signorini graph, the Coulomb law
cannot be reduced to a single-valued function. The friction force and the tangential velocity can be determined by ex-
pressing the equations of motion in terms of contact variables ft and vt:
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This linear relation can be intersected with the Coulomb graph to compute the friction force ft simultaneously at all contact
nodes within the same iterative process used to compute the normal force through successive corrections.

It is important to note that the contact nodes are fixed at the beginning of each time step. Hence, the iterative process
involves only the forces and relative velocities, which are the main unknowns of the contact problem. The positions are
updated as a function of calculated velocities at the end of the time step. The convergence to the solution both for contact
forces and internal stresses is smooth, and a high precision may be achieved depending on the convergence criterion. The
implicit-type time stepping endows the method with good convergence properties. Besides the material behavior of the
particles, which may involve viscous damping or plastic dissipation of energy, a major source of dissipation in granular
dynamics is inelastic collisions and sliding friction between particles. The introduction of restitution coefficients in the CD
formalism is presented in Radjai and Richefeu (2009). Note that, when contact dynamics equations are solved together with
MPM equations in the bulk of the particles, the convergence criteria of equation (17) are used. The convergence is checked
for contact interactions within the same iteration loop as bulk fields.



Fig. 4. Contact geometry between a disk and a rigid plate.
5. Numerical examples

In this section, we study the accuracy and efficiency of the proposed algorithm through several contact problems. The
results are presented through three main examples. The first one concerns the Hertzian contact. It is used to show the
validity of our contact algorithm in MPM. The second example deals with the rolling of an elastic disk on an inclined plane
where we would like to reproduce the analytical rolling behavior at high rigidity. In the third example, we study the
compaction of a packing of elastic grains in order to show the effectiveness of the proposed algorithm to deal with soft-
particle assemblies.

These examples have been treated by means of two-dimensional MPM in plane stress conditions. The computation
domain has been meshed with four-node quadrangular elements, and an initial distribution of four material points per
element was used. In all the tests presented below, we set 101

1ϵ = − and 102
3ϵ = − ; see Eq. (17).
5.1. Hertzian contact

We consider here the contact between an elastic disk and a rigid wall. The elastic disk may be modeled as a cylinder of
unit length and radius R as shown in Fig. 4. Its contact with the wall occurs over a unit strip of width 2a. In the absence of
friction force between the disk and the wall, it can be shown that the contact force F is proportional to the displacement d of
the center of the cylinder (see Johnson, 1999):
Fig. 5. Force-displacement plots of 2D Hertz contact for different levels of relative spatial resolution ξ.
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where En is the effective elastic modulus defined as E E/ 1 2ν= ( − )⁎ with E being Young's modulus and ν Poisson's ratio. Note
that, in contrast to the 3D case (contact between two spheres), in 2D the particle radius R does not enter the expression of F.

We performed MPM simulations of this 2D contact problem with R¼0.5 mm compressed between two rigid walls. The
bottom wall is fixed and the top wall moves downwards at a constant velocity of 0.05 m/s. The time step is t 0.1 sΔ = μ . The
gravitational acceleration is set to be zero in order to avoid stress gradients. Young's modulus, Poisson's ratio and density of
the disk are set to E¼10 MPa, ν¼0.45 and ρ¼990 kg/m3, respectively. The simulation was repeated for different levels of
spatial resolution. The continuity of stress and strain fields inside the particles depends on the number of material points
used to discretize the particle. For this reason, we define the relative spatial resolution ξ by

r
R

, 26ξ = Δ
( )

where rΔ is the mean distance between material points.
Fig. 5 shows the normal contact force F as a function of displacement d of the center of the cylinder for four values of ξ.

We observe a linear relation between force F and displacement d as predicted by the analytical expression (25), but the
effective elastic modulus En, given by the slope, depends on ξ. In finite element simulations, the finite spatial resolution is
known to affect the effective elastic properties, and an insufficient number of elements or meshes in a solid region or at an
interface may not represent correctly continuum elasticity. But the elastic moduli are generally affine functions of the spatial
resolution (Roberts and Teubner, 1995; Gatta et al., 2005; Affes et al., 2012). Hence, this property allows one to obtain an
“exact” values of elastic moduli by extrapolation from data points for several levels of spatial resolution to the limit of
infinitely high resolution. Fig. 6 shows the effective elastic modulus En as a function of ξ for our 2D contact problem. We see
that the evolution of En is indeed linear as a function of ξ and it tends to the analytical value E 12.5 MPaanalytic ≃⁎ obtained
from Eq. (25).

