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Abstract. In the present note we consider an example of a boundary value problem for

a simple second order ordinary differential equation, which may exhibit a boundary layer

phenomenon depending on the value of a free parameter. To this equation we apply an

adaptive numerical method on redistributed grids. We show that usual central finite differ-

ences, which are second order accurate on a uniform grid, can be substantially upgraded

to the fourth order by a suitable choice of the underlying non-uniform grid. Moreover, we

show also that some other choices of the nodes distributions lead to substantial degrada-

tion of the accuracy. This example is quite pedagogical and we use it only for illustrative

purposes. It may serve as a guidance for more complex problems.
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1. Introduction

The boundary layer phenomena are present in many applications, in particular in Fluid
Mechanics and Aerodynamics [22]. For instance, the very successful design of Airbus

A320’s wing is mainly due to the potential flow theory with appropriate boundary layer
corrections [19]. Nowadays this problem is addressed mainly with numerical techniques
and it represents serious challenges.

Some numerical approaches to address the boundary layer problem have been proposed
since the early 60’s. Historically, probably homogeneous schemes on uniform [25] and
non-uniform [26] meshes were proposed first by Tikhonov and Samarskii. Later, Il’in

proposed the so-called exponential-fitted schemes [14, 20], which were generalized recently
to finite volumes as well (see e.g. [9]). The idea of Il’in consisted in introducing the so-
called fitting factor into the scheme and requiring that a particular exact solution satisfies
the difference equation exactly. We can also mention two pioneering references where the
moving grids were first applied to unsteady problems in shallow water flows [24] and in
gas dynamics [1]. The uniform convergence of monotone finite difference operators for
singularly perturbed semi-linear equations was shown in [10]. We refer to [15] for a general
review of numerical methods in the boundary layer theory.

In [19, pp. 585–586] one can read:

I am convinced that it should be possible to develop a general theory of the

relation between the grid, the governing equations and the specific solution

being computed, but only very hazy ideas how to bring such a theory about.

Our study is a little attempt towards this research direction. Namely, in the present manu-
script we consider a singularly perturbed linear second order elliptic ODE as a model equa-
tion which exhibits the boundary layer phenomenon. In accordance with I. M. Gelfand

principle, we took the simplest non-trivial example to illustrate our point. The goal is
to propose a numerical method for such problems, which is able to solve approximatively
this problem with an accuracy independent of the value of the perturbation parameter
[20]. In the beginning we explain why the classical central finite differences on a uniform

mesh is not working in practice, even if this method is fully justified from the theoretical
point of view with well-known stability and convergence properties [21]. Then, we propose
a non-uniform equidistributed grid and we show that the same central difference scheme
converges with the fourth order rate on this family of successively refined grids. So, just
by changing the distribution of nodes in a smart way one can gain two extra orders of the
accuracy! The logarithmically-distributed grids were proposed by Bakhvalov [2]. How-
ever, they were shown to converge inevitably with the same second order rate (see [21] for
the proof).

Non-uniform grids can be used also to compute numerically blow-up solutions as in the
nonlinear Schrödinger equation [4]. See also [6] for a general review of these techniques.
There is a related idea of constructing non-uniform grids in order to preserve some or
all symmetries of the continuous equation at the discrete level as well [7]. We can only
deplore that the authors of [7] did not study theoretically the stability and convergence
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of the scheme depending on symmetry preservation abilities. The same idea holds for
invariants [4, 8] and asymptotics [5, 27]. In the present study we focus essentially on the
scheme approximation order depending on the underlying (non-uniform) grid.

The phenomenon of supraconvergence phenomenon of central finite difference schemes is
well known and it was studied rigorously in one spatial dimension in [3] and the 2D case was
considered in [12]. However, to our knowledge the increase from the second to the fourth
order has never been reported in the literature. The super-supraconvergence reported in
this manuscript is the first example in this novel direction. As Strang & Iserles [23]
discovered the link between the stability and the stencil of a numerical scheme, here we
establish a link between the scheme’s convergence order and the underlying grid. In par-
ticular, we show that some thouroughly chosen nodes distributions lead to the substantial
improvement of the numerical solution accuracy (for a fixed scheme). We show also that
some other grid choices (appearing admissible from the first sight) may totally degrade
the solution accuracy. These illustrations should serve as an indication for more complex
problems.