This example shows that our MPM contact algorithm can correctly reproduce the Hertz contact behavior in 2D with an
increasingly accurate prediction of contact stiffness for increasing spatial resolution. It is important to note here that the
elastic moduli in the bulk of the material correctly reflect the imposed elastic moduli even for a coarse discretization. The
issue at hand in the contact problem is the same as in all heterogeneous or composite materials in which the “effective”
properties strongly depend on the interfaces between different phases. The conditions required for the continuity of stress
and strain fields at such interfaces are far strongest than those within each phase. In the Hertz contact, the stress field in the
contact area is controlled by the curvature of the particle around the positions a and �a from the center of the contact zone
(see Fig. 4), which clearly requires a very high resolution. For this reason, as long as small deformations are concerned, it is
generally more convenient to use numerical methods based on the analytical solutions as is the case, for example, in DEM.
This is no more the case at large deformations, for which the MPM/CD algorithm provides the proper simulation tool
provided the effects of discretization are correctly handled.

5.2. Inclined plane: rolling disk

An elastic disk on an inclined rigid plane as shown in Fig. 7 is considered. This plane is inclined at an angle θ above the
horizontal, with the gravity g oriented vertically downwards. A rigid disk placed at zero velocity on an inclined rigid plane
will roll and slip when tan 3θ μ> where μ is the dry coefficient of friction. Conversely, for tan 3θ μ≤ , the disk will roll
without slipping. The x-component x tcm ( ) of the center-of-mass position of the rigid disk evolves as
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Fig. 6. Effective elastic modulus (En) as a function of spatial resolution ξ. The analytical solution for given values of the parameters is displayed.



Fig. 7. Geometry for the simulation of a disk on an inclined plane.
where x0 is the initial position.
In this test, we would like to show that MPM with frictional contact is able to reproduce the rolling behavior of the

particle in the theoretical limit of very rigid particles. The kinematics of material points in a rolling particle is a harsh
problem for MPM. Moreover, in the rigid limit particle deformations are small and a high resolution is needed to reproduce
the strain and stress fields in the contact area. For the simulations, we used an elastic disk of radius R¼0.5 mm and an
inclined rigid wall at an angle of /4π . The gravitational acceleration is set to 10 m/s2 and the time step is equal to t 10 sΔ = μ .
The disk has Young's modulus E¼10 MPa, Poisson's ratio ν¼0.45 and density ρ¼990 kg/m3. The same spatial resolution
values as in the Hertz contact example were employed. Here, only the case of rolling without slipping is simulated by setting
the coefficient of friction to μ¼0.6.

In Fig. 8, we compare the numerical results for the time evolution of the center-of-mass position of the disk obtained for
different levels of spatial resolution with the analytical solution for an infinitely rigid disk. For all values of ξ, we observe a
parabolic evolution of xcm with parameter s x x gt/ sincm 0

2 θ= ( − ) ( ) converging towards the analytical value 1/3 in agree-
ment with Eq. (27), as shown in Fig. 9. The linear dependence of s on spatial resolution is similar to that of the effective
modulus in the Hertz contact problem, and it clearly reflects the local curvatures around the contact. The observed trend
(decreasing acceleration for decreasing resolution) is consistent with the fact that the curvature is high at the limit points of
the contact zone when spatial resolution is low. This leads to high stress concentration and numerical dissipation, which
slows down the particle. Moreover, it is worth noting that as mentioned in the first example, as long as the simulations of
the rigid bodies are concerned (i.e. when we have small deformations), the numerical methods based on the analytical
solutions are more convenient. For example, in this example, if we freeze the internal degrees of freedom of the particle, we
are left with the CD method, which provides the exact solution without problem.

5.3. Compaction of a packing of elastic grains

Let us now consider a packing of 30 disks confined inside a rectangular box of width L in which only the top wall is
Fig. 8. The x-component of the center-of-mass of position of an elastic disk as a function of time for different levels of relative spatial resolution ξ. The bold
line represents the analytical solution in the limit of an infinitely rigid disk.