The present manuscript is organized as follows. The BVP under consideration is de-
scribed in Section 2. The classical discretization is described in Section 2.1, while the
scheme on a general non-uniform grid is provided in Section 2.2. A practical equidistri-
bution method to construct the grids is explained in Section 2.3. A series of numerical
experiments on various non-uniform grids is presented in Section 3 and some theoretical
insight into these results is given in Section 4. Finally, the article is completed by outlining
the main conclusions and perspectives of the present study in Section 5.

2. The boundary value problem

Consider the following linear Boundary Value Problem (BVP) for an ordinary differential
equation L u = 0 of the second degree with Dirichlet-type boundary conditions on the
segment I = [0, ℓ]:

L u ∶= −d2u

dx2
+ λ2 u = 0, u(0) = e−λℓ, u(ℓ) = 1, (2.1)

where λ is a model parameter. It can be readily checked that the following function of x
solves exactly the BVP (2.1):

u(x) = eλ(x − ℓ). (2.2)

However, we shall proceed as if the analytical solution (2.2) were not known. It will serve
us only to assess the quality of a numerical solution. The peculiarity here is that for
sufficiently large values of parameter λ≫ 1 the solution (2.2) shows a boundary layer type
behaviour in the vicinity of the point x = ℓ. It is illustrated in Figure 1. Similar phenomena
occur in Fluid Mechanics where they are of capital importance e.g. in Aerodynamics [22].
It justifies the choice of the problem (2.1) in our study.
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Figure 1. Exact solutions (2.2) for ℓ = 1 and various values of parameter λ: (1)
— λ = 1, (2) — λ = 10, (3) — λ = 100.

Usually the problem (2.1) is rewritten in the literature by introducing a small parameter
ε ∶= 1/λ2:

−ε d2u

dx2
+ u = 0.

Thus, we have a singularly-perturbed Sturm-Liouville problem [18].

2.1. Discretization on a uniform grid

Consider a uniform discretization of the segment I in N equal segments Ih with bound-
aries located at {xj = j∆x}Nj=0, ∆x = ℓ

N
. The finite difference analogue L huh = 0 of

differential equation (2.1) is

L
h
j {uj} = −uj+1 − 2uj + uj−1

∆x2
+ λ2 uj = 0, j = 1, . . . ,N − 1, (2.3)

together with Dirichlet-type boundary conditions:

u0 = e−λℓ, uN = 1.

It is well known that this scheme has the second order accuracy, as it follows from the local
consistency error analysis:

ehj ∶= L
h
j {u(xj)} = uxxxx(xj) ∆x2

12
+ O(∆x4) = λ4eλ(xj − ℓ) ∆x

2

12
+ O(∆x4).
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From the last formula we can already draw some preliminary conclusions:

● The proportionality constant grows as the fourth power of the parameter λ, which
can take potentially large values in practically important situations.● The ratio between the consistency error in the vicinity of x = ℓ and x = 0 is ≈
exp(λℓ).

We would like to mention that the stability proof of scheme (2.3) can be found e.g. in [13].
So, according to Lax–Richtmyer equivalence theorem [17], the scheme (2.3) is convergent
as ∆x → 0 and the convergence rate is equal to the approximation order (i.e. two in this
particular case). However, despite all these good properties the scheme (2.3) is not usable
in practice because of two practical drawbacks mentioned above (they are all related to
the asymptotic limit λ → ∞ and the boundary layer phenomenon). Please, note however
that the convergence is established for a fixed value of the parameter λ.

2.2. Non-uniform adaptive grids

In order to cope with the shortcomings mentioned above, we turn to non-uniform grids
by preserving the simplicity of the second-order central discretization (2.3). Let Q = [0,1]
be the reference domain and consider a bijective mapping from Q to I :

x(q) ∶ q ∈ Q ↦ I . (2.4)

We require that the boundary points map into each other:

x(0) = 0, x(1) = ℓ.