Fig. 9. Parameter s x x gt/ sincm 0 2 θ= ( − ) ( ) as a function of relative spatial resolution ξ.
mobile. The initial configuration is prepared by means of DEM simulations. A small polydispersity is introduced in order to
avoid long-range ordering. The box height and packing fraction at equilibrium are h0 and ϕ0, respectively. The disks are
initially compacted by exerting a stress s0 on the top wall. Starting with this configuration, we simulate the compaction
process by moving the top wall downwards at constant velocity of 5 m/s and a time step of t 0.1 sΔ = μ . Two simulations of
compaction are analyzed below: (1) without friction and (2) with a coefficient of friction μ¼0.5 between the grains, and
between the grains and the walls. The gravitational acceleration is set to be zero in order to avoid stress gradients. Young's
modulus, Poisson's ratio and density of the particles are set to E¼10 MPa, ν¼0.45 and ρ¼990 kg/m3, respectively.

The packing fraction is expected to increase due to three effects: (1) elastic volume change of the particles, (2) particle
Fig. 10. Four snapshots of the compaction of a packing of elastic grains. Circle dots represent the material points.



Fig. 11. Evolution of the total particles volume change as a function of the cumulative vertical strain ε. The dashed line represents the regime of contact
deflections; see text.
rearrangements and (3) particle shape change. Only the latter may allow the packing fraction to considerably exceed the
random close packing (RCP) limit. We are interested here in the mechanisms by which the particles exceed this limit and the
evolution of the packing fraction with the compressive stress.

Fig. 10 displays four snapshots of the compaction test with μ¼0. The material points have been distributed so as to fit
best to the initially circular shapes of the particles. The particle shape changes are clearly observed by following the po-
sitions of the material points. Note that the observed gaps between particles are a consequence of the meshing resolution,
which may be increased to get a finer discretization of the contact zone. The snapshots show that, as the total volume
decreases, new contacts are formed between particles, and the total contact area grows.

The total volume V is the sum of the volume Vs of particles and the volume Vv of voids. Hence, the packing fraction
V V V/s s vϕ = ( + ) varies due to both the volumetric particle deformation V V/s sΔ as a result of the elastic compressibility of

particles and the variation of Vv due to particle rearrangements and shape change. Since the width of the box is constant, we
have
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where h hln 1 / 0ε ≡ ( + Δ ) is the true cumulative vertical strain. Fig. 11 shows the cumulative volume change of the particles
V V/s s0 as a function of εwith and without friction. We see that the data for frictional and frictionless particles nearly coincide.
The cumulative volume deformation V Vln /s s0( ) of the particles is small at the beginning of compression, indicating that the
compaction is mainly governed by particle displacements. From ε¼0.1 to ε¼0.3 the volumetric deformation of the particles
is nearly linear in ε with a coefficient equal to Poisson's ratio ν¼0.45. This range corresponds to particle strains due to
contact deflections, as in the Hertz regime. Beyond ε¼0.3, the particle volume deformation grows at increasingly higher
rate, which means that the deformation of the sample is increasingly governed by particle deformation while at the same
time the void volume fraction decreases.
Fig. 12. A zoom on the deformed packing with particle borders and material points represented. The arrows indicate borders of large curvature.



Fig. 13. Normalized packing fraction as a function of axial stress for frictionless and frictional particle packings.
Recent investigations show that the packing fraction increases with the deviation of particle shape from circular shape
(Donev et al., 2007; Azéma and Radjai, 2010; Saint-Cyr et al., 2011; CEGEO et al., 2012). A generic parameter quantifying this
deviation can be defined whatever the nature of deviation (degree of angularity, elongation etc.). Particles of non-circular
shape can “overfill” the pores as a result of larger curvature at some parts of their boundary. Hence, as soft particles deform,
a similar mechanism naturally leads to increasingly smaller voids and thus larger packing fraction. Fig. 12 displays an
example of a deformed configuration where higher connectivity and packing fraction are reached as a result of particle
shape change.