We shall also assume that the Jacobian J(q) of mapping (2.4) is bounded from below and
above by some positive constants:

0 < Jm ⩽ J(q) ∶= dx(q)
dq

⩽ JM < ∞, ∀q ∈ Q. (2.5)

The reference domain can be discretized into N equal elements Qh by nodes {qj = jh}Nj=0,
h = 1/N . Strictly speaking, for our numerical purposes we can be satisfied with the
knowledge of the discrete mapping xh ∶ Qh ↦ Ih. From condition (2.5) (more precisely
from this part: 0 < Jm ⩽ J(q)) follows that the steps of the non-uniform mesh Ih are
necessarily positive i.e.

hj+1/2 ∶= xj+1 − xj > 0, j = 0, . . . ,N − 1. (2.6)

From the condition J(q) ⩽ JM <∞ follows that

hmax ∶= max
j=0,...,N−1

hj+1/2 ⩽ JMh → 0, h → 0.

We note also that if the Jacobian J(q) ≡ const (or equivalently the mapping x(q) is linear),
the resulting mesh Ih is uniform. This case is not very interesting from the adaptivity
point of view. Any other map x(q), which satisfies the boundary conditions with (2.5)
defines a valid non-uniform grid Ih. However, not all of them are equally interesting from



G. Khakimzyanov & D. Dutykh 8 / 18

the numerical point of view. Some practical methods to compute solution-adapted meshes
will be discussed below in Section 2.3.

Equation (2.1) can be posed on the reference domain Q:

− 1

J

d

dq
( 1
J

dv

dq
) + λ2 v = 0, (2.7)

with the same boundary conditions v(0) = e−λℓ, v(1) = 1. Here v is the composed function
v(q) ∶= u ○ x = u(x(q)). Now equation (2.7) is posed on domain Q and, thus, it can be
discretized on the uniform grid Qh as follows

− 1

hJj
[vj+1 − vj

hJj+1/2
− vj − vj−1

hJj−1/2
] + λ2 vj = 0, j = 1, . . . ,N − 1, (2.8)

where the Jacobian J is computed as

Jj+1/2 ∶= xj+1 − xj

h
, Jj−1/2 ∶= xj − xj−1

h
, Jj ∶= Jj−1/2 + Jj+1/2

2
.

Difference equations (2.8) have to be completed with corresponding boundary conditions

v0 = e−λℓ, vN = 1.

The last scheme (2.8) can be equivalently rewritten on the non-uniform grid Ih:

− 1

hj
[uj+1 − uj

hj+1/2
− uj − uj−1

hj−1/2
] + λ2 uj = 0, j = 1, . . . ,N − 1, (2.9)

where hj±1/2 were defined in (2.6) and

hj ∶= hj−1/2 + hj+1/2

2
.

2.3. Adaptive mesh generation

The finite difference scheme on the transformed uniform Qh and non-uniform Ih grids
were formulated in the previous Section. We choose the equidistribution method presented
below. A similar nodes redistribution method was explained in details for time-dependent
hyperbolic problems in a companion paper [16]. The exposition below is simpler since we
deal with a stationary problem. Thus, we do not have here an additional complication of
nodes motion in space and in time, which was addressed in [16].

A non-uniform grid Ih is given if we construct somehow the mapping x(q) ∶ Q ↦ I
and evaluate it in the nodes of the uniform grid, i.e. Ih = x(Qh). In the equidistribution
method it is proposed that the desired mapping x(q) is obtained as a solution to the
following nonlinear elliptic problem

d

dq
[ω(x) dx

dq
] = 0, x(0) = 0, x(1) = ℓ, (2.10)
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where ω(x) is the so-called monitor function. In order to have a well-posed problem (2.10),
the function ω(x) has to be sufficiently smooth and positive valued. The equidistribution
principle can be readily obtained by integrating (2.10) once in q-space

ω(x(q))J(q) ≡ C = const, ∀q ∈ Q, (2.11)

and another time in x-space on the element [xj , xj+1]:
∫ xj+1

xj

ω(x) dx = Ch = const. (2.12)

The last identity explains the name of the equidistribution principle, i.e. the quantity ω(x)
is distributed uniformly over the cells Ih. In other words, in the areas where ω(x) takes
high values, the elements [xj , xj+1] are smaller in order to satisfy the condition (2.12). The
constant C is not arbitrary and it can be computed exactly:

C = ∫ 1

0

ω(x(q))J(q)dq = ∫ ℓ

0

ω(x)dx.
In practice, one has to choose the monitor function ω(x) and solve the nonlinear elliptic

Boundary Value Problem (BVP) (2.10) in order to obtain the required mapping x(q).
Since we need to know only this mapping in the grid nodes qj, the problem (2.10) can be
discretized using the central finite differences as well

1

h
[ω(xj+1/2) xj+1 − xj

h
− ω(xj−1/2) xj − xj−1

h
] = 0, j = 1, . . . ,N − 1, (2.13)

with discrete boundary conditions x0 = 0, xN = ℓ. Equations (2.13) are solved iteratively
using the following linearization:

1

h
[ω(x(n)

j+1/2
) x

(n+1)
j+1 − x

(n+1)
j

h
− ω(x(n)

j−1/2
) x

(n+1)
j − x

(n+1)
j−1

h
] = 0, n ∈ N.

The iterations are continued until the convergence within a prescribed tolerance is achieved.
The linearized equations can be solved efficiently using the tridiagonal matrix algorithm
[11].

A solution {xj}Nj=0 to the nonlinear BVP (2.13) satisfies the discrete version of the equidis-
tribution principle (2.12):

ω(xj+1/2) hj+1/2
h

= Ch = const, j = 0,1, . . . ,N − 1,
or equivalently

ω(xj+1/2) Jj+1/2 = Ch = const, j = 0,1, . . . ,N − 1.
The last identity is called the discrete equidistribution principle.
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2.3.1 Example

In order to illustrate the use of the equidistribution principle in practice, we make the
following choice of the monitor function

ω(x) = (uxxx) 14 ∝ (ux) 14 , x ∈ I , (2.14)

where u(x) is the boundary layer solution (2.2). The proportionality uxxx ∝ ux follows
from equation (2.1). In this case the nonlinear BVP (2.10) can be solved exactly by using
the equidistribution principle (2.11), with constant

C = ∫ ℓ

0

λ
3

4 e
λ(x − ℓ)

4 dx =
4

λ
1

4

(1 − e−
λℓ
4 ).

Consequently, (2.11) reads

λ
3

4 e
λ(x − ℓ)

4

dx

dq
=

4

λ
1

4

(1 − e−
λℓ
4 ).

From the last equation the mapping x(q) can be found exactly

x(q) = ℓ + 4

λ
ln( q + (1 − q) e−λℓ

4 ).
Below it will become clear why we pay a special attention to this particular distribution
of the nodes.

2.3.2 Generalizations

Example shown above can be easily generalized by taking the following monitor function:

ωβ(x) = (ux(x))β, β ∈ R+0 , x ∈ I . (2.15)

By performing the same computations as in the example above, one can show that this
monitor function ωβ(x) yields the following mapping between the reference domain Q and
computational domain I :

x(q) = ⎧⎪⎪⎨⎪⎪⎩
ℓ + 1

βλ
ln[ q + (1 − q) e−βλℓ ], β ≠ 0,

qℓ, β = 0.
(2.16)

For instance, one can see that the case β = 0 yields a uniform distribution of the nodes,
which is not very interesting in view of generating adaptive redistributed meshes. Below
we shall consider also a particular case when β = 1

2
, which gives the mapping x(q) given by

x(q) = ℓ + 2

λ
ln[ q + (1 − q) e−λℓ

2 ].



Supraconvergence phenomenon on non-uniform grids 11 / 18

N ω = 1 ω = (ux(x))1/4 ω = (ux(x))1/2 ω = (ux(x))2∥εh∥∞ p ∥εh∥∞ p ∥εh∥∞ p ∥εh∥∞ p