Fig. 13 shows the packing fraction ϕ as a function of the applied stress s. Two regimes can clearly be distinguished. In the
first regime, up to 30 0σ σ≃ , ϕ increases logarithmically with s. In this range, the data nearly coincide for frictionless and
frictional particles. The particle configuration evolves as a result of new contacts forming between particles and global
rearrangements that are reflected in the irregularities and jumps observed on the points. In contrast, the connectivity of
particles does not evolve in the second regime ( 30 0σ σ> ). The evolution of ϕ is again linear as a function of the logarithm of
s but at a higher rate. Both with friction and without friction, the ratio / 0ϕ ϕ tends to1/ 1.420ϕ ≃ , which is its highest possible
value when the void volume Vv vanishes.

It is also remarkable that, in this range, the packing fraction for frictional particles is above that for frictionless particles.
This suggests that particle shape change is larger with friction. This is what we observe in Fig. 14 where two configurations
are shown at the same level of deformation together with Von Mises stresses inside the particles. The friction between
particles allows for stronger and more linear stress chains as compared to frictionless particles, where the particles need to
be propped by lateral normal particles and forces. At the packing scale, this means that the ratio of the vertical stress to the
horizontal stress in the case of frictional particles is higher than in the case of frictionless particles, where the stresses are
nearly isotropic. Hence, in the frictional case, the higher stress ratio leads to more elongated particles and thus a larger
packing fraction. However, given the small number of particles considered in these tests, we think that simulations with
larger numbers of particles are necessary in order to analyze in more detail the effect of friction both between the grains and
between the grains and lateral walls.
Fig. 14. Deformed packings at the same level of deformation with friction (a) and without friction (b). The Von Mises stress fields are represented in color
code. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)



It is worth noting that the logarithmic dependence of packing fraction with respect to the mean stress is commonly
observed in soil mechanics. It is often attributed to particle fragmentation, which leads to progressive filling of the pore
space between particles and hence the increase of ϕ with stress. In such a process, the stress field becomes increasingly
homogeneous so that an increasingly larger stress is required to crush the particles. In the case of deformable particles, the
“overfilling” of the pore space is due to shape change, with the effect of increasing the contact areas and hence the
homogeneity of the stress field. In this way, as in the case of fragmentation, further increase of the packing fraction requires
an increasingly larger stress.
6. Conclusion

In this paper, a new approach was proposed for the simulation of soft-particle systems. This approach combines an
implicit formulation of the Material Point Method (MPM) for individual particles with the Contact Dynamics (CD) method
for the treatment of frictional contacts. The realistic mechanical behavior of individual particles, including elastic and in-
elastic behaviors with the possibility of large deformations with or without rupture, can be taken into account due to MPM.
Moreover, the CD allows us to deal with frictional contacts as unilateral interactions without regularization due to implicit-
type time integration. By construction, this algorithm is capable of handling arbitrary particle shapes with point-wise or
extended contacts. Several 2D examples were presented to illustrate the potential of this approach to simulate contact
interactions between soft particles and the effect of discretization. In particular, we showed that the numerical results tend
to analytical solutions by increasing spatial resolution.

This approach provides an alternative to Discrete Element Methods (DEM) such as MD and CD with the advantage of
allowing for realistic individual material behavior of the particles. The behavior of granular materials for rigid particles thus
can be compared in detail with both CD (for the effect of particle deformation) and MD (for the effect of particle shape
change). Such a validation is interesting, but it is obvious that, due to effect of finite spatial resolution, for small de-
formations it is generally more convenient to use numerical methods based on the analytical solutions as in DEM. Our MPM/
CD algorithm provides the proper simulation tool for larger deformations. It can be used to investigate the nonlinear effects
arising from particle shape change and mitigate in more detail the extent to which analytical force laws can be used for the
simulation of particle systems.

More fundamentally, this method can be used to investigate the mechanical behavior of very soft particles with the effect
of shape change and space-filling well beyond the usual RCP packings. As an example, the uniaxial compaction of a small
stack of elastic particles was simulated and the relationship between particle shape change and the evolution of the packing
fraction was analyzed. It was shown that the packing fraction beyond the RCP state is a logarithmic function of the com-
pressive stress. Interestingly, the friction appears to enhance the compressive stress, which leads to higher particle shape
change and hence higher packing fraction.