10 0.141 ⋅ 10−1 — 0.146 ⋅ 10−4 — 0.456 ⋅ 10−2 — 0.193 —

20 0.375 ⋅ 10−2 1.93 0.883 ⋅ 10−6 4.04 0.101 ⋅ 10−2 2.17 0.137 0.49

40 0.953 ⋅ 10−3 1.96 0.548 ⋅ 10−7 4.01 0.220 ⋅ 10−3 2.20 0.960 ⋅ 10−1 0.49

80 0.239 ⋅ 10−3 2.0 0.342 ⋅ 10−8 4.0 0.512 ⋅ 10−4 2.10 0.668 ⋅ 10−1 0.49

160 0.599 ⋅ 10−4 2.0 0.214 ⋅ 10−9 4.0 0.127 ⋅ 10−4 2.0 0.463 ⋅ 10−1 0.49

320 0.150 ⋅ 10−4 2.0 0.136 ⋅ 10−10 3.97 0.317 ⋅ 10−5 2.0 0.319 ⋅ 10−1 0.59

640 0.374 ⋅ 10−5 2.0 0.836 ⋅ 10−12 4.03 0.792 ⋅ 10−6 2.0 0.220 ⋅ 10−1 0.59

Table 1. Numerical estimation of the convergence order of the scheme (2.8) for
different choices of the monitor function ω(x). The computations are performed
for ℓ = 1 and λ = 10.

3. Numerical results

In order to measure the quality of the numerical solution we compute its ‘distance’ to
the reference solution given by (2.2):

∣∣εh∣∣∞ ≡ ∣∣uh − (u)h∣∣∞ = max
0⩽j⩽N

∣uj − u(xj)∣.
The convergence order p of a scheme can be estimated numerically as

p = log
2
[ ∣∣εh∣∣∞∣∣εh/2∣∣∞].

The parameter p has to be computed on a sequence of refined meshes to have a more robust
estimation.

The numerical results are presented in Table 1 for various choices of the monitor function
of the general form (2.15). The corresponding non-uniform meshes {xj = x(qj)}Nj=0 were
computed analytically above in (2.16). The choice of the monitor function ω(x) ≡ 1 (i.e. β =
0) corresponds to a uniform grid and in this case we recover the theoretical 2nd order
convergence. However, the main focus of this study is on non-uniform grids. The most

surprising result is the performance of the monitor function ω(x) = (ux(x))1/4. In this
case we observe a fair 4th order convergence! When the monitor function is changed to

ω(x) = (ux(x))1/2 we come back to the 2nd order convergence, even if the error norm ∥εh∥∞
is approximatively 10 times lower. However, the most catastrophic results are observed

for ω(x) = (ux(x))2, since the convergence order falls down to p = 1

2
. This distribution of

nodes is certainly to be avoided in practical numerical simulations.
It is important to see how the error is distributed along the computational domain I .

For the same choices of the monitor function ωβ(x) it is depicted in Figure 2. One can
see that the uniform grid leads to exponentially inaccurate results in the boundary layer
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Figure 2. Distribution of the numerical error in the computational domain for
various choices of the monitor function ω(x): (1) — ω(x) ≡ 1 ( i.e. the uniform

grid, (2) — ω(x) = (ux(x))
1

4 (optimal case), (3) — ω(x) = (ux(x))
1

2 , (4) —

ω(x) = (ux(x))
2
. The problem parameters are ℓ = 1, λ = 10 and only N = 80

nodes are used.

(i.e. the vicinity of x = ℓ), despite its good theoretical properties on the paper. Without any
surprise the supraconvergent case of ω1/4(x) leads the lowest absolute error. However, it
is surprising to see that ω1/2(x) suppresses the main drawback of the uniform mesh (while
preserving its order of convergence) — the error does not explode anymore in the boundary
layer. Finally, one can see that ω2(x) is a poor choice since it leads to huge errors on the
left end of the computational domain (i.e. x = 0). What happens is that we put too many
nodes in the boundary layer and we forget about the rest of the domain. Without any
surprise this strategy cannot lead to good numerical results.
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α β = 1/8 β = 1/4 β = 1/2 β = 1 β = 2

∥εh∥∞ n ∥εh∥∞ n ∥εh∥∞ n ∥εh∥∞ n ∥εh∥∞ n

0 0.375 ⋅ 10−2 1 0.375 ⋅ 10−2 1 0.375 ⋅ 10−2 1 0.375 ⋅ 10−2 1 0.375 ⋅ 10−2 1

0.1 0.330 ⋅ 10−2 6 0.288 ⋅ 10−2 7 0.206 ⋅ 10−2 8 0.715 ⋅ 10−3 12 0.382 ⋅ 10−2 35

0.5 0.230 ⋅ 10−2 8 0.141 ⋅ 10−2 10 0.358 ⋅ 10−3 13 0.150 ⋅ 10−2 22 0.135 ⋅ 10−1 92