This method opens broad prospects for realistic simulation of granular materials. It is obvious that the treatment of a
large number of particles by this method requires large memory and fast processors, as well as further numerical devel-
opments such as a parallelization strategy. On the other hand, the extension of this approach to 3D is straightforward since
both bulk and contact behaviors are handled at the nodes of a fixed background mesh.
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Appendix A. Definitions of K and R

The implicit integration in the context of MPM takes into account the discretized equation of the motion:

t t t t t tMa F F . A.1node
int ext( + Δ ) = ( + Δ ) + ( + Δ ) ( )

By considering that the external force at time t t+ Δ is known, t tFext( + Δ ), and by assuming an incremental-iterative
Newton solution strategy, the linearized equation of motion at iteration k is

K u R , A.2k k k1
nodeΔ = ( )−

where



⎛
⎝
⎜⎜

⎞
⎠
⎟⎟t t

t t
t t

t t
K M

a u
u

F u
u

A.3

k node

t t t tu u

1 node node

node

int

node knode node
1

=
∂ ( ( + Δ ))

∂ ( + Δ )
−

∂ ( ( + Δ ))
∂ ( + Δ )

( )

−

( +Δ )= ( +Δ )−

t t t t t tR F F Ma , A.4k k kext int 1
node

1= ( + Δ ) + ( + Δ ) − ( + Δ ) ( )
− −

with



⎧
⎨⎪

⎩⎪

⎫
⎬⎪

⎭⎪

t t
t t t

t t
t t

V t t
V t

t
t t

a u
u

F u
u

G G
v

G BG

BG u

4
,

1
,

Tr .

t t k t t e

Ne

p

Np

p
k

p p
p

t
p

p p
k

p

p p n
e

u u

node node

node 2

int node

node
node node

1 1 1

e

1

2

1∑ ∑ σ

ϵ

∇

∂ ( ( + Δ ))
∂ ( + Δ )

=
Δ

∂ ( ( + Δ ))
∂ ( + Δ )

= ( + Δ ) +
( )

− · ( )
( + Δ )

(Δ ) =

( +Δ )= − ( +Δ ) = =

−
Δ

−

References

Affes, R., Delenne, J.Y., Monerie, Y., Radjaï, F., Topin, V., 2012. Tensile strength and fracture of cemented granular aggregates. Eur. Phys. J. E 35, 117. 
Agnolin, I., Roux, J.-N., 2007a. Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks. Phys. Rev. E Stat.

Nonlinear Soft Matter Phys. 76 (6-1), 061302.
Agnolin, I., Roux, J.-N., 2007b. Internal states of model isotropic granular packings. III. Elastic properties. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 76

(December (6 Pt 1)), 061304.
Antony, S.J., Kuhn, M.R., 2004. Influence of particle shape on granular contact signatures and shear strength: new insights from simulations. Int. J. Solids

Struct. 41 (21), 5863–5870.
Azéma, E., Radjai, F., 2010. Stress–strain behavior and geometrical properties of packings of elongated particles. Phys. Rev. E 81 (5 (Part 1)), 051304. 
Azéma, E., Saussine, G., Radjai, F., 2009. Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech.

Mater. 41 (6), 729–741.
Bardenhagen, S., Brackbill, J., Sulsky, D., 2000a. The material-point method for granular materials. Comput. Methods Appl. Mech. Eng. 187, 529–541. 
Bardenhagen, S., Guilkey, J., Roessig, K., Brackbill, J., Witzel, W., Foster, J., 2001. An improved contact algorithm for the material point method and ap-

plication to stress propagation in granular material. Comput. Model. Eng. Sci. 2, 509–522.
Bardenhagen, S.G., Brackbill, J.U., Sulsky, D., 2000b. Numerical study of stress distribution in sheared granular material in two dimensions. Phys. Rev. E 62,

3882–3890.
Berryman, J.G., 1986. Random close packing of hard spheres and disks. Phys. Rev. A 27, 1053.
Bonnecaze, R., Cloitre, M., 2010. Micromechanics of soft particle glasses. Adv. Polym. Sci. 236, 117–161.
Brogliato, B., 1999. Nonsmooth Mechanics. Springer, London.
CEGEO, Saint-Cyr, B., Szarf, K., Voivret, C., Azéma, E., Richefeu, V., Delenne, J.-Y., Combe, G., Nouguier-Lehon, C., Villard, P., Sornay, P., Chaze, M., Radjai, 
F.,

2012. Particle shape dependence in 2d granular media. EuroPhys. Lett. 98, 44008.
Cloitre, M., Borrega, R., Monti, F., Leibler, L., 2003. Glassy dynamics and flow properties of soft colloidal pastes. Phys. Rev. Lett. 90, 068303.
Cruz, F.D., Chevoir, F., Bonn, D., Coussot, P., 2002. Viscosity bifurcation in granular materials, foams, and emulsions. Phys. Rev. E 66 (5 (Pt 1)), 051305. 
Cummins, S., Brackbill, J., 2002. An implicit particle-in-cell method for granular materials. J. Comput. Phys. 180, 506–548.
Cundall, P.A., Strack, O.D.L., 1979. A discrete numerical model for granular assemblies. Géotechnique 29 (1), 47–65.
Donev, A., Cisse, I., Sachs, D., Variano, E.A., Stillinger, F.H., Connelly, R., Torquato, S., Chaikin, P.M., 2004. Improving the density of jammed disordered

packings using ellipsoids. Science 303 (5660), 990–993.
Donev, A., Connelly, R., Stillinger, F., Torquato, S., 2007. Underconstrained jammed packings of nonspherical hard particles: ellipses and ellipsoids. Phys. Rev.

E 75, 051304.
Gatta, J.-M., Moneriea, Y., Lauxa, D., Baronb, D., 2005. Elastic behavior of porous ceramics: application to nuclear fuel materials. J. Nucl. Mater. 336, 145–155. 
GDR-MiDi, 2004. On dense granular flows. Eur. Phys. J. E 14, 341–365.
Guilkey, J., Weiss, J., 2003. Implicit time integration for the material point method: quantitative and algorithmic comparisons with the finite element

method. Int. J. Numer. Methods Eng. 57, 1323–1338.
Herrmann, H.J., Mahmoodi Baram, R., Wackenhut, M., 2003. Searching for the perfect packing. Physica A: Stat. Mech. Appl. 330 (December (1–2)), 77–82. 
Hu, W., Chen, Z., 2003. A multi-mesh mpm for simulating the meshing process of spur gears. Comput. Struct. 81, 1991–2002.
Huang, P., Zhang, X., Ma, S., Huang, X., 2011. Contact algorithms for the material point method in impact and penetration simulation. Int. J. Numer. Methods

Eng. 85, 498–517.
Jaeger, H., Nagel, S., 1996. Granular solids, liquids and gases. Rev. Mod. Phys. 68, 1259–1273.
Jean, M., 1995. Frictional contact in rigid or deformable bodies: numerical simulation of geomaterials. In: Salvadurai, A., Boulon, J. (Eds.), Mechanics of

Geomaterial Interfaces. Elsevier Science Publisher, Amsterdam, pp. 463–486.
Jean, M., 1998. The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177, 235–257.
Johnson, K., 1999. Contact Mechanics. University Press, Cambridge.
Kruyt, N.P., 2003. Contact forces in anisotropic frictional granular materials. Int. J. Solids Struct. 40 (13–14), 3537–3556.
Leroy, B., 1985. Collision between two balls accompanied by deformation: a qualitative approach to Hertz's theory. Am. J. Phys. 53 (4), 346–349. 
Majmudar, T.S., Behringer, R.P., 2005. Contact force measurements and stress-induced anisotropy in granular materials. Nature 435 (June (7045)),

1079–1082.
Matuttis, H.-G., Luding, S., Herrmann, H.J., 2000. Discrete element methods for the simulation of dense packings and heaps made of spherical and non-

spherical particles. Powder Tech. 109, 278–292.
Moreau, J., 1994. Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A/Solidso 13 (4), 93–114.
Moreau, J.J., 1988. Bounded variation in time. In: Panagiotopoulos, P., Strang, G. (Eds.), Topics in Nonsmooth Mechanics. Bikhäuser, Basel, pp. 1–74. 
Nedderman, R.M., 1992. Statics and Kinematics of Granular Materials. Cambridge University Press, Cambridge.
Pan, X., Xu, A., Zhang, G., Zhang, P., Zhu, J., Ma, S., Zhang, X., 2008. Three-dimensional multi-mesh material point method for solving collision problems.