1 0.182 ⋅ 10−2 10 0.816 ⋅ 10−3 12 0.321 ⋅ 10−3 16 0.176 ⋅ 10−2 30 0.377 ⋅ 10−1 167

2 0.142 ⋅ 10−2 10 0.423 ⋅ 10−3 15 0.483 ⋅ 10−3 22 0.230 ⋅ 10−2 42 0.841 ⋅ 10−1 699

10 0.951 ⋅ 10−3 13 0.824 ⋅ 10−4 20 0.630 ⋅ 10−3 38 0.750 ⋅ 10−2 123 0.227 73

102 0.832 ⋅ 10−3 14 0.854 ⋅ 10−5 22 0.827 ⋅ 10−3 46 0.630 ⋅ 10−1 45 0.204 66

103 0,820 ⋅ 10−3 14 0,132 ⋅ 10−5 22 0.113 ⋅ 10−2 46 0.743 ⋅ 10−1 36 0.202 65

104 0.819 ⋅ 10−3 14 0.644 ⋅ 10−6 23 0.117 ⋅ 10−2 46 0.754 ⋅ 10−1 37 0.202 64

Table 2. Effect of monitoring function (3.1) parameters α, β on the accuracy of
the fully converged numerical solution. Here we report also the number n of
iterations needed to achieve the prescribed tolerance ε = 10−10. Problem

parameters are ℓ = 1, λ = 10 and only N = 20 nodes are used.

In order to complete the numerical study, we slightly change the monitor function to
make it closer to what is actually used in practice [16]. Namely, we take the following
family of monitor functions parametrized by two positive real parameters α,β ∈ R+

0
:

ωα,β(x) = 1 + α ∣ux∣β , (3.1)

where this time u(x) is not the exact solution given in (2.2), but the solution being com-
puted numerically. Thus, the grid generation process becomes iterative and the stopping
criterium is

∣∣un+1h − unh∣∣∞ < ε,

where ε is a tolerance parameter taken to be ε = 10−10 in the simulations performed below.
The iterative procedure is explained above in Section 2.3. A grid generated in this way
will be called an adaptive grid to the solution with the monitor function ωα,β(x) defined in
(3.1). The numerical results reported in Table 2 show that here again the lowest errors in
the solution are achieved for the parameter β = 1/4. For β = 1/2 (as well as for β = 1 and
β = 2) we can see that the error does not depend monotonically on the other parameter α.
The results for β = 2 are even worse than for the corresponding uniform grid.

In general, the optimal determination of the monitoring function parameters α, β is a
complex problem. In principle, one could investigate the numerical performance of even
more general monitor functions such as

ω(x) = 1 + α0 ∣u∣β0 + α1 ∣ux∣β1 + α2 ∣uxx∣β2,

but it is beyond the scope of the present study.
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4. Explanations

In order to have some theoretical insight into the numerical results presented above
(especially we would like to explain the surprising performance of the “magic” choice β =
1/4), we study the approximation properties of the scheme (2.9) on general non-uniform
grids:

ψj = −
1

hj
[u(xj+1) − u(xj)

hj+1/2
−
u(xj) − u(xj−1)

hj−1/2
] + λ2 u(xj).

The smallness of ψj in terms of h (the uniform step in the reference domain) will charac-
terize the consistency error of the scheme (2.9). We assume the following

Definition 1. The difference scheme L huh = 0 approximates the problem L u = 0 on its

solution with the order p, if there exists a constant C = const and a natural number N0 ∈ N

such that ∀N ⩾ N0

∣∣ψh∣∣∞ ⩽ Chp.