Commun. Theor. Phys. 49, 1129–1138.

Rabinowicz, E., 1965. Friction and Wear of Materials. Wiley, New York.

http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref1
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref2
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref2
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref3
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref3
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref4
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref4
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref4
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref5
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref6
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref6
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref6
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref7
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref7
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref8
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref8
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref8
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref9
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref9
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref9
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref10
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref11
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref11
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref12
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref14
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref15
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref16
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref16
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref17
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref17
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref18
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref18
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref18
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref19
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref19
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref20
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref20
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref21
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref21
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref22
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref22
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref22
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref23
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref23
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref24
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref24
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref25
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref25
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref25
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref26
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref26
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref27
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref27
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref27
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref28
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref28
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref29
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref30
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref30
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref31
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref31
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref32
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref32
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref32
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref33
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref33
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref33
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref34
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref34
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref35
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref35
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref36
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref37
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref37
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref37
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref38


Radjai, F., Dubois, F., 2011. Discrete Numerical Modeling of Granular Materials. Wiley-ISTE, New York.
Radjai, F., Jean, M., Moreau, J., Roux, S., 1996. Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77, 274.
Radjai, F., Richefeu, V., 2009. Contact dynamics as a nonsmooth discrete element method. Mech. Mater. 41, 6715–6728.
Radjai, F., Troadec, H., Roux, S., 2004. Key features of granular plasticity. In: Antony, S., Hoyle, W., Ding, Y. (Eds.), Granular Materials. RSC, Cambridge,

pp. 157–184.
Radjai, F., Wolf, D.E., Jean, M., Moreau, J., 1998. Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80, 61–64.
Richefeu, V., 2009. El Youssoufi, 2009. Force transmission in dry and wet granular media. Powder Tech. 190, 258–263.
Roberts, A.P., Teubner, M., 1995. Transport properties of heterogeneous materials derived from gaussian random fields: bounds and simulation. Phys. Rev. 
E

51, 4141.
Saint-Cyr, B., Delenne, J.-Y., Voivret, C., Radjai, F., Sornay, P., 2011. Rheology of granular materials composed of nonconvex particles. Phys. Rev. E 84 (4),

041302.
Torquato, S., Truskett, T.M., Debenedetti, P.G., 2000. Is random close packing of spheres well defined? Phys. Rev. Lett. 84 (March (10)), 2064.
Turner, A., Schuster, R., 1996. Landslides: Investigation and Mitigation. Transp. Res. Board, Nat. Res. Council, Washington.
Unger, T., Brendel, L., Wolf, D.E., Kertész, J., 2002. Elastic behavior in contact dynamics of rigid particles. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 65 
(6

(Pt 1)), 061305.
Voivret, C., Radjai, F., Delenne, J.-Y., Youssoufi, M.S.E., 2007. Space-filling properties of polydisperse granular media. Phys. Rev. E 76 (2 (Pt 1)), 021301. 
Wood, D., 1990. Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press, Cambridge, England.

http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref39
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref40
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref41
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref41
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref42
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref42
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref42
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref43
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref43
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref44
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref44
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref45
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref45
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref46
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref46
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref47
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref48
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref49
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref49
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref50
http://refhub.elsevier.com/S0022-5096(15)00156-8/sbref51

	Implicit frictional-contact model for soft particle systems
	Introduction
	MPM: a finite element method with moving integration points
	Governing equations
	Variational and spatial discretized forms of the governing equations

	MPM: an implicit-type formalism
	MPM: contact dynamics
	Numerical examples
	Hertzian contact
	Inclined plane: rolling disk
	Compaction of a packing of elastic grains

	Conclusion
	Acknowledgment
	Definitions of K and R
	References