Let us compute the consistency error ψj for the scheme (2.9). To achieve this goal we
develop the solution into local Taylor expansions and composing finite differences which
appear in (2.9):

u(xj+1) − u(xj)
hj+1/2

= u′ +
h+

2
u′′ +

h2+
6
u′′′ +

h3+
24
u(4) +

h4+
120

u(5) + O(h5+),
u(xj) − u(xj−1)

hj−1/2
= u′ −

h−

2
u′′ +

h2−
6
u′′′ −

h3−
24
u(4) +

h4−
120

u(5) + O(h5−),
where h± ∶= hj±1/2 and the derivatives on the right hand side are evaluated at x = xj . We
did not specify it for the sake of compactness, but this assumption will hold below. Now
we can estimate asymptotically

ψj = −u
′′
+ λ2 u −

h+ − h−

3
u′′′ −

h2+ − h+h− + h
2
−

12
u(4)

−
(h+ − h−)(h2+ + h2−)

60
u(5) + O(h4), (4.1)

where we used the fact that O(h4−) = O(h4+) = O(h4), which follows from (2.5). Since
u(xj) is the solution of (2.1), then −u′′ + λ2 u ≡ 0.

By assuming that the mapping x(q) is sufficiently smooth, we obtain

h+ = x(qj+1) − x(qj) = hxq +
h2

2
xqq +

h3

6
xqqq + O(h4),

h− = x(qj) − x(qj−1) = hxq −
h2

2
xqq +

h3

6
xqqq + O(h4).
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The last two expansions allow us to estimate asymptotically the following combinations,
which appear as coefficients in (4.1):

h+ − h− = h2 xqq + O(h4),
h2+ − h+h− + h2− = h2 x2q + O(h4),

(h+ − h−) (h2+ + h2−) = O(h4).
By substituting these estimations into (4.1), one can conclude

ψj = −
h2

3
[xqq uxxx + 1

4
x2q uxxxx] + O(h4).

Thus, it shows that in general the scheme (2.9) is second order accurate. However, one can
notice that the scheme will be exceptionally the fourth order accurate if the mapping x(q)
satisfies the following equation:

xqq uxxx +
1

4
x2q uxxxx ≡ xqq uxxx +

1

4
xq uxxxq = 0, (4.2)

where u(x) is a solution to equation (2.1). Finally, we can rewrite equation (4.2) in a
compact form

(uxxx)3/4 [ (uxxx)1/4 xq]q = 0. (4.3)

After noticing that uxxx ∝ ux thanks to (2.1), equation (4.3) can be recast into an equiva-
lent, but more familiar form:

[ (ux)1/4 xq]q = 0,

which is to be compared with (2.10) and (2.14). This observation demystifies the surprising
performance of β = 1

4
.

5. Discussion

In the present note we provided an example of a boundary value problem, which exhibits
the boundary layer phenomenon, as a prototype of more complex problems arising e.g. in
Fluid Mechanics [22]. When this equation is discretized with central finite differences on a
uniform grid, one formally obtains the second order accuracy uniformly in space. However,
the proportionality constant in the consistency error term becomes unacceptably large in
the boundary layer. So, this solution cannot be satisfactory for more complex 3D problems.
Consequently, we proposed to keep precisely the same scheme, but to modify the grid using
the equidistribution principle. As a result we show first that the proportionality constant
becomes quasi-uniform in space (no substantial increase in the boundary layer), but the
main gain is in the order of convergence, which becomes equal to four provided that the
mesh nodes are distributed accordingly. One can even ask a question in view of the study [7]:
is it better to redistribute the nodes in order to improve substantially the scheme accuracy
instead of preserving some symmetries at the discrete level? The numerical results of the
present study seem to favour the former possibility.
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This example is very simple and instructive since it shows how poor is our current

understanding of the numerical analysis on non-uniform adaptive1 grids. Similar techniques
can be used to solve more realistic problems involving boundary layers, blow up phenomena
[4] and other rapid variations in space/time of the solution. Recently we employed these
techniques to solve numerically hyperbolic conservation laws [16]. From our experience
it follows that one can expect a substantial improvement of the scheme properties when
adaptive grids are carefully employed. However, the negative examples we provide show
also that the application of adaptive grids does not necessarily lead per se to the increase
in the accuracy. Consequently, the critical analysis of obtained numerical results is always
needed.

The perspectives opened by this study include the description of optimal monitoring
functions for some classes of problems. In the absence of such optimal choice, one has to
describe at least the values of free parameters (e.g. α, β) which yield converged numerical
solutions with desired properties. Here we made a proposition for a singularly perturbed
Sturm–Liouville problem. However, the variety of boundary layers encountered in practice
is much richer. It looks like a successful numerics can be achieved only in conjunction with
deep analytical understanding of the problem in hands.
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